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Abstract

A key feature of 3D fluid turbulence is the stretching/re-alignment of vorticity by the action

of the strain-rate. It is shown in this paper, using the cumulant-generating function, that the

cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large de-

viation principle. As a result, the relevant statistics can be described by the vorticity stretching

Cramér function. This function is computed from a Direct Numerical Simulation (DNS) dataset

at a Taylor-scale Reynolds number of Reλ = 433 and compared to those of the finite-time Lya-

punov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity

stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the

vorticity’s preferential alignment with the second-largest eigenvalue of strain-rate and the material

line’s preferential alignment with the largest eigenvalue. However, the vorticity stretching tends

to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the

statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an

attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density

function in statistically stationary conditions, a model Kramers-Moyal equation is constructed us-

ing the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail

for the vorticity magnitude PDF, with good agreement for the exponent but significant difference

(35%) in the pre-factor.
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I. INTRODUCTION

The production of enstrophy in three-dimensional isotropic turbulence is accomplished

by the vorticity stretching mechanism, which strongly resembles the mechanism for the

stretching of material lines in turbulence, though important differences can be identified. A

useful concept in the study of material line stretching is the finite-time Lyapunov exponent

(FTLE) of Lagrangian trajectories, which can be interpreted as the cumulative stretching of

material lines along a Lagrangian path. As the statistics of FTLEs follow a large-deviation

principle, it is of interest to investigate the application of large-deviation statistics to the

cumulative stretching of vorticity along Lagrangian paths.

The universal or approximately universal structure of small-scale turbulence emerged

from Kolmogorov’s work [1] as an important theme in turbulence research. While the mag-

nitude of velocity fluctuations is dominated by large-scale motions, the smallest scales of

motion are primarily responsible for quantities representing magnitudes of velocity deriva-

tives, such as dissipation and enstrophy [2, 3]. For this reason, a common approach to

studying turbulence structure and statistics at the smallest scales is through the use of

velocity gradients [4–6].

A major focus of research since Kolmorogov’s 1941 hypotheses has been refinement to

account for the influence of internal intermittency. Often, this has been advanced using

velocity derivatives and their coarse-grained values. In 1962, Kolmogorov and Oboukov

[7, 8] proposed a log-normal model (based on the Central-Limit theorem) for the spatial

intermittency of coarse-grained dissipation. Parisi and Frisch [9] introduced the idea of

multifractality in small-scale turbulence, essentially based on the Large-Deviation theorem

rather than the Central-Limit theorem (see Frisch [10]), which was confirmed by Meneveau

and Sreenivasan [11] using a measurement proxy for dissipation.

An intrinsic quality of turbulence is that it is rotational [2]. In fact, for isotropic tur-

bulence, mean dissipation and enstrophy are directly related. Enstrophy production by the

straining of existing vorticity, ωiSijωj, where Sij is the strain-rate tensor and ωi is the vor-

ticity vector, is often discussed in tandem with the idea of the cascade of energy to small

scales [2] and can be related to the negative velocity derivative skewness [3] representing

inter-scale transfer of energy. For this reason, the structure and statistics of enstrophy and

other vorticity-related measures have also been studied extensively [12–22].
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Visualization of vorticity magnitude iso-surfaces in high-resolution simulations has re-

vealed the ubiquitous presence of tube-shaped regions of concentrated high-vorticity regions

[12, 21, 23–26], confirming earlier experimental evidence [27]. Coarse-graining at various

filter-widths reveals a hierarchy of vorticity tubes, smaller tubes spirally-wrapped within

larger ones [28], once again suggesting the importance of multi-scale vorticity interactions in

the turbulence energy cascade. The vortex tube picture has formed the basis for a number

of simplified models of small-scale turbulence [29–34].

Johnson and Meneveau [35] showed that the rotation of fluid particles by vorticity strongly

reduces cumulative material deformation by weakening the ability of the Cauchy-Green

tensor to align with the strain-rate. This is partly responsible in reducing the deformation

rate for small droplets [36] well below what the strain-rate statistics would suggest.

A key universal observation in this context is that the enstrophy production term, ωiSijωj,

is positive on average, meaning that enstrophy production by stretching is more prevalent

than enstrophy destruction by contraction. While Taylor [37] attributed this to the stretch-

ing of material lines by invoking an equality between material deformation and vorticity

stretching in inviscid flow, important differences between the two processes have been iden-

tified and investigated [19, 20, 22, 38]. These differences are manifest in the tendency of

vorticity to align with the strain-rate eigenvector associated with the second-largest eigen-

value [14], while material lines tend to align slightly toward the eigenvector associated with

the largest eigenvalue [39]. As a result Ref. 19 showed that vorticity stretching is on average

smaller than material line stretching.

In this paper, we seek to characterize the statistics of the vorticity stretching term by

looking at cumulative stretching along a Lagrangian path using the large deviation for-

malism. This characterization allows direct comparison with previous results for material

deformation [35] in order to clarify similarities and differences between the two processes.

Specifically, the Cramér function provides an efficient description of the asymptotic evo-

lution of the cumulative stretching probability density function (PDF). This description

enables a more detailed statistical comparison between vorticity stretching and material line

stretching in turbulence. Additionally, the details of this statistical characterization can be

incorporated into an approximate stochastic model for predicting features of the equilibrium

distribution function of enstrophy using some existing approaches from polymer stretching

studies [40, 41].
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Meneveau and Sreenivasan [11] and Bershadskii et al. [42] proposed a stretched-

exponential fit to the tails of the dissipation and enstrophy probability density function

(PDF) based on experimental data, with exponent 0.5. With increasing computational

resources in time, numerical results later confirmed that a stretched-exponential provides a

good fit to the both dissipation and enstrophy PDFs, but with exponent closer to 0.25[43].

We will attempt to explain the stretched exponential behavior using statistical properties

of the vorticity stretching as described by the large deviation formalism.

Background on vorticity stretching and the large-deviation formalism is given in §II. The
details for the direct numerical simulation dataset and evaluation of Lagrangian statistics

are given in §III. In §IV, the results of the statistical analysis are shown and discussed

in terms of the Cramér function for vorticity stretching. Particular attention is paid to

the relationship to material line deformation and strain-rate eigenvalue statistics. Using the

Cramér function for vorticity stretching and statistical observations of diffusion, a stochastic

model is constructed for the Lagrangian vorticity evolution in §V, allowing for the prediction

of the vorticity magnitude PDF in stationary isotropic turbulence. Following that, §VI
delineates conclusions drawn from the results in the previous sections.

II. BACKGROUND

In this section, the necessary background for this work is presented. The equations for

vorticity evolution along Lagrangian paths are presented first. Following this, the large-

deviation formalism is reviewed, along with its application to material deformation. Sup-

porting arguments for the application of the large-deviation formalism to vorticity stretching

are given, as well as criteria for verification.

A. Lagrangian Vorticity Evolution

In this paper, we consider forced isotropic turbulence satisfying the incompressible Navier-

Stokes equations,

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xj
+ ν

∂2ui

∂xj∂xj
+ fi,

∂uj

∂xj
= 0, (1)

where ui(x, t) and p(x, t) are the velocity and pressure fields, respectively. The kinematic

viscosity is ν and the forcing is fi. The curl of Navier-Stokes gives an equation for the
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vorticity, ωi = ǫijk
∂uk

∂xj
,

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj
∂ui

∂xj

+ ν
∂2ωi

∂xj∂xj

+ ǫijk
∂fk
∂xj

, (2)

where ǫijk is the Levi-Cevita alternating tensor.

The velocity gradient tensor can be split into symmetric and anti-symmetric components,

∂ui

∂xj
= Aij = Sij + Ωij , with Sij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
and Ωij = 1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
. The anti-

symmetric part of the velocity gradient is directly related to the vorticity by Ωij = −1
2
ǫijkωk

and ωi = −ǫijkΩjk, so that Ωijωj = 0. Considering low-wavenumber forcing and sufficiently

high Reynolds number, the curl of the forcing can be neglected. Following Lagrangian

trajectories, xi(t),
dxi

dt
= ui(x, t), xi(t0) = Xi, (3)

the vorticity evolution is
dωi

dt
= Sijωj + ν

∂2ωi

∂xj∂xj
. (4)

Consider the decomposition of the vorticity vector, ωi = ωω̂i, where ω =
√
ωiωi is the

vorticity magnitude and ω̂i =
ωi

ω
is the unit vector associated with the vorticity orientation.

With this decomposition, the Lagrangian evolution for vorticity magnitude can be written

as
dω

dt
= ω̂iSijω̂jω + νω̂i

∂2ωi

∂xj∂xj

. (5)

It is interesting, then, to consider this in terms of the logarithm of vorticity magnitude,

d lnω

dt
= ω̂iSijω̂j + ν

ω̂i

ω

∂2ωi

∂xj∂xj
. (6)

The first term on the right-hand side, ω̂iSijω̂j, represents vorticity stretching (enstrophy

production) by the strain-rate tensor. This paper will focus primarily on this term, using

the large-deviation formalism to represent its statistics. The second term represents the

effect of viscous forces, preventing the unbounded growth in vorticity magnitude at finite ν.

Complementing Eq. (6) for the vorticity magnitude is the equation for the evolution of

the vorticity orientation,

dω̂i

dt
= (δik − ω̂iω̂k)Skjω̂j + ν

[
(δik − ω̂iω̂k)

∂2ω̂k

∂xj∂xj
+ 2

∂ω̂i

∂xj

∂ lnω

∂xj

]
. (7)

The first term on the right-hand side represents the rotation/re-alignment of the vorticity due

to the strain-rate tensor. This term shows that the strain rate acts to rotate the vorticity
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toward alignment with the strain-rate eigenvector associated with the largest eigenvalue.

Such an alignment is not observed in single-time statistics due to the lack of persistent

straining [44], i.e. the vorticity never “catches up” with the strain-rate. However, allowing

for a time lag, it has been observed that the vorticity shows statistical bias toward aligning

with the eigenvector of the largest eigenvalue of the strain-rate tensor at a previous time

along the Lagrangian path [45, 46].

The second term on the right-hand side represents the viscous-tilting effect [22]. In this

form, we see that the viscous tilting has contributions from the Laplacian of the vorticity

unit vector (projected normal to the unit vector) and from the vorticity curvature tensor[47],

∂ω̂i

∂xj
, acting on the gradient of lnω. The vorticity tilting effect is responsible for the difference

in Lagrangian evolution between vorticity and infinitesimal material lines that are initialized

in alignment with the local vorticity [19].

The focus of this paper is on the statistics of the vorticity stretching term, ω̂iSijω̂j. The

eigenframe of the strain-rate tensor is useful to clarify the connection between the magnitude

of the vorticity stretching term and the vorticity orientation dynamics. In this frame it is

seen that [38],

ω̂iSijω̂j =

3∑

i=1

Λi cos
2 (θi) , (8)

where Λi is the ith eigenvalue of the strain-rate tensor and θi is the angle between the

vorticity vector and the eigenvector associated with the ith eigenvalue of the strain-rate

tensor. Thus, the vorticity stretching can be viewed as a weighted average of the three

strain-rate eigenvalues, where the weight of a given eigenvalue is determined by how closely

its eigenvector aligns with the vorticity vector being stretched. In this paper, we consider

the statistics of the cumulative vorticity stretching along a Lagrangian path using the large

deviation formalism.

B. Large Deviation Formalism

According to the large-deviation formalism, which can be traced back to Cramér [48], a

sum of N independent and identically-distributed (i.i.d.) random variables, YN =
N∑
i=1

xi, in

the limit N → ∞, has the probability density function (PDF) that behaves as

pY (ξ, N) ∼ exp

[
−NSy

(
ξ

N

)]
, (9)
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where Sy is the so-called Cramér function (sometimes also called the entropy or rate func-

tion). The Cramér function quantifies the self-similar collapse of the PDF of yN = YN

N
to a

Dirac delta-function at 〈x〉. The justification of the large-deviation formalism depends on

the additivity of cumulants (cumulant-generating functions) for independent variables, as

well as the fact that identically distributed variables share the same cumulant-generating

function. With these properties, the cumulants of the sum, YN , are equal to N times the

cumulants of the independent variables, xi. The validity of Eq. (9) thus hinges on the linear

growth of the cumulants of YN with N .

The large-deviation formalism can be extended to applications with the integration over

a continuous variable with finite correlation time, Y (T ) =
T∫
0

x(t)dt. Here, the integral can be

thought of as a sum of many integrals over sub-intervals, [ti, ti +∆t), of the full integration

interval [0, T ), each sub-integral being over a sufficiently large interval that it is independent

of the others (and identically distributed assuming stationarity of x(t)). In this case, the

probability density function of the integral becomes, in the limit T → ∞,

pY (ξ, T ) ∼ exp

[
−TSy

(
ξ

T

)]
. (10)

The validity of Eq. (10) hinges on the linear growth of the cumulants of Y (T ) with increasing

integration time T .

The preceding discussion provides an informal expectation for a large deviation principle

to hold. In fact, the application of a large-deviation principle has been extended rigorously

well beyond the case of sums of i.i.d. variables. The Gärtner-Ellis theorem [49, 50] gives

the existence of a scaled cumulant-generating function as a criterion for the applicability of

a large deviation principle. Furthermore, Donsker and Varadhan have provided a rigorous

basis large-deviation statistics of general Markovian systems [51–54].

To date, the large-deviation formalism has found many fruitful applications within the

study of turbulent flows. It forms the basis for the multifractal theory in three-dimensional

turbulence [9–11, 55, 56], where the singularity spectrum f(α) is related to the Cramér

function. Large-deviation statistics have been used to digest the results of shell models

[57, 58]. It has also been used for passive scalar advection [59], the stretching of polymers

[40, 41, 60, 61], the clustering of inertial particles [62, 63], droplet deformation [36], and

other applications reviewed by Ref. [64]. Furthermore, it is important for developments

in the statistical mechanical description of two-dimensional turbulence [65–68]. Meanwhile,
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the large-deviation statistics of FTLEs in two-dimensional turbulence and the impact on

vorticity increments was explored [69]. Additionally, the bistability of two-dimensional flows

has been investigated using large-deviation statistics [70, 71].

C. Material Lines and Finite-Time Lyapunov Exponents

An infinitesimal material line evolves as

dri
dt

= Aijrj, (11)

along a Lagrangian path. Performing the same decomposition as with the vorticity above,

ri = rr̂i, this can be decomposed into an equation for the magnitude and an equation for

the orientation,

d ln r

dt
= r̂iSij r̂j ,

dr̂i
dt

= (δik − r̂ir̂k)Skj r̂j + Ωij r̂i. (12)

For material lines, integrating the first part of Eq. (12) results in

Γ(T ) = ln

(
r(T )

r(0)

)
=

T∫

0

r̂iSij r̂jdt. (13)

Furthermore, given the finite correlation time of the strain-rate along Lagrangian paths[72,

73], proportional to the Kolmogorov time-scale τη, and given the passive nature of the

material line (i.e. Sij does not depend on r), the application of the large-deviation formalism

is quite straight-forward. In this case, the finite-time Lyapunov exponent (FTLE) [74–76],

is intimately related to this result,

γ(T ) ≡ 1

T
ln

(
r(T )

r(0)

)
=

1

T

T∫

0

r̂iSij r̂jdt. (14)

Accordingly, the PDF of FTLEs evolves as

pγ(g, T ) ∼ exp (−TSγ(g)) , (15)

where g is the sample space variable for the FTLE. Cramér functions, Sγ, of the largest

FTLE have been computed by Bec et al. [63] and for the entire FTLE spectrum (including

for joint-statistics) by Johnson and Meneveau [35] for the case of isotropic turbulence.
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D. Vorticity

Seeing that a large-deviation principle has been shown for cumulative material deforma-

tion along Lagrangian paths, it is interesting to seek one also for cumulative Lagrangian

vorticity stretching. A large-deviation principle for vorticity stretching would allow a more

detailed comparison with material line stretching in terms of the Cramér function, which

describes the self-similar behavior of the cumulative stretching PDF along Lagrangian paths.

The existence of a large-deviation principle in the case of Lagrangian material deformation

provides a strong rationale for expecting one to hold in the case of Lagrangian vorticity

stretching, although a rigorous proof is not available and so it must be shown empirically.

The first task in this paper is to verify that the cumulative vorticity stretching term indeed

behaves in such a way as to support the application of the large deviation formalism. Sec-

ondly, we seek to determine the integration time T needed to allow for such behavior to take

hold.

As already stated, this paper seeks to study only the vorticity stretching term in the

vorticity evolution equation, without considering any details of the viscous term. Thus

neglecting the viscous term, we define an increment of lnω,

Γω(T ) ≡ ∆T (lnω) = ln

(
ω(T )

ω(0)

)
=

T∫

0

ω̂iSijω̂jdt, (16)

such that there is an analog to the FTLE for the vorticity stretching,

γω(T ) ≡
Γω(T )

T
=

1

T
ln

(
ω(T )

ω(0)

)
=

1

T

T∫

0

ω̂iSijω̂jdt. (17)

Because the viscous term has been discarded, comparison of statistical behavior between

γω and that of the FTLEs, especially the largest FTLE γ1, allows for an exploration of the

differences between the stretching of vorticity and material lines by strain-rates in turbulence.

A useful quantity is the scaled cumulant-generating function (which is analogous to the

generalized Lyapunov exponent[76]),

Lγω(q) = lim
T→∞

1

T
ln 〈exp (qγωT )〉 , (18)

which exists only if the cumulant-generating function for Γω(T ) grows linearly in time. If

this cumulant-generating function, ln 〈exp (qγωT )〉, can be shown to grow linearly with time,
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the slope as a function of q gives the generalized Lyapunov exponent, L(q). Furthermore,

casting the PDF in the form of Eq. (15) to compute the ensemble average in Eq. (18), and

using steepest-descent integration in the T → ∞ limit, it results that L(q) is the Legendre

transform of Sγω ,

Lγω(q) = sup
g

[qg − Sγω(g)] . (19)

For the present purposes, the linear growth of the cumulant-generating function (i.e. the

existence of Lγω(q)) is considered sufficient evidence that the PDF of γω behaves according

to Eq. (15). Direct numerical simulations of forced isotropic turbulence in a periodic domain

can be used to test the hypothesis that the vorticity stretching term should behave in this

way.

III. NUMERICAL METHODS

In this section, the numerical methods applied in this study are briefly introduced. This

study uses a direct numerical simulation dataset for gathering statistics for isotropic tur-

bulence, and performs Lagrangian particle tracking with velocity gradient extraction to

evaluate important terms for the vorticity evolution equation.

The Johns Hopkins Turbulence Databases (JHTDB) isotropic dataset [77, 78] is used

for the turbulence statistics reported in this paper. This dataset was constructed from a

pseudo-spectral simulation of Eq. (1) in a 2π periodic cube with 10243 resolution. The

simulation used the 2nd-order Adams-Bashforth scheme for time advancement and 2
√
2/3

truncation with random phase shift for de-aliasing. Important parameters for the simulation

are given in Table I.

TABLE I. Numerical details for JHTDB (Refs. 77 and 78) simulation used in this paper.

N Reλ ǫ ν η τη ∆t (simulation) ∆t (saved) T

10243 433 0.928 1.85e-04 2.87e-03 0.045 2e-04 2e-03 2.048

The simulation code wrote the full velocity and pressure fields to disk every 10 time

steps for storage on the public database cluster. In total, 1024 consecutive snapshots of the

entire fields are stored, allowing for the tracking of Lagrangian trajectories for up to 45τη
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with temporal resolution of ∆t = τη/22. The public database functionality provides built-in

Lagrangian particle tracking [79].

For this paper, ensembles of 64k particles were tracked using the 2nd order predictor-

corrector method with cubic Hermite interpolation in time and 6th order Lagrange inter-

polation in space. For the initial distribution of particles, the (2π)3 domain was divided

into 1000 cubes of equal size (π/5)3. Within each sub-cube, 64 particle trajectories were

initialized at random positions, selected from a uniform spatial distribution along each co-

ordinate. In this way, a uniform coverage of the domain was ensured within a randomized

initialization procedure. Predictor-corrector steps were taken with a time-step of 1
5

th
of the

storage time step.

At each time step, velocity gradients were extracted from the dataset using 4th order finite-

differencing with 4th order Lagrangian interpolation in space and cubic Hermite interpolation

in time. The cumulative vorticity stretching along each trajectory, Eq. (16), was computed

using the midpoint rule for numerical integration.

IV. THE CRAMÉR FUNCTION FOR VORTICITY STRETCHING

In this section, the method for constructing the Cramér function from the Lagrangian

vorticity stretching data is presented. The resulting Cramér function for vorticity stretching

in isotropic turbulence is shown.

A. Legendre Transform Method

In previous work, Johnson and Meneveau [35] compared two methods for constructing

the Cramér function for material deformation: (i) histogram-based construction of the PDF

and finite-size compensation via vertical shift of the Cramér function, (ii) moment-based

construction of the generalized Lyapunov exponent with (inverse) Legendre transform to

construct the Cramér function. The Legendre transform method proved superior in that

case and is adopted here. Another advantage of this method is the explicit evaluation of

the cumulant-generating function, which is useful for verifying the applicability of the large-

deviation formalism to vorticity stretching. Below, the method is briefly outlined before

presenting results.
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The first step in the moment-based method for constructing the Cramér function is to

compute the generalized Lyapunov exponent, Lγω(q), given by Eq. (18). To construct Lγω(q),

the cumulant-generating function, ln 〈exp (qγωT )〉, is calculated as a function of q and T .

The applicability of the large-deviation formalism requires the results to asymptotically

(T → ∞) grow linearly with integration time. The cumulant-generating function is plotted

for sample values of −1 < q < 1 as a function of integration time in Fig. 1. In this range,

the linear growth in time is a striking feature of the results.
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T/τη

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
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e
x
p
(q

Γ ω
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)

T/τη

FIG. 1. The cumulant-generating function for the cumulative vorticity stretching, Γω = γωT , for

(a) q = −1.6,−1.4,−1.2,−1.0,−0.8,−0.6,−0.4,−0.2, and (b) q = 0, 0.2, 0.4, 0.6, 0.8, 1.0. Symbols

represent numerical values from the dataset and dashed-lines represent linear curve-fits for the

30τη < T < 45τη range.

On the basis of the evidence shown in Fig. 1, it is concluded that the required behavior

for the applicability of the large-deviation formalism is seen for vorticity stretching, even

at relatively small integration times ∼ 30τη. The slopes of the curve fits (shown as dotted

lines in Fig. 1) then represent the generalized Lyapunov exponent at a given q. Using

a linear regression procedure for −3 < q < 3 with uniform discretization of ∆q = 0.02,

the generalized Lyapunov exponent is constructed and shown in Fig. 2 for five different

ensembles of 64k particles each. The linear regression was performed only on the interval

30τη < T < 45τη. A specified threshold on the 95% confidence interval, computed from the
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standard error of the regression analysis, was used to determine the range over which the

curve fits were reliable. Points with standard error above this threshold were removed.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

L
γ ω

(q
) 

τ η

q

FIG. 2. The generalized Lyapunov exponents for the vorticity stretching from five different 64k

Lagrangian particle ensembles. The dashed line represents a parabolic curve fit in the region of

q = 0.

The spread of the five curves in this figure, especially noticeable in the tails, is indicative

of the statistical convergence error. The curves pass through the origin as expected and near

the origin can be approximated by a truncated Taylor expansion[76],

Lγω(q) ≈ λωq +
1

2
∆ωq

2. (20)

The slope at the origin, L′
γω(0) = λω = 〈ω̂iSijω̂j〉 ≈ 0.100/τη, represents the average vorticity

stretching and is analogous to the Lyapunov exponent of Lagrangian trajectories in the

context of material line stretching. The curvature at the origin, L′′
γω(0) = ∆ω ≈ 0.122/τη,

gives a measure of the strength of fluctuations in cumulative stretching about the mean.

This parabolic approximation is shown in Fig. 2 as a dashed line.

As given by Eq. (19), the generalized Lyapunov exponent is the Legendre transform of

the Cramér function. For a known generalized Lyapunov exponent, the inverse Legendre

transform can be used to recover the (convex hull of the) Cramér function,

Sγω(g) = sup
q

[gq − Lγω(q)] . (21)
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The inverse Legendre transform is performed numerically, for a given g-q pair,

g = L′
γω(q), Sγω(g) = qL′

γω(q)− Lγω(q), (22)

using second-order central differencing for the derivative of the generalized Lyapunov expo-

nent.

Figure 3 shows the resulting Cramér function for the vorticity stretching term. The

minimum of the Cramér function is Sγω(λω) = 0. A truncated Taylor expansion about the

minimum gives a parabola,

Sγω(g) ≈
(g − λω)

2

2∆ω
, (23)

which is the Legendre transform of the parabolic generalized Lyapunov exponent given in

Eq. (20). The dashed line in Fig. 3 shows this approximation. Substitution of Eq. (23)

into Eq. (15) yields Gaussian statistics, that is, the Gaussian toward which the central-limit

theorem predicts that the PDF is approaching for T → ∞.
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FIG. 3. The Cramér function for the vorticity stretching from five different 64k Lagrangian particle

ensembles. The differences between the five different ensembles illustrate the extent of uncertainty

from statistical convergence. The symbol g is used for the probability space variable of γω and

both axes are non-dimensionalized by the Kolmogorov timescale τη. The gray vertical line indicates

γω = 0. The dashed line represents a parabolic curve fit to the Cramér function near the minimum.
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B. Comparison with FTLE Spectrum

In §II, an analogy was drawn between the behavior of vorticity along Lagrangian tra-

jectory and the behavior of material lines. Specifically in the context of large deviation

statistics, the quantity γω was introduced to quantify the cumulative stretching of vorticity

by the strain-rate tensor along Lagrangian paths. This quantity is directly analogous to

the finite-time Lyapunov exponents (FTLE) of Lagrangian trajectories, γi with i = 1, 2, 3,

which characterize the cumulative deformation of a fluid volume by the strain-rate tensor.

Specifically, γ1 can be used to investigate material line stretching and γ1 + γ2 for material

surface area stretching. It is of interest, therefore, to compare the large deviation statistics

of cumulative vorticity stretching with those of the FTLEs as a way of exploring similarities

and differences in vorticity and material line behavior in turbulence.

It is known that vorticity tends to align most readily with the strain-rate eigenvector

corresponding to the intermediate eigenvalue[14], Λ2, while material lines tend to align more

with the eigenvector corresponding to the largest eigenvalue[19], Λ1. As a result, the mean

material line stretching, 〈r̂iSij r̂j〉, is larger than the mean vorticity stretching, 〈ω̂iSijω̂j〉.

For material lines, the first term in Eq. (12), (δik − r̂ir̂k)Skj r̂j , shows that the strain-rate

tends to tilt material lines in the direction of the strongest strain. Perfect alignment does

not occur, in fact, because of the impact of vorticity on the material line, Ωij r̂j , and the

fact that the strain-rate eigenvectors are moving targets, being themselves rotated by the

vorticity and non-local pressure Hessian [80]. For vorticity, Eq. (7), the Ωijω̂j term vanishes

and is replaced by the viscous tilting terms. The tendency of the strain-rate to rotate

vorticity toward its largest eigenvalue remains. A vital difference is the active feedback that

the vorticity has on the strain-rate evolution (as opposed to passive material lines). This

appears to be the key ingredient in the vorticity’s alignment bias toward the second largest

eigenvalue[19].

The ratio of Lyapunov exponents (the average stretching of mutually orthogonal material

lines) in isotropic turbulence is approximately λ1 : λ2 : λ3 ≈ 4 : 1 : −5 [35, 63]. In Fig.

4, the Cramér function for cumulative vorticity stretching is compared with the Cramér

functions for the Lyapunov spectrum (see [35] for details). Bec et al. [63] reported a leading

Lyapunov exponent of λ1τη ≈ 0.14 while Johnson and Meneveau [35] found λ1τη ≈ 0.125

after correcting for finite integration time effects (with Sγ1 evaluated up to 45τη it is slightly
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lower, i.e. λ1τη ≈ 0.114, as shown in Fig. 4). For vorticity, the present results show

mean stretching, λωτη = 〈ω̂iSijω̂j〉 = 0.10, which is significantly lower than that of the

mean stretching for material lines. Guala et al. [19] measured 〈ω̂iSijω̂j〉 and 〈r̂iSij r̂j〉 for

short evolution times up to 6τη, concluding that the material lines had significantly stronger

stretching. Indeed, this is easy to understand, since the vorticity tends to preferentially

align with the second-largest strain-rate eigenvalue, while material lines tend to tilt towards

the largest one. However, here it is shown that the mean vorticity stretching rate greatly

exceeds that of the second-largest FTLE, and is much closer to λ1 than λ2 ≈ 0.03/τη.
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FIG. 4. Comparison of the Cramér function for vorticity stretching with the marginal Cramér

functions for the finite-time Lyapunov exponents[35]. Each Cramér function was measured from

five separate ensembles of 64k Lagrangian particles each in order to demonstrate the level of

statistical convergence uncertainty. The symbol g is used for the probability space variable of γ

and both axes are non-dimensionalized by the Kolmogorov timescale τη. The gray vertical line

indicates γ = 0.

The width of the Cramér function of cumulative vorticity stretching is visually very

similar to that of the largest FTLE. To quantify the behavior of these Cramér functions, the

derivatives of the generalized Lyapunov exponent at the origin are used. As apparent from

the relation of Eq. (18) to the cumulant-generating function of Γ = γT , these derivatives

represent the growth rate of cumulants, e.g. of the integrated vorticity stretching, Γω =
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T∫
0

ω̂iSijω̂idt. In addition to mean, λT = L′(0)T , and variance, ∆T = L′′(0)T , the deviation

from Gaussian statistics can be quantified by the skewness,

S =
L′′′(0)T

(L′′(0)T )3/2
=

L′′′(0)τη
(L′′(0)τη)3/2

(
T

τη

)−1/2

, (24)

and excess kurtosis,

K − 3 =
L(4)(0)T

(L′′(0)T )2
=

L(4)(0)τη
(L′′(0)τη)2

(
T

τη

)−1

. (25)

Note that, in agreement with the central-limit theorem, the skewness and excess kurtosis

(and all higher-order cumulants) are decaying to zero at T → ∞. The large-deviation

formalism gives a means for computing the rate at which they decay. Table II shows these

cumulant values for three of the curves in Fig. 4. The derivatives were evaluated using

fourth-order polynomial curve fits to L(q) near q = 0 and averaged over each of the five

ensembles. It is apparent from this analysis that the cumulative vorticity stretching statistics

behave more similarly to γ1 than γ2. The cumulative vorticity stretching and largest FTLE

have much larger deviations from Gaussian statistics (skewness and excess kurtosis) than

the second-largest FTLE for a given integration time.

TABLE II. Comparison of first four cumulants for the vorticity stretching with those of the first

two FTLEs. The asterisk denotes that the value is corrected for finite integration time effects, see

[35] for more details.

λτη ∆τη S
(

T
τη

)1/2
(K − 3)

(
T
τη

)

γ1 0.125∗ 0.145 4.8 30

γω 0.100 0.122 3.6 18

γ2 0.029 0.098 0.93 2.7

Physically speaking, the intermediate FTLE, γ2, can be thought of as the cumulative

stretching of material lines constrained to be perpendicular to the most stretched material

line. Perhaps the most intuitive feel for the significance of γ2 is to think of cumulative

material surface area stretching as γ1 + γ2. The similarity between γω and γ1 is relative to

the comparison of γω with γ2 in a statistical sense and should not be seen to overshadow

the important differences between vorticity stretching and material line stretching but only
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to put them in perspective. For example, while vorticity stretching is on average less than

material line stretching, it is still much greater than the average stretching in the plane

perpendicular to material lines.

C. Comparison with Strain-Rate Eigenvalue Statistics

In order to emphasize the effect of preferential alignment of vorticity with the second-

largest strain-rate eigenvalue, a Cramér function can be constructed for a vector always in

perfect alignment with a given strain-rate eigenvalue. This artificial Cramér function does

not reflect any physical dynamics, but rather the hypothetical dynamics of vorticity mag-

nitude if perfect alignment with any of the eigenvectors was maintained. Two such Cramér

functions, one for the largest eigenvalue Λ1 and one for the second-largest eigenvalue Λ2, are

plotted in Fig. 5 alongside the Cramér function for cumulative vorticity stretching. It is

clear that the Cramér function for vorticity stretching is much closer to that of perfect align-

ment with Λ2 rather than Λ1, which is consistent with the observed preferential alignment

of the vorticity vector.
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FIG. 5. Comparison of the Cramér function for vorticity stretching with the hypothetical Cramér

functions if perfect alignment with the largest or second-largest strain-rate eigenvalues was main-

tained throughout the dynamics.
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V. A MODEL KRAMERS-MOYAL EQUATION FOR THE VORTICITY MAGNI-

TUDE

In this section, an application of the above statistical characterization of vorticity stretch-

ing to a model for the vorticity magnitude PDF is described. Some of the assumptions of

the model are justified by appealing to results from DNS of forced isotropic turbulence. The

vorticity magnitude PDF is defined for a statistical ensemble of Lagrangian trajectories,

so that the Lagrangian evolution of the vorticity described in the previous sections is the

relevant dynamical input to the statistical equations. In addition, the free parameters of

the model are prescribed using statistics from DNS. While progress in solving the full model

has so far proved difficult, the results of the model for a parabolized Cramér function are

presented.

A. PDF Closure Using Conditional Means

The goal of this section is to model the statistics of vorticity magnitude using Eq. (6). To

appreciate this goal, first consider the direct approach to constructing the evolution equa-

tion for the PDF. Following a similar procedure as Wilczek and Friedrich [81] (i.e. follow-

ing Lundgren[82], Monin[83], and Novikov[84] with closure introduced through conditional

means), the PDF of lnω can be written in terms of the fine-grained PDF,

plnω(χ, t) = 〈δ(lnω(t)− χ)〉 . (26)

Differentiating in time and using conditional mean closure,

∂plnω

∂t
= − ∂

∂χ

〈
d lnω

dt
δ(lnω(t)− χ)

〉
= − ∂

∂χ

(〈
d lnω

dt

∣∣∣∣ lnω = χ

〉
plnω

)
, (27)

and substituting Eq. (6) on the right-hand side yields,

∂plnω

∂t
= − ∂

∂χ

[(
〈 ω̂iSijω̂j| lnω = χ〉+ ν

〈
ω̂i

ω

∂2ωi

∂xj∂xj

∣∣∣∣ lnω = χ

〉)
plnω

]
. (28)

Solving for the stationary PDF, ∂plnω

∂t
= 0, the constant of integration vanishes due to

plnω → 0 as lnω → ∞, resulting in the requirement,

〈 ω̂iSijω̂j| lnω = χ〉 = − ν

ω

〈
ω̂i

∂2ωi

∂xj∂xj

∣∣∣∣ lnω = χ

〉
. (29)
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That is, the conditional mean stretching must equal the conditional mean viscous relax-

ation at every point in probability space for lnω. While this is a helpful constraint on the

conditional means, it provides no prescription for finding the stationary distribution plnω.

A useful manipulation of the above equation for finding the stationary PDF is found

by invoking the fact that for homogeneous turbulence, the vorticity PDF is independent of

spatial coordinates, so its Laplacian is zero[81],

0 =
∂2plnω

∂xj∂xj

= − ∂

∂χ

(〈
∂2 lnω

∂xj∂xj

∣∣∣∣ lnω = χ

〉
plnω

)
+

∂2

∂χ2

(〈
∂ lnω

∂xj

∂ lnω

∂xj

∣∣∣∣ lnω = χ

〉
plnω

)
.

(30)

With the help of Eqs. (6) and (30), the evolution equation for plnω, Eq. (28), can be

rewritten as

∂plnω

∂t
= − ∂

∂χ

[(
〈 ω̂iSijω̂j| lnω = χ〉+ ν

〈
∂ lnω

∂xj

∂ lnω

∂xj
− ∂ω̂i

∂xj

∂ω̂i

∂xj

∣∣∣∣ lnω = χ

〉)
plnω

]

− ν
∂2

∂χ2

(〈
∂ lnω

∂xj

∂ lnω

∂xj

∣∣∣∣ lnω = χ

〉
plnω

)
. (31)

Indeed, this expression is analogous to one obtained by Wilczek and Friedrich[81] for a single

component of the vorticity. Wilczek and Friedrich[81] solved their equation and numerically

evaluated two conditional averages from DNS, showing that such an approach can exactly

reconstruct the PDF for a single component of vorticity. The present goal is to introduce a

model which incorporates the statistical information from the Cramér function of vorticity

stretching to reconstruct the vorticity magnitude PDF.

B. Analogy with Polymers

We first invoke an analogy between vorticity stretching and polymer stretching in tur-

bulence. Representing the polymer with a bead-spring model, with vector ρi signifying the

displacement between the two ends of the polymer, the polymer equation along a Lagrangian

path is modelled with
dρi
dt

= Aijρj − f(|ρ|) ρi|ρ| , (32)

where f(|ρ|) represents the elastic restoration force of the polymer [41]. For the Oldroyd-B

model, the restoration force is that of a linear spring, f(|ρ|) = |ρ|
τp
, where τp is the relax-

ation time of the polymer [40, 41]. The Oldroyd-B model allows infinite extension of the
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polymer, and therefore a popular extension is the non-linear FENE-P model [85]. On the

decomposition ρi = ρρ̂i, the equations become,

d ln ρ

dt
= ρ̂iSij ρ̂j −

f(ρ)

ρ
,

dρ̂i
dt

= (δik − ρ̂iρ̂k)Skjρ̂j + Ωij ρ̂j . (33)

These equations resemble those of the material line, Eq. (12), except that they now contain

a relaxation term to prevent unbounded growth of the polymer.

Comparison with Eqs. (6) and (7) reveals three differences between the evolution equa-

tions for polymers and vorticity. First, while both the vorticity and polymer stretching are

resisted by a second term that acts to prevent unbounded growth, the relaxation term in

the polymer length equation is due to the properties of the polymer, whereas the viscous

term in the vorticity equation is a function of the flow in the neighborhood of the point

(and therefore, much more challenging to model). Second, there is no viscous tilting in the

equation for the polymer orientation evolution, because the polymer relaxation always acts

along the polymer axis. Third, the polymer can be rotated by the vorticity, whereas the

vorticity cannot rotate itself: Ωijω̂j = 0.

Perhaps the most important difference, however, is not obvious in this comparison: how

the vorticity and polymers affect the strain-rate that is stretching them. Both the vorticity

and polymers can have a back-reaction on the flow, though the details of the two-way

coupling vary. However, especially below the coil-stretch transition, the polymer can be

approximately modelled as a passive entity [40, 41]. There is no similar regime for the

vorticity in which a passive treatment is a good approximation.

For polymers, under the assumption that the polymer has negligible influence on the flow

(i.e. on Sij), the integration of the first part of Eq. (33) gives

ln

(
ρ(T )

ρ(0)

)
=

T∫

0

(
ρ̂iSijρ̂j −

f(ρ)

ρ

)
dt. (34)

Because the orientation of the polymer, Eq. (33), follows the same equation as the orienta-

tion of the material line, Eq. (12), the statistics of ρ̂iSijρ̂j are identical in these cases, and the

Cramér function for material lines can be directly used. For this reason, the large-deviation

formalism has been found useful for studying polymer length distributions [40, 41, 60].
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C. Modeling Approximations

The qualitative resemblance of vorticity stretching statistics to material line stretching

in Fig. 4, despite the fact that the vorticity plays an active role in turbulent dynamics,

motivates the attempt to model and approximate the vorticity as a passive vector with

relaxation. This is the first and most drastic modeling approximation, removing the effect

of the vorticity on the strain-rate. Statistically, this effectively removes the dependence of

the conditional mean vorticity stretching on the vorticity magnitude, i.e. 〈ω̂iSijω̂j| lnω =

χ〉 = 〈ω̂iSijω̂j〉 = λ. While this approach does neglect the effect of vorticity/strain-rate

coupling which makes the vorticity stretching rate directly dependent on the instantaneous

value of vorticity magnitude, the effects of vorticity/strain-rate coupling on the statistics of

vorticity stretching fluctuations are preserved by using the appropriate Cramér function.

With the mean of the vorticity stretching thus fixed as the minimum of the Cramér

function, the model is constructed to incorporate the rest of the Cramér function into infor-

mation about fluctuations in vorticity stretching. To accomplish this, the second modeling

approximation proposes an intermediate time-scale, τS ≪ T ≪ τΩ, at which the vorticity

stretching can be modeled as a stochastic noise with statistics prescribed by the Cramér

function shown previously in this paper. This approximation can be thought of in the same

vein as the Kraichnan ensemble[86], in which rapid velocity field fluctuations are modeled

statistically as white-in-time stochastic terms. Indeed, the auto-correlation for vorticity has

been found to be significantly longer than that of the strain-rate along Lagrangian trajec-

tories in isotropic turbulence [72, 73], though perhaps not enough to justify this model.

Finally, the model treats the viscous relaxation as deterministic. In other words, the

viscous relaxation term in Eq. (5) is modeled as, ν ω̂i
∂2ωi

∂xj∂xj

∣∣∣
ω=w

≈ −f(w), where f(w) is a

deterministic function. In particular, the deterministic relaxation is set to be equal to the

conditional mean given a particular value of the vorticity magnitude,

f(w) = −ν

〈
ω̂i

∂2ωi

∂xj∂xj

∣∣∣∣ω = w

〉
. (35)

With this model for the relaxation, the vorticity evolution along a Lagrangian path in

dimensionless form, from Eq. (6), becomes,

d ln(ωτη)

d (t/τη)
= ω̂iSijτηω̂j −

f(ω)τ 2η
ωτη

, (36)
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which is identical to Eq. (33) for the polymer length. The difference between vorticity and

polymer length, however, is the difference in the relaxation functions.

Such a function can be measured from DNS results of forced isotropic turbulence. We

note that it is possible to measure the right-hand side of Eq. (35) directly, or indirectly using

Eq. (29). Because evaluation of these statistics from the JHTDB isotropic dataset utilizes

finite-differences in physical space (as opposed to spectral differentiation), it is preferable to

measure the conditional mean of the viscous term indirectly using Eq. (29). The indirect

calculation requires only first derivatives of the velocity field (i.e. the strain-rate) while the

direct calculation requires third derivatives of the velocity field (i.e. Laplacian of vorticity).

Figure 6 shows the results as computed from the JHTDB isotropic dataset, using ω̂iSijω̂j

computed at 100 million points using an 8th-order finite difference. The scatter in the

conditional mean at large ωτη is due to lack of statistical convergence. It is found that a

power law functional form for the deterministic relaxation function,

f(ω)τ 2η = A (ωτη)
n, (37)

provides an excellent fit to the numerical results. The best fit of this form is shown in Fig.

6a, with A = 0.129, n = 1.462 (we remark that this fitted value is very close to 3/2). Figure

6b shows the conditional coefficient of variance (conditional standard deviation divided by

conditional mean) for the viscous relaxation term. For increasing vorticity magnitude, the

conditional coefficient of variance decreases toward zero, meaning that the viscous relaxation

behaves increasingly like a deterministic variable for large vorticity magnitudes (the tail of

the PDF). This helps to justify one of the modelling approximations.

With these modeling assumptions, we have a stochastic model for the Lagrangian vorticity

magnitude, here given in dimensionless form,

d ln(ωτη) = {λτη − A exp[(n− 1) ln(ωτη)]}
dt

τη
+ dW, (38)

where dW represents a stochastic forcing term with zero mean and increment statistics in

agreement with the large-deviation statistics of the vorticity stretching fluctuations. Ap-

proximating the vorticity stretching Cramér function as a parabola, the statistics become

Gaussian and dW =
√

∆τηdW , where ∆ is the width of the Cramér function and dW

represents a Wiener process.
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FIG. 6. (a) The conditional mean, Eq. (35), as computed indirectly from the strain-rate using Eq.

(29). Also shown is a power-law curve fit of the form, Eq. (37) for the interval 2 < |ω|τη < 6, with

A = 0.129, n = 1.462. (b) The conditional coefficient of variation (standard deviation/mean) of

the relaxation term.

D. Kramers-Moyal Coefficients

The above model is a Markovian stochastic model, for which we seek a PDF evolution

equation in the form of the Kramers-Moyal equation for plnω(χ, T ), (see Pope[3] Appendix

J),

∂plnω

∂T
=

∞∑

m=1

(−1)m

m!

∂m

∂χm
(Bmplnω) , (39)

where the Kramers-Moyal coefficients are given by,

Bm(χ) = lim
T→0

1

T
〈∆T (lnω)

m| lnω = χ〉 , (40)

and where the increment of lnω is

∆T (lnω) = lnω(t+ T )− lnω(t). (41)

Applying this approach to Lagrangian vorticity evolution, it is clear from Eq. (36) that

the vorticity increments are given by

∆T (lnω) =

t+T∫

t

[
ω̂iSijω̂j − f̃(lnω)

]
dt′, (42)
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where f̃(lnω) = f(ω)
ω

. Due to the modeling assumption on the relaxation term, it gives a

non-zero contribution only to the first coefficient,

B1(χ) = λ− f̃(χ). (43)

For m ≥ 2, only the vorticity stretching fluctuations from our model contribute to the

Kramers-Moyal coefficients. Due to the model assumptions, we consider the T → 0 limit in

Eq. (40) to be effectively T
τS

→ 0,

Bm(χ) = lim
T/τS→0

1

T
〈Γω(T )

m| lnω = χ〉 , (44)

where Γω is given by Eq. (16). The application of large-deviation statistics requires the

T → ∞ limit, which can be interpreted in this framework as T
τΩ

→ ∞. In this limit of large

integration time, where the large-deviation formalism is applicable, it is clear from Eq. (18)

that the cumulant-generating function of Γ is given by

Lγω(q)T = ln〈exp(qΓω)〉, (45)

so that the moment-generating function is,

exp(Lγω(q)T ) = 〈exp(qΓω)〉. (46)

The moments, 〈Γω(T )
m〉, necessary to find the Kramers-Moyal coefficients can be computed

via differentiation of the moment-generating function at the origin. For m ≥ 2, by construc-

tion, the model gives constant coefficients. From Eq. (44), using the moment-generating

function one obtains,

Bm(χ) = lim
T/τS→0

1

T

dm

dqm
exp(Lγω(q)T )

∣∣∣∣
q=0

= L(m)
γω (0). (47)

Thus, the Kramers-Moyal coefficients are given by the derivatives of the generalized Lya-

punov exponent at the origin. Note that λω = L′
γω(0) is the contribution to the m = 1

coefficient as shown above. The Kramers-Moyal equation for plnω(χ, T ) based on the model

is given by

∂plnω

∂T
= − ∂

∂χ

[
(λω − f̃(χ))plnω

]
+

∞∑

m=2

(−1)m

m!
L(m)
γω (0)

∂mplnω

∂χm
. (48)

The stationary distribution can be found by setting the time-derivative to zero,

0 = − d

dχ

[
(λω − f̃(χ))plnω

]
+

∞∑

m=2

(−1)m

m!
L(m)
γω (0)

dmplnω

dχm
. (49)
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In general, this is an infinite-order ODE with variable coefficients, making analytical

progress difficult. For the case of linear relaxation, the coefficients become constant, i.e.

f(χ) = 1
τ
, making some analytical progress possible. Appendix A shows that the solution

to the Kramers-Moyal equation gives a power-law for the tail of the stationary PDF of

vorticity magnitude when linear relaxation is considered, in agreement with the stationary

distribution derived by Ref. [40] for polymer lengths with linear relaxation. Nonetheless,

seeing from Fig. 6 that this is not the case, another means of simplification to enable

analytical progress is sought.

E. Results Using a Parabolic Cramér Function

Following Ref. [41], an approximation can be obtained by representing the Cramér func-

tion as a parabola, i.e. Gaussian statistics, Eq. (23). This amounts to truncating the

Kramers-Moyal expansion at second-order, since all higher cumulants are zero for Gaussian

statistics. In this case, the first two cumulants, λω and ∆ω, fully characterize the statistics

and the stationary PDF must satisfy,

0 = − d

dχ

[
(λτη − f̃(χ))plnωτη

]
+

∆ωτη
2

d2plnωτη

dχ2
. (50)

This truncation of the Kramser-Moyal equation at second-order reduces to a Fokker-Planck

equation.

The solution has the form,

plnωτη(χ) = C exp


2λω

∆ω
χ− 2

∆ωτη

χ∫
f̃(x)dx


 , (51)

with f̃(χ) = A exp[(n− 1)χ],

plnωτη(χ) = C exp

(
2λω

∆ω

χ− 2A

(n− 1)∆ωτη
exp[(n− 1)χ]

)
, (52)

and after change of variables to vorticity magnitude,

pωτη(w) = Cw−1+ 2λ
∆ exp

(
− 2A

(n− 1)∆ωτη
wn−1

)
, (53)

and enstrophy,

pω2τ2η (ξ) = C ′ξ−1+ λ
∆ exp

(
− 2A

(n− 1)∆ωτη
ξ(n−1)/2

)
. (54)
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Therefore, the parabolic Cramér function approximation to the Kramers-Moyal model gives

a stretched exponential for the stationary PDF of enstrophy in isotropic turbulence. As

discussed in the development of the model, it is only designed for applicability in the tails

of the PDF, therefore the interpretation of this result is that the model gives stretched-

exponential tails with a power-law correction. In fact, the power-law correction with expo-

nent −1 + λ
∆
≈ −0.18 is quite small and has very little effect on the following plots.

A first test of the model PDF is to test the proposed relationship, derived from Eq. (54),

− log
(
ξ1−

λ
∆pω2τ2η (ξ)

)
=

2A

(n− 1)∆ωτη
ξ(n−1)/2 − logC ′, (55)

by observation of a linear relationship on a plot of − log
(
ξ1−

λ
∆pω2τ2η (ξ)

)
against ξ(n−1)/2.

The result, shown in Fig. 7, indicates the success of the model, particularly in predicting

the exponent (n− 1)/2 = 0.231 (again, suggestive of 1/4).
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FIG. 7. Plot of − log
(
ξ1−

λ
∆ pω2τ2η

(ξ)
)
against ξ(n−1)/2, for which the model successfully predicts a

linear relationship. In this plot, n = 1.462, λ = 0.100/τη , ∆ = 0.122/τη .

The slope in Fig. 7 is the pre-factor 2A
(n−1)∆ωτη

, for which there was found to be a 35%

difference between the DNS PDF and the model PDF, as illustrated in Fig. 8. Figure 8a

compares Eq. (54) with the observed enstrophy PDF from the isotropic DNS. The model

is fully specified up to a (normalization) coefficient by the values previously determined:

A = 0.129, n = 1.462, λωτη = 0.100, and ∆ωτη = 0.122. The exponent (n− 1)/2 = 0.231 is

in agreement with the values found by Ref. [43]. However, from inspecting the figure, the

tail of the PDF is evidently too heavy, suggesting that the coefficient 2A
(n−1)∆ωτη

is too small.
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Indeed, increasing the viscous relaxation coefficient A by 35% leads to very good agreement

with the DNS statistics, as shown in Fig. 8.
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FIG. 8. Comparison of enstrophy PDF, normalized by Kolmogorov timescale τη, from truncated

Kramers-Moyal model with JHTDB DNS-generated statistics using (a) pre-determined model pa-

rameters, A = 0.129, n = 1.462, λ = 0.100/τη , ∆ = 0.122/τη , and (b) adjusting only A = 0.174 to

give excellent agreement with DNS enstrophy PDF.

The success outlined in Fig. 7 emphasizes the utility of the modeling approach. Before

any DNS data is used, the stochastic model predicts a stretched exponential form (with small

power-law correction) that has become common in fitting enstrophy PDFs. Then, once the

DNS data in introduced in terms of λ and ∆ from the Cramér function of cumulative vorticity

stretching and n from power-law fit to the conditional mean of the viscous Laplacian, Fig. 7

shows that the model also predicts an accurate exponent, (n−1)/2. On the other hand, Fig.

8 provides a caveat, that the parameter A determined from the DNS needs extra adjustment

for full agreement with the PDF from DNS.

Pawula’s theorem [87] warns against truncation of the Kramers-Moyal equation at higher

than second-order, this being similar in nature to cumulant-discard approximations. Indeed,

numerical calculations (not shown) of the Kramers-Moyal model truncated after the fourth-

order term resulted in negative probabilities. Therefore, while the truncation of the Kramers-

Moyal expansion at second-order is less than ideal, better options are not apparent.
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VI. CONCLUSIONS

The growth of infinitesimal material lines in isotropic turbulence is commonly described

by the cumulative stretching by the strain-rate along Lagrangian trajectories, i.e. finite-time

Lyapunov exponents, whose statistical behavior is governed by a large deviation principle.

The evolution of vorticity along Lagrangian paths is similar to that of material lines, with

important caveats, such as the two-way coupling between strain-rate and vorticity. In this

paper, it is hypothesized that the cumulative vorticity stretching
∫ ωiSijωj

ω2 dt along Lagrangian

paths also has a large deviation principle governing the asymptotic evolution of its PDF.

This is confirmed by noting the linear growth of the cumulant-generating function for large

enough integration times. As a result, the large-deviation formalism is available to describe

the statistical behavior of cumulative vorticity stretching and provides a more in-depth way

to compare the statistics of vorticity stretching with material line stretching.

The Cramér function of vorticity stretching was computed from isotropic DNS at Reλ =

433 from the Johns Hopkins Turbulence Databases (JHTDB). The Cramér function for

vorticity stretching confirmed that the mean vorticity stretching is less than the mean ma-

terial line stretching, as was previously known. In addition to this, other characteristics

of the Cramér functions were compared, giving a comparison between cumulative vorticity

stretching and FTLE statistics. The mean, variance, skewness and excess kurtosis of the cu-

mulative vorticity stretching, γω, was shown to fall in between the maximal and intermediate

FTLEs, γ1 and γ2 respectively. Overall, the statistics of γω were shown to be more similar

to γ1 than γ2, which helps put the differences between vorticity stretching and material line

stretching in perspective. In particular, the Cramér function for γω showed that cumulative

vorticity stretching PDFs display the same non-Gaussian tendencies as for γ1; both of these

distributions indicate more probable large positive fluctuations than negative. In the case

of γ1, this is caused at least in part by the incompressibility constraint that prevents γ1 < 1

occurrences by definition. It is interesting to note that no such constraint exists for the

vorticity stretching.

In the final section, a stochastic model using information from the vorticity stretching

Cramér function was proposed for the logarithm of vorticity magnitude in high vorticity

regions (i.e. in the tail of the enstrophy PDF). The model gives a stretched-exponential

with small power-law correction for the tail of the enstrophy PDF. When parameters from
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the Cramér function and conditional statistics measured from DNS are used, the stretched

exponential matches well with exponent n ≈ 3/2, but the pre-factor A is seen to be too low

by about 35%. This is most likely indicative of the modeling error involved in assuming a

separation of time-scales between strain-rate stretching and viscous relaxation effects.
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Appendix A: Kramers-Moyal Solution for Linear Relaxation

We briefly demonstrate a solution to the Kramers-Moyal model for the stationary PDF

by considering linear relaxation, i.e., when the viscous term in Eq. (5) is linear (n = 1) in

vorticity magnitude with a relaxation time τ = 1
A
,

f(ω) = −νω̂i
∂2ωi

∂xj∂xj
=

ω

τ
. (A1)

As a result, the evolution of lnω becomes,

d lnω

dt
= ω̂iSijω̂j −

1

τ
, (A2)

that is, the relaxation function is a constant, f̃(lnω) = 1
τ
. This scenario was considered by

Ref. [40] in the context of polymer stretching.

Under this assumption, the Kramers-Moyal model for the stationary PDF, Eq. (49),

yields a constant-coefficient ordinary differential equation in χ of infinite order. The relax-

ation can be absorbed into the generalized Lyapunov exponents by defining,

L̃(q) = L(q)− q

τ
, (A3)

which is the Legendre transform of a shifted Cramér function,

S̃(g) = sup
q

[
gq − L̃(q)

]
= sup

q

[(
g +

1

τ

)
q − L(q)

]
= S

(
g +

1

τ

)
. (A4)

With this modified generalized Lyapunov exponent, the equation for the stationary distri-

bution becomes,

0 =

∞∑

m=1

(−1)m

m!
L̃(m)(0)

dmplnω

dχm
. (A5)
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We can solve this differential equation on a semi-infinite domain (i.e. for the right-hand side

‘tail’ region of the PDF) using a Laplace transform. Utilizing the properties of derivatives

under Laplace transformation, the equation for the stationary distribution in Laplace space

becomes,

C(s) = p̂lnω(s)
∞∑

m=1

(−s)m

m!
L̃(m)(0), (A6)

where C(s) is an analytic function arising from the necessity to specify boundary conditions

in probability space. In this form, the summation is seen to be a Taylor expansion of the

generalized Lyapunov exponent about zero, so

C(s) = p̂lnω(s)L̃(−s). (A7)

The stationary distribution can be constructed by solving for p̂lnω(s) and performing the

inverse Laplace transform via contour integration in the complex plane. Because C(s) is an

analytic function, the only poles contributing to this inverse transform come from the zeros

of L̃(−s).

Constraints on the generalized Lyapunov exponent, namely that L̃(0) = 0 and L′′(q) ≥ 0,

require that there be at most two first-order zeros with one being at q = 0 and the other

being at q = q∗ (or one second-order zero at q = 0). The form of the stationary distribution

is thus,

plnω(χ) = A1 + A2 exp(−q∗χ). (A8)

The decay of the PDF to zero at infinity requires A1 = 0. By changing variables from lnω

to ω, the PDF for the vorticity magnitude becomes a power-law,

pω(w) = A2w
−1−q∗ , (A9)

in agreement with the results of Ref. [40].

As a caveat, the conditional statistics in Fig. 6 clearly show that the viscous destruction of

vorticity increases super-linearly (n > 1) with increasing vorticity magnitude, and therefore

a linear model is ill-equipped to describe the vorticity statistics. Nonetheless, this appendix

shows that the Kramers-Moyal model constructed here produces a known result for the case
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of linear relaxation.
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