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The influence of finite relaxation times on Thomson scattering from warm-dense plasmas is exam-
ined within the framework of the average-atom approximation. Presently most calculations use the
collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson
cross section. In this work, we use the Mermin dielectric function, which includes relaxation time
explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform
electron gas and depends critically on the transport cross section. The calculated relaxation rates
agree well with values inferred from the Ziman formula for the static conductivity and also with rates
inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined
by the phase-shift analysis in the average-atom potential are compared with those evaluated in the
commonly used Born approximation. The Born approximation converges to the exact cross sections
at high energies; however, differences that occur at low energies lead to corresponding differences in
relaxation rates. The relative importance of including relaxation time when modeling X-ray Thom-
son scattering spectra is examined by comparing calculations of the free-electron dynamic structure
function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are
given to warm-dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging
from 2 to 64 g/cc.

PACS numbers: 51.70.+f, 52.25.Os, 61.20.Lc

I. INTRODUCTION

X-ray Thomson scattering [1] is a very promising tech-
nique for measuring the temperature, density, and ion-
ization state in dense plasmas. Measuring these quan-
tities is very important for understanding and modeling
high energy density physics experiments. The impor-
tance of including finite relaxation times in calculations
of the dynamic structure function for X-ray Thomson
scattering in warm-dense plasmas is well established [2–
7]. In this paper, the influence of finite relaxation times
on Thomson scattering from warm-dense plasmas is ex-
amined within the framework of the average-atom ap-
proximation. Presently most calculations use the Lind-
hard [8] dielectric function ǫ0(k, ω), which describes a
collision-free electron gas, to evaluate the free-electron
contribution to the Thomson cross section. In this work,
the Lindhard dielectric function is replaced by the Mer-
min [9] dielectric function ǫM(k, ω), which includes effects
of collisions and conserves the local electron number:

ǫM(k, ω) =

1 +
(1 + i/ωτ)(ǫ0(k, ω + i/τ)− 1)

1 + (i/ωτ)(ǫ0(k, ω + i/τ)− 1)/(ǫ0(k, 0)− 1)
, (1)

where τ is the relaxation time.

∗ johnson@nd.edu

Schemes for including relaxation effects in the dy-
namic structure function have been reviewed in Ref. [1].
In Refs. [2–6], the Born approximation in a screened
Coulomb potential was used to obtain τ . As an alter-
native, in Ref. [7], the frequency-dependent conductiv-
ity was evaluated using quantum molecular dynamics
and the relaxation time was determined by fitting the
frequency-dependent conductivity σ(ω) to the classical
Drude model [10, 11],

σD(ω) =
nIe

2

m

τ

1 + (ωτ)2
, (2)

where e and m are the electron charge and mass and nI

is the ion density.
In the present study, the relaxation time is determined

using a model developed to treat scattering from impuri-
ties in a uniform electron gas [12]. In this model, the re-
laxation time is expressed in terms of the transport cross
section, which is evaluated in the average-atom potential.
For comparison purposes, an estimate of τ is made by

equating the average-atom version of Ziman’s formula for
the static conductivity [13] with the static Drude conduc-
tivity σD(0), which contains τ as a parameter. A some-
what different estimate of τ is obtained, following the
scheme used in Ref. [7], by fitting the dynamic conductiv-
ity σ(ω) to σD(ω). In the present study, σ(ω) is obtained
from an average-atom version of the Kubo-Greenwood
[14–16] equation. The resulting two estimates are found
to agree well with the direct calculation over a wide range
of densities and temperatures.
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Inasmuch as the Born approximation is widely used
in calculations of transport cross sections, the present
calculations are also compared with calculations carried
out using the Born approximation to the transport cross
section. The Born approximation converges to the ex-
act cross section as energy increases; however, differences
found at low energies lead to differences in the relaxation
rates.
The utility of the average-atom approach rests on its

simplicity and wide range of applicability. The present
version of the average-atom model was used in Refs. [17–
21] to investigate anomalous dispersion in C, Al, Ag, and
other plasmas in the soft X-ray region of the spectrum
and has been used to investigate Thomson scattering in
Refs. [22–30].
In the following section, calculations of transport cross

sections, relaxation times and conductivities are de-
scribed and relaxation times for Be plasmas are evalu-
ated as functions of temperature and density. Compar-
isons are made with estimates obtained from static and
dynamic conductivities. Comparisons are also made with
rates obtained using the Born approximation. Finally, in
Section III, the Mermin dielectric function is discussed
and free-electron contributions to the Thomson scatter-
ing structure function obtained using Mermin and Lind-
hard dielectric functions are compared for Be plasmas
with temperatures ranging from 2 to 32 eV and densities
ranging from 2 to 64 g/cc.

II. RELAXATION TIMES AND

CONDUCTIVITIES

The relaxation rate ν = 1/τ in the average atom pic-
ture is given by a finite-temperature version of the impu-
rity scattering rate, [12, 31]

ν = −nI

m

∫

∞

0

dE
df(E)

dE
p σtr(p), (3)

with p =
√
2mE. In the above, f(E) is the Fermi distri-

bution function

f(E) =
1

1 + exp[β(E − µ)]
, (4)

where β = 1/kBT and µ is the chemical potential. In
Eq. (3), σtr(p) is the transport cross section, which is
given in terms of scattering phase shifts δl(p) by

σtr(p) =
4π

p2

∞
∑

l=0

(l + 1) sin2(δl+1(p)− δl(p)). (5)

In the left panel of Fig. 1, the transport cross sec-
tion σtr(p) is illustrated for a Be plasma at temperature
T = 16 eV and density ρ = 8 g/cc. The ion potential is
taken to be the finite-range average-atom potential V (r):
V (r) → −Ze2/r as r → 0 and V (r) = 0 for r ≥ RWS,
where RWS is the Wigner-Seitz radius. In this example
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FIG. 1. Color online. (a) Transport cross section σtr(p) for a
warm-dense Be plasma at density ρ = 8 g/cc and T = 16 eV.
(b) Electron-ion scattering phase shifts δ(p) in the average-
atom potential used to calculate the cross section shown in
the left panel.

Z = 4 and RWS = 1.444 a0. In the right-panel of Fig. 1,
we show the phase-shifts δl(p) for continuum states in
the average-atom potential V (r). These phase shifts are
used in Eq. (5) to obtain the cross section shown in the
left panel of Fig. 1. Since the K-shell of the Be ion is
occupied in the average-atom model under the present
conditions of temperature and density, the fact that the
s-wave phase-shift δ0(0) = π, whereas δl(0) = 0 for l > 0,
is in harmony with Levinson’s theorem. The ion density
in the present example is nI = 0.07932 a−3

0 and the chem-
ical potential is µ = 1.160 a.u.. The relaxation frequency
from Eq. (3) is ν = 0.4510 a.u. and the corresponding
relaxation time is τ = 2.217 a.u.. (Note that a.u. refers
to atomic units in which e = h̄ = m = 1, with 1 a.u.
in time = 2.4189 × 10−17 s and 1 a.u. in cross section
= 2.800× 10−17 cm2.)
In Table I, we list values of effective ionic charge Z∗,

chemical potential µ, relaxation rate ν and relaxation
time τ for a Be plasma at temperatures ranging from
T = 2 eV to 32 eV and densities ranging from ρ = 2 g/cc
to 64 g/cc. For each fixed temperature, the relaxation
time decreases systematically with density.
In the following subsection, we compare the rates ob-

tained from Eq. (3) with rates estimated from conduc-
tivity calculations.

A. Estimates from Conductivity Calculations

An average atom version of the Kubo-Greenwood (KG)
equation for the frequency-dependent conductivity was
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TABLE I. Properties of warm-dense Be at density ρ and tem-
perature T : Z∗ effective ionic charge, µ chemical potential, ν
collision rate, τ relaxation time are given in a.u..

ρ (g/cc) Z∗ µ ν τ

T = 2 eV

2 1.406 0.429 0.149 6.713

4 1.813 0.822 0.313 3.196

8 2.124 1.457 0.585 1.710

16 2.379 2.498 0.974 1.026

32 2.610 4.219 1.411 0.709

64 2.833 7.074 1.930 0.518

T = 4 eV

2 1.406 0.393 0.136 7.351

4 1.798 0.800 0.298 3.350

8 2.115 1.443 0.578 1.729

16 2.375 2.490 0.975 1.026

32 2.608 4.214 1.428 0.700

64 2.832 7.071 1.818 0.550

T = 8 eV

2 1.455 0.250 0.109 9.162

4 1.763 0.708 0.256 3.910

8 2.084 1.388 0.550 1.818

16 2.361 2.457 0.970 1.031

32 2.603 4.196 1.436 0.696

64 2.830 7.060 1.813 0.552

T = 16 eV

2 1.581 -0.241 0.071 14.09

4 1.746 0.359 0.178 5.609

8 2.009 1.160 0.451 2.217

16 2.307 2.320 0.928 1.077

32 2.581 4.118 1.460 0.685

64 2.823 7.018 1.842 0.543

T = 32 eV

2 1.903 -1.617 0.044 22.83

4 1.918 -0.694 0.106 9.401

8 2.030 0.401 0.288 3.475

16 2.247 1.817 0.733 1.365

32 2.526 3.815 1.436 0.696

64 2.800 6.849 1.956 0.511

derived in [13] by considering linear response of the av-
erage atom to a time-varying electric field:

σ(ω) =
2nIπe

2

mω

∑

ij

(fi− fj) |〈j|pz|i〉|2 δ(ǫj − ǫi−ω). (6)

In this equation, nI is the ion density, ǫi and fi are the
energy and Fermi distribution function of average-atom
state i, and pz is the z component of the momentum
operator. Contributions to the conductivity arise from
three distinct processes: free-free transitions, bound-

bound transitions (discrete spectra) and bound-free tran-
sitions (photoionization). The free-free contribution to
the conductivity, which diverges at low frequencies, was
regulated in an ad-hoc manner in Ref. [13]. It was later
shown [32] how the free-free contribution to the KG equa-
tion could be reformulated to include finite collision times
and that the resulting free-free contribution was regular
at ω = 0. The modified free-free contribution to the KG
equation is given by a frequency-dependent generaliza-
tion of the Ziman formula

σ(ω) = − 2e2

3m2

∫

d3p

(2π)3

(

∂f

∂E

)

p2
τp

1 + ω2τ2p
. (7)

It should be emphasized that τp in Eq. (7) is the mean
time between collisions for an electron with momentum
p [τp = V/(pσtr(p))], not the frequency independent pa-
rameter τ = 1/ν. Indeed, τp can be determined from the
mean-free-path Λp by τp = Λp/v, where v is the electron
velocity. The mean-free-path is related to the transport
cross-section σtr(p) by Λp = V/σtr(p), where V = 1/nI

is the volume of the WS cell. In the static limit, σ(ω)
reduces to the Ziman formula [12, Eq. (7.25)]. Discus-
sions of conductivity in the average-atom approximation
can be found in Refs. [13, 32, 33], while comparisons of
average-atom conductivities with experiment and with
other calculations are found in [33–35].
In column 3 of Table II, we compare estimates of re-

laxation rates ν1, obtained by equating σ(0) from Eq. (7)
to σD(0) from Eq. (2), with values of ν obtained from
Eq. (3).
In Fig. 2, we show the free-free contributions to

frequency-dependent conductivities σ(ω) from Eq. (7) for
Be plasmas at temperature T = 16 eV and densities ρ
ranging from 4 to 32 g/cc in the solid red lines. The
dashed black lines show results of one-parameter (ν2) fits
of σ(ω) to the function

σ(0)

1 + (ω/ν2)2
, (8)

which is obtained from Eq. (2) by requiring σD(0) = σ(0).
As can be seen from Fig. 2, the resulting fit reproduces

σ(ω) accurately for the cases considered. Estimates of
relaxation rates ν2 for Be over a range of temperatures
and densities are listed in column 4 of Table II. As can
be seen from the table, there is good agreement between
the estimates ν1 and ν2 and agreement to better than a
factor of 2 between the direct calculation of ν and the
two estimates.

B. Born approximation

In many studies of relaxation rates [2, 4–6], the scat-
tering cross section σp(θ) is evaluated using the Born
approximation for the scattering amplitude f(θ):

f(θ) = − 1

2π
V (q), (9)
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FIG. 2. Color online. Frequency-dependent conductivities
σ(ω) calculated using the Ziman formula Eq. (7) are shown
in the solid red lines for warm-dense Be plasmas with densities
ρ = (4, 8, 16, 32) g/cc and temperature T = 16 eV. The lower
curves correspond to lower densities. The dashed black lines
represent one parameter (τ ) fits of the conductivities to the
Drude formula (2). Values of the collision rates ν2 obtained
from the fits are compared with those obtained from Eq.(3)
in Table II.

TABLE II. Relaxation rates ν for Be plasmas at tempera-
ture T and density ρ are compared with rates ν1 inferred
from static conductivity calculations, with rates ν2 obtained
by fitting dynamic conductivity calculations and with rates
νB obtained by using the Born approximation to evaluate the
transport cross section. Units for relaxation rates are a.u..

ρ g/cc ν ν1 ν2 νB

T = 4 eV

4 0.298 0.318 0.314 0.839

8 0.578 0.585 0.584 0.952

16 0.975 0.971 0.971 1.067

32 1.428 1.423 1.422 1.174

T = 8 eV

4 0.256 0.327 0.320 0.741

8 0.550 0.579 0.578 0.934

16 0.970 0.958 0.958 1.069

32 1.436 1.409 1.407 1.176

T = 16 eV

4 0.178 0.338 0.333 0.486

8 0.451 0.561 0.559 0.793

16 0.928 0.913 0.911 1.039

32 1.460 1.361 1.354 1.181

T = 32 eV

4 0.106 0.297 0.289 0.253

8 0.288 0.488 0.480 0.504

16 0.733 0.790 0.780 0.844

32 1.436 1.212 1.192 1.129

where V (q) is the Fourier transform of the electron-ion
scattering potential V(r), which is typically assumed to
be an exponentially damped ion potential. In the above,
q = p1 − p2 is the momentum transferred to the ion.
We have omitted a factor of m/h̄ in Eq. (9) since we
use atomic units. For elastic scattering p2 = p1 = p and
q2 = 2p2(1−µ), where µ is the cosine of the angle between
p1 and p2. The Fourier transform of the potential V (r)
is given by

V (q) =
4π

q

∫

∞

0

r sin(qr)V (r) dr, (10)

and the transport cross section is

σtr(p) =
1

4πp4

∫ 2p

0

q3 |V (q)|2 dq. (11)

In Fig. 3, we compare the Born-approximation transport
cross sections for a Be plasma at T = 16 eV, which are
shown in dashed lines, with “exact” cross sections, which
are shown in solid lines. The average-atom potential is
used to evaluate the the Born cross section. For small val-
ues of p, the Born cross section for density ρ = 2 g/cc is
larger than the exact cross section, while for ρ = 32 g/cc,
the Born cross section is smaller than the exact cross sec-
tion. As p increases, the Born approximation approaches
the exact cross section in both cases. Differences between
the Born and exact cross sections at small values of p are
reflected in the relaxation rates. Thus, for T = 16 eV and
ρ = (2, 32) g/cc, Eq. (3) gives ν = (0.0710, 1.460) a.u. ,
using the exact transport cross section, whereas Eq. (3)
gives νB = (0.2433, 1.181) a.u. using the Born transport
cross section. Born approximation calculations of relax-
ation rates in Be plasmas for other values of tempera-
ture and density are compared with direct calculations
and with values inferred from conductivity calculations
in Table II.

C. Comparisons

Plagemann et al. [7] obtain frequency independent val-
ues of ν by fitting the frequency-dependent conductivity
obtained from a quantum molecular dynamics calculation
to the Drude model. For uncompressed Be at density
1.85 g/cc and temperature 12 eV and compressed Be at
density 5.5 g/cc and temperature 13 eV, values ν = 0.357
and 0.703 a.u., respectively, were obtained. The present
calculation using Eq. 3 predicts values ν = 0.0800 and
0.317 a.u., respectively. The value of ν at ρ = 1.85 g/cc is
substantially smaller than that value predicted in Ref. [7].
The “mathematical” reason for the relatively small

value of ν at metallic density is strong interference at
small values of p between partial waves with l = 0 and
l = 1 in the expression for σtr(p), resulting in a cor-
responding reduction in the value of the relaxation fre-
quency. This reduction is evident in the black curve in
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FIG. 3. Color online. Exact transport cross sections for a
Be plasma at T = 16 eV (shown in solid lines) are com-
pared with the Born approximation (shown in dashed lines).
At density ρ = 2 g/cc (shown in black lines), the Born ap-
proximation cross section is much larger than the exact cross
section (shown in red lines) at small values of momentum p,
while at ρ = 32 g/cc, the Born approximation is smaller at
small p. In both cases, the Born approximation approaches
the exact cross section as p increases.

Fig. 3, where the partial-wave expression for the trans-
port cross section at ρ = 2 g/cc and T = 16 eV is com-
pared with the Born approximation. One consequence of
the interference, pointed out earlier, is a substantial in-
crease in the size of νB relative to ν; a second consequence
is that substantial differences arise between relaxation
frequencies ν, ν1 and ν2. In that regard, average-atom
relaxation rates obtained by fitting frequency-dependent
conductivities to the Drude formula ν2 = 0.244 and 0.426
are somewhat closer to the values obtained in Ref. [7].
Differences between the respective values of ν2 reflect dif-
ferences between average-atom and QMD calculations of
frequency-dependent conductivities.

Faussurier and Blancard [36] determined values of ν
for Be at metallic density and temperature T = 10 eV
within the framework of the SCAALP [37] average-atom
model . The value νKG = 0.153 a.u. was obtained us-
ing the Kubo-Greenwood theory; the corresponding value
from the present calculation is ν2 = 0.246. Furthermore,
νB = 0.363 a.u. was obtained in [36] using an expres-
sion for the frequency-dependent conductivity based on
the Born approximation, and νLB = 0.278 a.u. was ob-
tained using the Lenard-Balescu theory together with the
average-atom electron-ion potential. The present cal-
culation gives ν = 0.0896 a.u. for ρ = 1.85 g/cc and
T = 10 eV which is again much smaller than the values
obtained in [36] for reasons mentioned in the previous
paragraph. It should be mentioned that the average-
atom Born approximation result gives νB = 0.369, in
good agreement with the value νB = 0.363 obtained in
[36].
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FIG. 4. Color online. Contributions to dielectric functions
of a Be plasma at temperature T = 16 eV and density
ρ = 8 g/cc. The collision rate is ν = 0.4510 a.u.. Dashed and
solid lines illustrate contributions to the Lindhard and Mer-
min dielectric functions, respectively. (a) Re[ǫ(k, ω)] (black
lines), Im[ǫ(k, ω)] (red lines) and -Im[1/ǫ(k, ω)] (green lines)
are shown for k = 0.838 a.u. corresponding to scatter-
ing of a 9000 eV X-ray at angle 20◦. (b) -Im[1/ǫ(k, ω)] for
k = 4.18 a.u. corresponding to scattering of a 9000 eV X-ray
at 120◦.

III. DIELECTRIC FUNCTION

Expressions for the Lindhard and Mermin dielectric
functions are reduced to single integrals suitable for nu-
merical studies in Appendix A. In Fig. 4, we com-
pare these two functions of ω at fixed values of k for
a Be plasma at temperature T = 16 eV and density
ρ = 8 g/cc. The corresponding collision rate, given in
Table I is ν = 0.4510 a.u.. The lower panel of the figure
shows the real and imaginary parts for the Lindhard and
Mermin dielectric functions together with the function
-Im[1/ǫ(k, ω)], which occurs in the expression for free-
electron dynamic structure function. These functions are
evaluated at k = 0.838 a.u., corresponding to scattering
of a 9000 eV X-ray at 20◦. The Lindhard function -
Im[1/ǫ(k, ω)], shown in the dashed green line, resonates
(plasmon resonance) near the second zero of Re[ǫ(k, ω)],
shown by the dashed black line. This resonance is seen
to be strongly damped in the Mermin dielectric func-
tion shown in the solid green line. The upper panel
of Fig 2 compares Lindhard and Mermin calculations of
−Im[1/ǫ(k, ω)] at k = 4.18 a.u. corresponding to scat-
tering a 9000 eV Xray at 120◦. The resulting values
of Re[ǫ(k, ω)] are close to 1 and those of Im[ǫ(k, ω)] are
indistinguishable from the green lines in the figure. It
is particularly interesting to note that the maximum of
Im[ǫ(k, ω)] is reduced in amplitude and shifted to lower
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energies in the Mermin calculation.

IV. THOMSON SCATTERING

We now turn to applications of the Mermin dielectric
function to Thomson scattering. The contribution to the
dynamic structure function S(k, ω) from inelastic scat-
tering by free electrons is given by

See(k, ω) = − 1

1− exp(−ω/T )

Z∗k2

4πne

Im

[

1

ǫ(k, ω)

]

. (12)

It should be noted that Z∗/ne = V , the volume of an
average-atom Wigner-Seitz cell.
In Fig. 5, we compare free-electron dynamic structure

functions for Thompson scattering of 9000 eV X-rays at
120◦ from Be plasmas with temperatures ranging from 8
to 64 eV and densities ranging from 4 to 32 g/cc. The
solid curves describe calculations done including relax-
ation time and the dashed curves represent those done
ignoring relaxation effects. The maxima of the curves
evaluated using the Mermin dielectric function are shifted
to higher energy and reduced in amplitude compared to
those evaluated using the Lindhard dielectric function.
The size of the shift increases with density at a fixed

temperature and decreases with temperature at a fixed
density. Since the peak of structure function is down-
shifted from the incident photon energy ω0 by approxi-
mately 2(ω0/c)

2 sin2(θ/2) a.u., the effect of including re-
laxation time is similar to ignoring relaxation time and
decreasing the scattering angle. (In this regard it should
be noted that the horizontal axis in Fig. 4 is ω and in
Fig. 5 is ω0 − ω.)
In Fig. 6, we compare See(k, ω) for scattering of

2960 eV X-rays at 40◦ from Be plasmas with temper-
atures ranging from 4 to 32 eV and density 1.84 g/cc.
The solid curves describe calculations done including re-
laxation time and the dashed curves represent those done
ignoring relaxation effects. As in the previous exam-
ples, maxima of the curves evaluated including relax-
ation effects are shifted to higher energy and reduced
in amplitude compared to those in which relaxation is
ignored. The size of the shift increases with density at
a fixed temperature and decreases with temperature at
a fixed density. The relative importance of including fi-
nite relaxation times in the coherent scattering regime
(at small momentum transfer) becomes obvious on com-
paring Figs. 5 and 6.

V. SUMMARY AND CONCLUSIONS

The influence of finite relaxation times on the free elec-
tron contribution to X-ray Thomson scattering is exam-
ined within the framework of the average-atom theory.
For this purpose, the Lindhard dielectric function, which
describes a collision-free electron gas, was replaced by the
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FIG. 5. Color online. Free-electron dynamic structure func-
tions See(k, ω) for Thompson scattering of 9000 eV X-rays
at 120◦ from Be plasmas with temperatures ranging from 8
to 64 eV and plasma densities ranging from 4 to 32 g/cc.
The dashed curves describe calculations done using the Lind-
hard dielectric function and the solid curves represent those
done using the Mermin dielectric function. The curves with
smaller amplitudes describe plasmas with higher density at
a given temperature and with higher temperature at a given
density.
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FIG. 6. Color online. Free-electron dynamic structure func-
tions See(k, ω) for Thompson scattering of 2960 eV X-rays at
40◦ from Be plasmas with temperatures ranging from 4 to
32 eV and metallic density. The dashed curves describe cal-
culations done using the Lindhard dielectric function and the
solid curves represent those done using the Mermin dielectric
function.

Mermin dielectric function, which includes the relaxation
time and conserves the local electron number. The relax-
ation time used in the Mermin function was obtained by
treating the average atom as an impurity in a uniform
electron gas. The relaxation rate depends crucially on
the transport cross section, which is evaluated in terms
of phase shifts in the average-atom potential.

Examples are given for Be plasmas with tempera-
tures ranging from 2 to 32 eV and densities from 2 to
64 g/cc. Rates determined from the impurity scatter-
ing formula are found to agree within a factor of 2 with
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rates inferred from conductivity calculations. Average-
atom calculations of the conductivity σ(ω) are carried
out using a frequency-dependent generalization of the
Ziman formula. One scheme for determining relaxation
times is to equate σ(0) to the static Drude conductivity
σD(0), which is proportional to τ . A second scheme is
to fit the frequency dependence of σ(ω) to the frequency-
dependent Drude model. Results from these two methods
agree well with one another.
The transport cross section used in the calculation of

the relaxation rate was compared with the Born approx-
imation cross section, often used in calculations of relax-
ation rates. Significant differences between the Born and
exact cross sections were found at low momenta, leading
to corresponding differences in relaxation rates.
The Mermin function −Im[1/ǫM (ω, k)], which governs

the free-electron contribution to Thomson scattering, was
compared with its counterpart using the Lindhard dielec-
tric function ǫ0(ω, k). Plasmon resonance features that
show up in calculations based on the Lindhard dielectric
function at small values of k were significantly broadened
using the Mermin dielectric; moreover, the Compton fea-
ture that shows up at large values of k was reduced in
amplitude and shifted to lower energy.
Finally, plots of the free-electron contribution to the

Thomson scattering structure function are presented for
warm-dense Be plasmas over a range of temperatures and
densities. These plots illustrate that effects of finite re-
laxation times are most important for low temperatures
at fixed density and for high density at fixed temperature.
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Appendix A: Reduction of the Mermin Dielectric

Function

The Mermin dielectric function is expressed in terms
of the Lindhard dielectric function

ǫ0(k, ω + iν)

= 1− 1

π2k2

∫

f(p+ k/2)− f(p− k/2)

k · p− ω − iν
d3p, (A1)

with frequency ω replaced by ω + iν, where ν = 1/τ
is the collision rate. The real and imaginary parts of
the Lindhard function can be reduced to the following
integrals

Re
[

ǫ0(k, ω + iν)
]

= 1

+
2

πk3

∫

∞

0

pf(p) dp

{

log

∣

∣

∣

∣

k2 + 2ω + 2pk + 2iν

k2 + 2ω − 2pk + 2iν

∣

∣

∣

∣

+ log

∣

∣

∣

∣

k2 − 2ω + 2pk − 2iν

k2 − 2ω − 2pk − 2iν

∣

∣

∣

∣

}

, (A2)

and

Im
[

ǫ0(k, ω + iν)
]

=

2

πk3

∫

∞

0

pf(p) dp
{

arctan(2ν, k2 + 2ω + 2pk)

− arctan(2ν, k2 + 2ω − 2pk)

− arctan(2ν, k2 − 2ω + 2pk)

+ arctan(2ν, k2 − 2ω − 2pk)
}

. (A3)

In Eq. (A3), arctan(y, x) is the phase of the complex
number (x + iy). In the limit ν → 0, the sum of the
terms in braces in Eq. (A3) is π for |k2 − 2ω|/2k ≤ p ≤
(k2 + 2ω)/2k and 0 otherwise. The Lindhard dielectric
function is the limiting value as ν → 0 of ǫ0(k, ω + iν):

Re[ǫ0(k, ω)] = 1+

2

πk3

∫

∞

0

pf(p) dp

{

log

∣

∣

∣

∣

k2 + 2ω + 2pk

k2 + 2ω − 2pk

∣

∣

∣

∣

+ log

∣

∣

∣

∣

k2 − 2ω + 2pk

k2 − 2ω − 2pk

∣

∣

∣

∣

}

, (A4)

Im[ǫ0(k, ω)] =
2

k3

∫ b

a

pf(p)dp

=
2kBT

k3
log

[

1 + exp[(µ− a2/2)/kBT ]

1 + exp[(µ− b2/2)/kBT ]

]

, (A5)

where a = |k2 − 2ω|/2k and b = (k2 + 2ω)/2k.
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