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We present the results of a theoretical investigation of the dynamics of a droplet walking on a
vibrating fluid bath under the influence of a harmonic potential. The walking droplet’s horizontal
motion is described by an integro-differential trajectory equation, which is found to admit steady
orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength
of the radial harmonic force field agree favorably with experimental data. The orbital quantization
is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital
stability on system parameters is compared with experimental data.

PACS numbers:

I. INTRODUCTION

There has been considerable recent interest in the dy-
namics of silicone oil droplets bouncing on the surface
of a vibrating fluid bath [1, 2]. As discovered a decade
ago in the laboratory of Y. Couder and E. Fort, these
droplets may move horizontally, or ‘walk,’ across the
fluid surface, propelled by the waves they generate with
each bounce [1, 3]. These walkers, comprising a bouncing
droplet and an associated guiding wave field, exhibit be-
haviors reminiscent of quantum mechanical phenomena,
including single-particle diffraction and interference [4],
tunneling [5], Zeeman-like splitting [6], orbital quantiza-
tion in a rotating frame [7, 8], and wave-like statistics in
a confined geometry [9, 10]. The walking droplet system
represents a hydrodynamic realization of the pilot-wave
dynamics championed by Louis de Broglie as an early
model of quantum dynamics [11, 12]. The relationship
between this hydrodynamic system and more modern re-
alist models of quantum dynamics is explored elsewhere
[2, 13].

We here consider an experiment performed by Perrard
et al. [14], in which the walking droplet moves in a har-
monic potential. The experimental setup is shown in
fig. 1, and the details have been presented elsewhere [14].
The droplet encapsulates a small amount of ferrofluid
and acquires a magnetic moment when placed in the spa-
tially homogeneous magnetic field induced by two large
Helmholtz coils. It is then attracted toward the sym-
metry axis of a cylindrical magnet suspended above the
fluid bath. Provided the walker is not too far from the
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FIG. 1: (a) Schematic of the experimental setup, in which an
oil droplet encapsulates a small amount of ferrofluid and is
trapped in a harmonic potential Ep = kr2/2. The harmonic
potential remains a good approximation up to distances of
approximately 3λF ' 14 mm (see [14] for details). The fluid
bath is driven vertically with acceleration γ cos(2πft). (b)
Top-view of the walker and its associated wave field. Inset: a
characteristic circular trajectory. Scale bar λF = 4.75 mm.

magnet’s axis, a radially inwards force is generated on
the drop. The force F = −kx increases linearly with
distance from the magnet’s axis, where x is the displace-
ment from the origin, and the constant k may be tuned
by adjusting the vertical distance between the magnet
and the fluid bath.

Perrard et al. [14] reported that the walker dynamics
in a harmonic potential is sensitive to the memory pa-
rameter, as prescribed by the proximity to the Faraday
threshold, which determines the longevity of the standing
waves generated by the walker [15]. In the low-memory
limit, in which the waves decay relatively quickly, the
walker executes circular orbits whose radii decrease
monotonically with increasing spring constant k. As the



2

memory parameter is increased, the orbital radii become
quantized. The authors also reported the existence of
other periodic and quasiperiodic trajectories, such as
the trefoil and lemniscate. The various trajectories
were found to be quantized in both mean radius and
angular momentum. In the high-memory limit, the
walker exhibits a chaotic dynamics characterized by
intermittent transitions between a set of quasiperiodic
trajectories [16]. Labousse et al. [23] linked this complex
dynamics to the self-organization of its wave field.

The first theoretical model of the walker system,
developed by Protière et al. [3], captured certain fea-
tures of the observed behavior, including a transition
from bouncing to walking. The understanding of
richer phenomena required the inclusion of memory
effects [15], in which the past bounces are encoded
into the surface wave field. Through an analysis of
the droplet impact and the resulting standing waves,
Moláček & Bush [17–19] derived a trajectory equation
for the walker that includes both its vertical and
horizontal dynamics. By averaging out the vertical
dynamics, Oza et al. [20] derived an integro-differential
form for the horizontal motion referred to as the
stroboscopic model. This theoretical work provides an
efficient framework for analytical investigations. For
example, the resulting equation was used to derive
reduced trajectory equations appropriate in the limits
of low-memory [21] and weak horizontal acceleration [22].

Fort et al. [7] and subsequently Harris & Bush [8]] ex-
amined droplets walking in a rotating frame. The walkers
were found to execute circular inertial orbits provided the
memory was sufficiently low. In the low-memory limit,
the orbital radius decreased monotonically with the ap-
plied rotation rate. As the memory was progressively
increased, the circular orbits became quantized in ra-
dius. Fort et al. [7] presented numerical simulations that
captured the emergence of orbital quantization with in-
creasing memory. This quantization was rationalized in
terms of a theoretical model based on considering the
composite effect of wave sources on a circle in the high-
memory limit. Oza et al. [24, 25] augmented the strobo-
scopic model [18] through inclusion of the Coriolis force,
FCor. = −2mΩ × ẋp, in order to rationalize the orbital
stability thresholds and complex dynamics reported in
the experimental study of Harris & Bush [8]. We here
adopt a similar methodology, based on the stroboscopic
model, in order to rationalize the orbital quantization
of circular orbits arising in a harmonic potential, as re-
ported in the experiments of Perrard et al. [14].

The paper is organized as follows. We first present
the integro-differential trajectory equation for the walker
in the presence of an external confining potential and
show that it admits orbital solutions. We compare our
model with the existing experimental data obtained for
a harmonic potential [14]. We then analyze the linear
stability of the orbital solutions and compare our results

to laboratory experiments of walkers in a harmonic well.
We use the stability analysis to rationalize the emergence
of orbital quantization of circular orbits, and link the
orbital instabilities to wave modes excited by the walker.
We conclude by discussing future directions.

II. EXISTENCE OF QUANTIZED ORBITS

A. Trajectory equation

Consider a drop of mass m and undeformed radius Rd
walking on the surface of a vertically vibrating fluid bath
of density ρ, surface tension σ, kinematic viscosity ν,
mean depth H and vertical acceleration γ cos(2πft). We
restrict our attention to the regime γ < γF , γF being the
Faraday instability threshold [26–30], below which the
fluid surface would remain flat in the absence of distur-
bances. Theoretical treatments have been developed to
rationalize the drop’s bouncing dynamics [3, 17, 18, 31–
34]. We here restrict our study to the particular case in
which the drop is in a perfectly period-doubled bouncing
state, as is typically the case in the walking regime [19].
The drop’s bouncing period TF = 2/f is then commen-
surate with its subharmonic Faraday wave field [27]. As-
suming that the drop hits the bath with a constant phase
relative to the vibrational forcing, we may consider the
simplified strobed dynamics for the droplet’s horizontal
motion [20].

Let xp(t) = (xp(t), yp(t)) be the horizontal position of
the walker at time t. During each impact, the walker
experiences a propulsive force proportional to the local
slope of the fluid interface and a drag force opposing its
motion. Time-averaging these forces on the drop over the
bouncing period TF yields the equation of motion [19]

mẍp +Dẋp = F −mg∇h(xp, t), (1)

where h(x, t) is the height of the fluid interface and F
is an arbitrary external force on the drop. The time-
averaged drag coefficient D has the form [19] D =

Cmg
√

ρRd

σ + 6πµaRd

(
1 + ρagRd

12µaf

)
, where µa and ρa are

the dynamic viscosity and density of air, respectively,
and the coefficient C = 0.17 is inferred from the drop’s
tangential coefficient of restitution. The first term in D
accounts for the direct transfer of momentum from drop
to bath during impact, the second, for air drag.

The wave field resulting from the drop’s prior impacts
may be written as [15, 19]

h(x, t) =

bt/TF c∑
n=−∞

AJ0 (kF |x− xp(nTF )|) e
− t−nTF

MeTF , (2)

where the memory parameter Me is given by Me(γ) =
Td

TF (1−γ/γF ) . The hydrodynamic analysis of Moláček

& Bush [18] demonstrated that the wave amplitude

may be expressed as A = 1
2

√
ν
TF

k3F
3k2Fσ+ρg

mgTF sin Φ.
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The Faraday wavenumber kF is defined through
the standard water-wave dispersion relation (πf)2 =(
gkF + σk3F /ρ

)
tanh(kFH). Φ is the mean phase of the

wave during the contact time, and Td ≈ 0.0182 s the vis-
cous decay time of the waves in the absence of forcing
for ν = 20 cS [19]. We note that the phase sin Φ may be
deduced from the experimentally observed free walking
speed [20]. The memory parameter Me increases with
the forcing acceleration γ and determines the extent to
which the walker is influenced by its past [15]. Indeed,
the dominant contribution to the wave field (2) comes
from the drop’s n ∼ O(Me) prior bounces.

Provided that the time scale of horizontal motion TH =
λF /|ẋp| is much greater than the bouncing period TF , as
is the case for walkers, we may approximate the sum in
eq. (2) by an integral [20]:

h(x, t) =
A

TF

t∫
−∞

dT J0 (kF |x− xp(T )|) e
− t−T

MeTF . (3)

This continuous approximation will allow us to com-
pute analytical time-dependent behaviors by considering
a perturbative approach. It therefore provides a frame-
work for investigating a pilot-wave dynamics closely re-
lated to the walker’s dynamics. The limits of validity of
the continuous approximation will be discussed in what
follows.

We introduce the dimensionless variables x̂ = kFx and
t̂ = t/TFMe. The external central force F may be ex-
pressed in dimensionless form as F = (kFMeTF /D)F .
The dimensionless trajectory equation (1) thus assumes
the form

κx̂′′p + x̂′p = F+ (4)

β

t̂∫
−∞

dT̂ ut,T J1

(∣∣∣x̂p(t̂)− x̂p(T̂ )
∣∣∣) e−(t̂−T̂ )

(5)

where primes denote differentiation with respect to t̂,
and κ = m/(TFMeD), β = mgAk2FTFM

2
e /D are the

dimensionless mass and wave force coefficient, respec-
tively. ut,T denotes the unit vector pointing from x̂p(T̂ )

to x̂p(t̂).
We now seek orbital solutions to the trajectory equa-

tion, and so substitute x̂p(t̂) = r0(cosωt̂, sinωt̂) into
eq. (4), where ω and r0 are the dimensionless angular
frequency and orbital radius, respectively. Dropping all
hats, we obtain in polar coordinates (r, θ) the system of
algebraic equations

−κr0ω2 = β

∫ ∞
0

J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz + Fr,

r0ω = β

∫ ∞
0

J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z dz + Fθ.

(6)

B. Orbital solutions in a harmonic potential

For a harmonic force, we have F = −kxp or equiva-
lently F = −ξx̂p, ξ = kTFMe/D being the dimensionless
strength of the harmonic potential. Eq. (6) thus takes the
form

−κr0ω2 = β

∫ ∞
0

J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz − ξr0,

r0ω = β

∫ ∞
0

J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z dz. (7)

Given the experimental parameters that determine κ, β
and ξ, these equations can be solved numerically using
computational software (Matlab), which yields the or-
bital radius r0 and frequency ω of the circular orbit. The
dependence of the orbital radius on the dimensionless
potential width Λ = V/(λF

√
k/m) is shown in fig. 2 for

two different values of forcing acceleration γ, V being the
walker’s time-averaged horizontal speed. At low memory,
γ/γF ' 0.92 (fig. 2a), the orbital radius increases mono-
tonically with the potential width Λ. The linear depen-
dence may be understood from the balance of the at-
tractive force and the centripetal acceleration. The slope
exceeding one is a signature of the wave-induced added
mass, which may be expressed in terms of a hydrody-
namic boost factor [22]. At higher memory (fig. 2b), the
orbital radius exhibits a non-monotonic dependence on
the potential width Λ, leading to pronounced plateaus
with forms consistent with those reported by Perrard et
al [14]. In the following section, we will see that the yel-
low branches of the solution curves in fig. 2b correspond
to unstable solutions.

C. Orbital solutions for any central force in the
limit Me � 1

For the sake of generality, we now examine the condi-
tion for existence of quantized circular orbits for any ax-
isymmetric confining potential. Let us start with eq. (6),
which represents the radial and tangential balance of mo-
mentum. As the memory increases, the radial terms of
eq. (6) scale as −κr0ω

2 ∼ O (Me)
F ∼ O (Me)
β
∫∞
0
J1
(
2r0 sin ωz

2

)
sin ωz

2 e−z dz ∼ O
(
M2
e

)
,

(8)

and therefore act on different time scales. At high mem-
ory, the long time scale terms dominate, yielding∫ ∞

0

J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz = O

(
1

Me

)
. (9)

As in the case of inertial orbits [24], equation (9) admits
a set of orbital solutions

r
(n)
0 = 0,n + O

(
1

Me

)
(10)
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FIG. 2: Evolution of the orbital radius R/λF = r0/(2π) with

the potential width Λ = V/(ΩλF ), where Ω =
√
k/m. (a)

At low memory γ/γF ' 0.92, the radius increases linearly
with the potential width. (b) In the high memory regime,
γ/γF = 0.979, the orbital radii converge to regularly-spaced
plateaus. The curves indicate the theoretical predictions
based on eq. (6) and the linear stability analysis of orbital
solutions described in § III. Black denotes stable orbits, green
denotes unstable orbits that destabilize via an oscillatory in-
stability, and yellow indicates the coexistence of oscillatory
and non-oscillatory unstable modes. The lower and upper
horizontal cross-cuts evident in fig. 3 correspond to the two
data sets shown here, respectively, in (a) and (b).

where 0,n is the n-th zero of the Bessel function J0.
These orbital solutions correspond to the plateaus ob-

served in fig. 2b. Provided F is not singular in r
(n)
0 , a set

of quantized orbital solutions will arise at high memory.
The order O (1/Me) corrections depend on the form of

the potential and will determine the exact value of r
(n)
0

but will not affect the existence of solutions. We thus
turn to the stability of these orbital solutions using the
continuous approximation.

III. LINEAR STABILITY OF ORBITAL
SOLUTIONS

A. General case

We perform a linear stability analysis of orbital
solutions in the presence of an arbitrary radial force
F(r, ξ), where r = |x̂| and ξ is a parameter that controls
the strength of the force. For the harmonic force of
interest, F(r, ξ) = −ξr. We linearize the trajectory
equation (4) around the orbital solution defined by
eq. (6), substituting r = r0 + εr1(t) and θ = ωt + εθ1(t)
into eq. (4) and retaining terms to leading order in ε.
We note that the presence of the convolution product in
the linearized equations of motion indicates the presence
of long-range temporal correlations in the dynamics that
complicate the stability analysis.

We take the Laplace transform (L) of the linearized
equations and obtain a system of algebraic equations for
R(s) = L[r1] and Θ(s) = L[θ1]:(

A(s) −B(s)
C(s) D(s)

)(
R(s)
r0Θ(s)

)
=

(
cr
r0cθ

)
(11)

where

A(s) = κs2 + s− κω2 − ∂F
∂r

∣∣∣∣
r0

− β
(∫ ∞

0

[
f(t) cos2

ωt

2

+g(t) sin2 ωt

2

]
dt+ L

[
g(t) sin2 ωt

2
− f(t) cos2

ωt

2

])
,

B(s) = 2κωs−
(
κω +

F(r0, ξ)

r0ω

)
− β

2
L [(f(t) + g(t)) sinωt] ,

C(s) = 2κωs+ 2ω + κω +
F(r0, ξ)

r0ω

− β

2
L [(f(t) + g(t)) sinωt] ,

D(s) = κs2 + s− 1− βL
[
f(t) sin2 ωt

2
− g(t) cos2

ωt

2

]
.

(12)

Here, f(t) =
J1(2r0 sin ωt

2 )
2r0 sin ωt

2

e−t, g(t) = J ′1
(
2r0 sin ωt

2

)
e−t,

and we have used eq. (6) to simplify some of the inte-
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grals. The constants cr, cθ are defined through the ini-
tial conditions by r1(0) = cr/κ and θ1(0) = cθ/κ [24].
The poles of the linearized equation (11) are the roots
of the function G(s; r0) ≡ A(s)D(s) + B(s)C(s). If all
of the roots satisfy <(s) < 0, the orbital solution of ra-
dius r0 is stable to perturbations, while a single root in
the right half-plane is sufficient for instability. To assess
the stability of an arbitrary orbital solution, we find the
roots of G(s; r0) numerically. Since G(s; r0) has poles at
s = −1 + inω for integers n, we instead find the roots of
the function G̃(s; r0) = (1− e−2π(s+1)/|ω|)G(s; r0), which

is an entire function of s. We find the roots of G̃ nu-
merically by implementing the integral method of Delves
& Lyness [35]. We took the precaution of benchmarking
this root tracking method in order to asses the precision
of our numerical method.

B. Stability diagram for circular orbits in a
harmonic potential

We performed the stability analysis for the specific case
of a harmonic potential; F(r, ξ) = −ξr. In fig. 3, we
present the results of the orbital stability analysis for a
drop of radius Rd = 0.37 mm and phase sin Φ = 0.18
walking on a fluid bath of viscosity ν = 20 cS and forc-
ing frequency f = 80 Hz, the parameters being inferred
from the experiments of Perrard et al. [14]. We note that
multiple orbital solutions may exist for a given value of
the spring constant k, but that the orbital solution is
uniquely determined by the orbital radius r0 and forcing
acceleration γ/γF , and so plot the orbital stability prop-
erties on the (R/λF , γ/γF ) plane with R/λF = r0/(2π).
The stability of a given orbital solution is determined
by the roots of G̃(s; r0), denoted by s∗, and indicated
by the following color code in figures 2 and 3. Black in
fig. 2 and white in fig. 3 denote orbital solutions that
are stable to perturbations (<(s∗) < 0). Green denotes
solutions that destabilize via an oscillatory instability
(<(s∗) > 0,=(s∗) 6= 0). Red refers to unstable cases with
a non-oscillatory mechanism (<(s∗) > 0,=(s∗) = 0). Fi-
nally, yellow indicates the coexistence of oscillatory and
non-oscillatory unstable modes. Fig. 3 shows an adequate
agreement between the predictions of our stability anal-
ysis and the experimental results of Perrard et al. [14].
Notably, none of the experimental data points indicating
stable circular orbits fall within the red or yellow regions.

The principal discrepancy between our theoretical
predications and the observed orbital stability is evident
in the data points arising at high memory (γ/γF > 0.95)
within the green regions, where the linear theory predicts
an oscillatory instability. In the investigation of quantiza-
tion of inertial orbits [24], stable orbits were also observed
in a regime predicted to be unstable via linear stability
analysis. There, the orbits were wobbling circular orbits
[8], presumed to have been stabilized by nonlinear effects.
Here, the observed orbits were not wobbling significantly,
though there are practical difficulties in distinguishing

stable circular orbits from small–amplitude wobbling or-
bits. We believe the mismatch arising at high memory to
be due to shortcomings of our theoretical model, specifi-
cally, the stroboscopic approximation.

In our theoretical treatment, we make a number of
simplifying assumptions that could explain the discrep-
ancy between theory and experiment. First, the stro-
boscopic approximation (4) rests on the assumption of
perfect synchronization between the drop and wave, a
synchronization that may break down in the high mem-
ory regime, where asynchronous chaotic walking states
may arise [34]. Second, we assumed the phase Φ to be a
constant, whereas it is known to vary weakly with forc-
ing acceleration [19] and is also expected to depend on
the local wave amplitude. Finally, it is known that a
differential equation and its discretized form may pos-
sess different instabilities [36]. In future work, we plan
to examine the stability of orbital solutions with a dis-
cretized version of the trajectory equation (4), thereby
assessing the relative merits of the continuous and dis-
crete approaches.

C. Mode decomposition of orbital instabilities

We now infer a connection between the nature of the
radial force on an orbiting walker and the results of our
stability analysis in fig. 3. Using Graf’s addition theorem,
the radial force balance in eq. (6) may be written as

−κr0ω2 = −β

[
∂

∂r

∞∑
p=0

(2− δn,0)

(1 + (pω)2)
Jp(r)Jp(r0)

]
r=r0

− ξr0.

(13)

That is, the orbiting walker experiences a potential en-
ergy comprised of the weighted sum of modes J2

p (r0).
Plots of these modes for p = 0, 1 and 2 are shown in
fig. 4, along with the orbital stability diagram from fig. 3.
Note that the red instability regions originate (point A)
near the zeros of J2

1 (r0), and the green ones (point C)
near the zeros of J2

2 (r0). This seems to suggest that the
primary and secondary orbital instabilities occur for or-
bits that receive little energy from the p = 1 and p = 2
modes, respectively. We also observe that the intersec-
tion of neighboring instability regions may be related to
the points at which these energetic modes assume the
same value. Indeed, point B in fig. 4 corresponds to the
intersection between the p = 0 and p = 1 modes, and
point D to that between the p = 1 and p = 2 modes. Es-
tablishing a precise connection between the modes J2

p (r)
and the walker’s orbital stability properties is beyond the
scope of this paper and will be the subject of future work.
For the time being, we simply hypothesize that the small
number of modes involved in the orbital instability is di-
rectly connected to the low-dimensional chaos observed
in laboratory experiments of walker dynamics in a har-
monic potential [16] and a rotating frame [8].
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FIG. 3: Stability of orbital solutions in a harmonic potential. Colored regions indicate the linearly unstable parameter regime,
as predicted theoretically. Color code: red indicates solutions that destabilize via a non-oscillatory instability; green indicates
solutions that destabilize via an oscillatory instability; yellow indicates solutions with coexisting oscillatory and non-oscillatory
unstable modes. Blue filled circles • are the experimental data from Perrard et al. [14]. The horizontal cross-cuts correspond
to the data reported in figures 2a and 2b. Characteristic error bars are shown.

e

FIG. 4: The striking link between the points of the stability diagram (left) and the Bessel modes (right). The black curve
corresponds to J2

0 (2πR/λF ), the blue curve to J2
1 (2πR/λF ), and the red curve to J2

2 (2πR/λF ).
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IV. CONCLUSION

We have presented a theoretical investigation into the
orbital dynamics of a walking droplet subject to a har-
monic force, F = −kx. The integro-differential trajec-
tory equation (4) for the walker’s horizontal motion was
shown to have orbital solutions, in which a walker tra-
verses a circle of radius r0 with a fixed angular frequency
ω. The predicted dependence of r0 on the potential width
Λ adequately matches the experimental data of Perrard
et al. [14], as shown in fig. 2. This analysis thus serves
to rationalize the quantization of orbital radius r0, as
observed in laboratory experiments [14].

The results of the stability analysis are summarized
in fig. 3, which shows the dependence of the walker’s
orbital stability characteristics on the orbital radius r0
and vibrational forcing γ/γF . The match between our
theoretical predictions and the experimental data is en-
couraging, although a number of circular orbits were ob-
served within the theoretically predicted green instabil-
ity regions at high memory. Although the continuous
equation gives an adequate framework to deal with the
integro-differential equation of motion, some discrepan-
cies still need to be explored and understood. Possible
sources of this discrepancy have been discussed.

While the linear stability analysis presented herein
helps to delineate the parameter regimes in which circu-

lar motion is unstable, it does not provide rationale for
any of the other reported forms of stable motion (such
as lemniscates and trifoliums) or for the complex walker
dynamics arising within the unstable regions. These re-
gions appear to be characterized by a self-organization
mechanism between the drop trajectory and its associ-
ated wave field. Consequently, in the high memory limit,
an ordered chaos in the walker dynamics underlies the ob-
served multi-modal statistical behavior [8, 10, 14, 16, 25].
Much remains to be done in terms of rationalizing the
connection between the dynamics and statistics in the
high-memory limit.
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