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Glasses display a wide array of nonlinear acoustic phenomena at temperatures T . 1 K. This
behavior has traditionally been explained by an ensemble of weakly-coupled, two-level tunneling
states, a theory that is also used to describe the thermodynamic properties of glasses at low tem-
peratures. One of the most striking acoustic signatures in this regime is the existence of phonon
echoes, a feature that has been associated with two-level systems with the same formalism as spin
echoes in NMR. Here we report the existence of distinctly different type of acoustic echo in classical
models of glassy materials. Our simulations consist of finite-ranged, repulsive spheres and also par-
ticles with attractive forces using Lennard-Jones interactions. We show that these echoes are due
to anharmonic, weakly-coupled vibrational modes, and perhaps provide an alternative explanation
for the phonon echoes observed in glasses at low temperatures.

PACS numbers: 61.43.Fs, 62.25.Jk, 62.65.+k, 63.20.D-, 63.50.Lm

I. INTRODUCTION

Glassy materials behave in a fundamentally different
manner than their crystalline counterparts. Perhaps the
most striking example is the glass transition; a slow-down
of kinetic behavior that strongly depends on tempera-
ture [1, 2]. In contrast to freezing in crystals, there is no
sharp phase transition to a solid phase. Rather the time
scale for motion of the constituent particles increases
smoothly as the temperature is lowered. At low tempera-
tures where glasses are rigid solids, they still retain many
properties that are distinct from crystals, yet these prop-
erties are seemingly universal among disordered solids.

It has been known since the early 1970’s that the ther-
modynamic properties of dielectric glasses are different
from crystals at temperatures T . 1 K. At these temper-
atures the heat capacity scales approximately linearly in
T and the thermal conductivity scales as ∼ T 2 [3]. For
crystals, this scaling is T 3 for both quantities. The origin
of these differences has traditionally been attributed to a
dilute ensemble of two-level tunneling states [4–7]. These
states are quantum mechanical in nature and spatially
localized so that they are weakly coupled to other plane-
wave excitations in the solid. Moreover, it has been pre-
supposed that the distribution of two-level energy spac-
ings is very broad, leading to an approximately constant
density of levels at low temperatures. Phenomenologi-
cally, this picture is consistent with most of the exper-
imental data, yet a fundamental understanding of the
origin of these localized modes is still lacking [8].

Convincing evidence for the existence of two-level tun-
neling states in glasses comes from acoustic experiments
at low temperatures with frequencies ∼ 109 Hz, so that
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~ω ≈ kBT . In the experiments an acoustic transducer
attached to the glass sample served to both excite the
acoustic wave and detect reflections. Localized modes, as
postulated in the quantum-mechanical two-level system
model, naturally lead to a rich array of nonlinear acoustic
behavior such as a temperature-dependent sound veloc-
ity, saturation of attenuation [9–15], spectral hole burn-
ing and diffusion [16–19]. However, perhaps the most
dramatic effect observed in these acoustic experiments
was the observation of electric and phonon echoes [17, 19–
23]. Since any two-level quantum system has the same
dynamics as an isolated spin, these echoes were thought
to be analogous to, and have the same formalism as, spin
echoes studied in magnetic resonance. This observation
was interpreted as evidence for the quantum mechani-
cal nature of the excitations. As we will show here, the
existence of phonon echoes does not necessitate such an
interpretation. Rather, the echoes can be generated by a
distinctly different mechanism that is completely classi-
cal in origin and is based on the inherent anharmonicity
of the vibrational modes in disordered solids.

In the last decade, there has been a large body of work
concerning the vibrational modes in jammed, disordered
solids which have helped to shed light on the origins of
the thermodynamic properties of glasses [24, 25]. An ex-
cess density of states at low frequencies naturally arises in
jammed systems and relies only on the existence of disor-
der, not on the details of the particle interaction [26]. In
addition, the well-known “Boson peak” has been linked
to the onset of anomalous modes in jammed systems and
other model glasses [27]. The linear temperature depen-
dence of the thermal conductivity in glasses at inter-
mediate temperatures requires a constant diffusivity; a
property that exists in jammed systems above the Boson
peak [28, 29]. Finally, at very low frequencies, jammed
systems contain quasi-localized, anharmonic vibrational
modes which lie at the heart of mechanical rigidity [30]
and indicate the presence of “soft spots” in amorphous
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solids [31, 32].

Unfortunately, inherent difficulties in computing the
vibrational mode properties in very large systems have
restricted many studies to higher frequencies and tem-
peratures. The low-temperature regime where two-level
tunneling states are supposed to dominate the thermody-
namic properties has remained elusive. Our goal is not
to simulate the largest systems and lowest frequencies
directly, but rather to illustrate that the observation of
phonon echoes does not require a quantum mechanical
interpretation at all.

The first description of echo phenomena was given be
Hahn in 1950 by considering the response of an ensem-
ble of nuclear spins to two excitation pulses separated
by a time τ [33, 34]. Initially, all spins are vertically
aligned with an external magnetic field pointing in the z-
direction. The first pulse acts to rotate the spins towards
the x-y plane. In between the pulses, the spins precess
harmonically at their Larmor frequency, and eventually
decohere. The second pulse acts to “time-reverse” the
system, so that the system becomes coherent again at
t = 2τ [34]. If we consider an ensemble of spins with dif-
ferent frequencies, the echo manifests as a macroscopic
sum of the spin vectors. The maximum echo occurs when
the first pulse rotates the spins by θ = π/2 and the second
pulse rotates the spins by θ = π. A similar mechanism
explains photon echoes observed at optical frequencies
[35, 36].

Although less well-known, echo phenomena can also
be produced by another mechanism [37–41]. One pos-
sible mechanism relies on harmonic oscillators that in-
teract in a nonlinear way with the excitation pulses, as
in temperature quench echoes [42, 43]. Another possible
mechanism involves anharmonic oscillators whose reso-
nant frequency shifts with increasing amplitude. This
mechanism is the source of observed echoes in many dif-
ferent systems ranging from cyclotron modes in plasmas
[37, 38, 44, 45] to the vibrations of individual particles in
piezoelectric powders [46–48]. Although there are many
similarities between anharmonic echoes and spin echoes,
there are many characteristic differences such as the rela-
tionship between the echo amplitude and pulse spacing,
τ , and the existence of multiple echoes after only two
pulses for anharmonic echoes. A comprehensive review
on both types of echoes can be found in reference [41].

In this paper we use simulations of model glasses to
show that classical vibrational modes in disordered solids
can act as weakly-coupled anharmonic oscillators, and
when excited by a series of pulses, produce echoes simi-
lar to those seen in experiments in glasses at low tem-
peratures (Fig. 1a). By varying the pulse amplitude,
spacing, and number of pulses, we can compare our re-
sults directly to experimental data. Our simulations are
performed with both finite-ranged repulsive spheres and
particles with Lennard-Jones interactions.
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FIG. 1. (Color online) (a) Acoustic echo generated in jammed
systems composed of 1000 particles at φ = 0.70. The result is
an average over the response of 10000 independent systems.
After a series of excitation pulses separated by time τ , a spon-
taneous re-phasing of the vibrational modes occurs at a time
t = 2τ . (b) Visual representation of one of the jammed sys-
tems used in generating the echo. The red particles are 1.4
times larger than the blue particles. The acoustic pulses are
excited by a transverse standing wave along the x-direction.

II. NUMERICAL MODEL

The majority of our simulations consist of a 3-
dimensional ensemble of frictionless, spherical particles
with finite-range, repulsive interactions [26]. We use a
50-50 binary mixture of particles with two radii, σ and
1.4σ. All particles have a mass m. The pair-potential
between any two particles is given by the following:

V (rij) =


2ε

5

(
1− rij

σi + σj

)5/2

rij < σi + σj ,

0 rij ≥ σi + σj ,

(1)

where rij is the distance between the centers of parti-
cles i and j, and ε is the energy scale of the interaction.
All quantities reported here have lengths measured in
units of σ, mass in units of m, and frequency in units
of
√
ε/mσ2. The 5/2-exponent in the potential is de-

rived from linear, elastic, Hertzian contact mechanics of
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spherical particles. An important feature of this type of
potential is the natural nonlinearity of inter-particle in-
teraction. There will always be a nonlinear correction to
the harmonic approximation for the potential energy, so
that the frequency response of individual modes will vary
with vibrational amplitude. This feature will turn out to
be essential for the generation of anharmonic echoes, and
will be discussed in section III.

Individual systems were created by randomly placing
N particles in a cubic box with periodic boundary condi-
tions on all sides, which represents a dense gas at T =∞.
Each system is then quenched to T = 0 at the nearest
local potential-energy minimum using the Fast Inertial
Relaxation Engine (FIRE) algorithm [49]. The resulting
state of the system (i.e., jammed or un-jammed) will de-
pend on the volume fraction φ of particles. For the size
ratio and particle interactions studied here, jamming oc-
curs at φ = φc ≈ 0.64 [26]. All simulations reported
here are for a volume fraction φ = 0.70, so that the sys-
tems are well into the jammed regime. In addition, at
this volume fraction, approximately 0.3% of the particles
have no overlaps after the initial quench. These particles
contribute trivial zero-frequency modes to the system, so
they are removed prior to acoustic excitation. A 3-D rep-
resentation of a quenched 1000-particle system is shown
in Figure 1b.

In addition to finite-ranged, repulsive interactions, we
also simulated Kob-Andersen binary Lennard-Jones sys-
tems [50]. Each system consists of 800 A and 200 B par-
ticles with equal mass m interacting in three dimensions.
The pair-potential between particles is given by:

V (rij) =
εij
72

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2)

where εAB = 1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, and
σBB = 0.88σAA [27]. The potential is cut off at rij =
2.5σij and the potential is shifted so that V (2.5rij) =
0. We also add an additional linear correction so that
V ′(2.5rij) = 0. All Lennard-Jones systems were created
at a density ρ = 1.2, then quenched using the FIRE
algorithm.

Once a system is quenched, we excited the vibrational
modes using external pulses. Each pulse consisted of ap-
plying a transverse, spatially-varying sinusoidal force to
the particles. The force on the ith particle is given by:

~Fi = F0 sin(kxxi − ω0t)ŷ, (3)

where kx = 2π/L is the wavevector, and L is the box size.
We used the longest wavelength that could fit along one
boundary of the domain (as shown in Figure 1b). In order
to maximize the coupling of the pulse to a narrow band
of vibrational modes, the pulse frequency was restricted
so that ω0/kx ≈ vs, where vs is the speed of sound in the
system. The pulse amplitude F0, and duration tp were
adjustable parameters, although typical ranges of tp were
10-45 cycles, where the period of 1 cycle = 2π/ω0. Longi-
tudinal polarizations were also studied with qualitatively

similar results, yet the transverse excitations were better
coupled to the anharmonic, low-frequency modes in the
systems. Thus the majority of simulations used external
pulses according to Eq. 3.

The response of the system can be measured in many
different ways. We chose perhaps the most natural way,
and measured the response along the same vector that

defined the excitation. That is, the forcing ~F represents
a vector with 3N elements, and can be expanded in eigen-
modes of the system. If the modes do not couple, then
the total energy in each mode remains constant in time.
The most convenient way to access the response of the

excited modes was to measure the power P = ~v·~F, where
~v is the velocity vector of the particles. The resulting sig-
nal was then normalized by the maximum power (Pmax)
during the pulses, as shown in Figure 1a.

For systems quenched from initially random positions
(T = ∞), we found that some modes often went unsta-
ble during excitation by an acoustic pulse. This is likely
due to the crossing of a significant energy barrier in the
system, and was followed by a ≈ 10 − 20% drop in the
potential energy of the system. Upon re-quenching the
system following such an instability, the minimum poten-
tial energy at T = 0 also decreased by ≈ 10− 20%. The
excess potential energy is likely due to the preparation
of the system by quenching from T = ∞, without any
annealing steps. By repeatedly pulsing each system with
acoustic pulses of decreasing F0, with each pulse followed
by a quench, we found that the stability of the system in-
creased dramatically. Thus all data reported here comes
from systems which have been prepared using this an-
nealing protocol.

III. CHARACTERIZATION OF MODES IN
JAMMED SYSTEMS

One of the defining characteristics of crystalline elastic
solids is that at sufficiently low frequencies, all vibra-
tional modes are plane-wave acoustic modes. In stark
contrast, glasses display an excess of anomalous modes
at low frequencies, some of which are spatially localized.
Jammed systems of soft, frictionless spheres contain a
very large number of low-frequency modes as well [25].
The amount of excess modes will depend on the distance
from the critical volume fraction, ∆φ = φ − φc, where
φc is the volume fraction when the system first begins to
jam. The peak in the excess number of modes (which is
known as the Boson peak in the glass literature) occurs at
a characteristic frequency ω∗, which tends towards zero
as φc is approached: ω∗ ∝ ∆φ3/4 for the potential chosen
in equation 2 [25].

Figure 2a shows the average density of states for sys-
tems of N = 1000 particles. The approximate location of
ω∗ is shown by the red point. The inset shows the same
data on a log scale. The modes below ω∗ consist of a mix
of extended and quasi-localized vibrational modes [51].
Since each system only contains 1000 particles, the low-
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FIG. 2. (Color online) (a) Density of states for systems of
1000 bi-disperse particles at φ=0.70. The solid black lines are
the average of 1000 independent systems. The inset shows the
same data on a log scale. The dashed line represents an ω2

behavior, consistent with Debye theory. The red dot shows
the approximate position of ω∗, and the blue dot shows the
frequency at which most of the simulations are performed. (b)
Participation ratio of all modes in 1000 independent systems.
The color scale represents the density of the points. Red is
the maximum density of states Dmax, and purple is near zero.

est frequency plane-wave mode would occur at ω ≈ 0.025.
The degree of localization of the modes is illustrated in

Figure 2b, which shows the participation ratio for each
mode. The participation ratio measures the fraction of
particles participating in a given vibrational mode:

p(ωm) =

(∑
l |êm,l|

2
)2

N
∑
l |êm,l|

4 , (4)

where êm,l is the lth component of the unit eigenvector
corresponding to the mth eigenmode. At low frequen-
cies, the jammed systems contain a broad distribution of
participation ratios, as shown by the large spread in pur-
ple data points. Many of these modes are quite localized
(low participation ratio). It has also been shown that
these modes exist independent of ∆φ [30].

One natural consequence of spatial localization in a vi-
brational mode is that for a given amount of energy, fewer
particles are undergoing a larger amplitude motion. This
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FIG. 3. (Color online) (a) Normalized frequency shift ver-
sus amplitude of 3 modes in a single 1000-particle system.
Over a broad range of amplitudes, equation 7 is valid at high
(red), intermediate (blue), and low (black) frequencies. De-
viations at higher amplitudes are due to coupling between
nearby modes. (b) Coefficient of frequency shift ξ versus mode
frequency for 500 modes in 5 different 1000-particle systems.
For a given amplitude A, modes at lower frequency will expe-
rience a larger frequency shift.

larger amplitude induces nonlinear effects in the vibra-
tion at smaller energies. Low-frequency plane waves in
crystalline solids are spatially extended and are the most
harmonic modes in the system due to the small relative
displacements between neighboring particles. However,
in jammed solids, the lowest frequency modes are the
most anharmonic [30].

A. Anharmonic Frequency Shifts

An important consequence of nonlinearity is that the
fundamental frequency of the mode will shift with am-
plitude. Let us consider the simplest model of an anhar-
monic oscillator with mass m and fundamental frequency
ω with a cubic perturbation to the potential V :

V =
mω2

2
x2 +

mω2

3x0
x3. (5)
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The equation of motion of this oscillator is thus

mẍ = −mω2x

(
1− x

x0

)
. (6)

To second order, it can be shown that the frequency of
the oscillator depends on the square of the amplitude of
vibration [52, 53]:

∆ω

ω
= −ξA2, (7)

where ξ = 5/12x2
0.

We can measure the anharmonicity of the modes in
jammed systems by applying an initial amplitude to the
modes at t = 0 with all particles at rest, then letting the
system evolve in time. Specifically, this is accomplished
by adding a vector Aêm to the initial position vector of
all of the particles, where A is the amplitude and êm is
the eigenvector associated with the mth mode. After 200
cycles, the resulting motion of the particles along êm is
fit to a sinusoidal function to obtain the frequency of the
mode.

Figure 3a shows the normalized frequency shift as a
function of amplitude for three modes at high, inter-
mediate, and low frequencies. The frequency shift is
quadratic in amplitude, and is larger at low frequen-
cies. At higher amplitudes, the interaction among nearby
modes becomes pronounced and energy is transferred be-
tween modes, leading to a damping of the vibrations and
other forms of nonlinearities. Eventually, at very large
amplitudes, particle rearrangements occur and the eigen-
modes have changed, so our analysis is no longer valid.

Figure 3b shows how ξ depends on mode frequency.
Localized modes at high are anharmonic, but the most
anharmonic modes lie at low frequencies where the modes
are quasi-localized. The broad distribution of ξ at lower
frequencies is related to the broad distribution in the par-
ticipation ratio.

IV. ECHOES FROM ANHARMONICITY

In order to understand how an ensemble of anharmonic
oscillators can give rise to an echo, let us first consider
the response of a single oscillator to two excitation pulses.
Our derivation is similar to previous derivations [38, 45,
47], except that here we explicitly deal with mechanical
oscillators for arbitrary amplitudes. We will then sum
the contribution of many single oscillators with different
natural frequencies. For simplicity, we will only consider
δ-function pulses which add a finite amount of energy to
the oscillator in a short period of time.

At time t = 0, the first pulse excites the oscillator so
that it begins with amplitude A1, then evolves in time:

x(0 < t < τ) = A1e
iωt(1−ξA2

1). (8)

Here the frequency is slightly less than the fundamental
frequency due to the finite amplitude, so that ω1 = ω(1−

ξA2
1). We have also ignored any other higher harmonics

in the solution stemming from the nonlinearity of the
oscillator, and only consider the frequency shift to the
fundamental mode.

At time t = τ , we apply a second pulse, which adds
amplitude A2 to the position of the oscillator:

x(τ) = A2 +A1e
iωτ(1−ξA2

1). (9)

For simplicity, we will assume that A1 and A2 are real,
although the same analysis can be done in the case that
they are complex. The new amplitude of oscillation is:

|x(τ)|2 = A2
1 +A2

2 + 2A1A2 cos
(
ωt
(
1− ξA2

1

))
. (10)

The evolution of the oscillator after the second pulse de-
pends on its amplitude, so that

x(t ≥ τ) = (11)(
A2 +A1e

iωτ(1−ξA2
1)
)
eiω(t−τ)(1−ξ|x(τ)|2).

Combining equation 10 and 11, we obtain the full solution
of the oscillator when t ≥ τ :

x(t ≥ τ) = (12)((
A2 +A1e

iωτ(1−ξA2
1)
)
eiω(t−τ)(1−ξ(A2

1+A2
2))
)
×

e−i2ξω(t−τ)A1A2 cos(ωτ(1−ξA2
1)).

The complexity here is due to the fact that there is a
cosine function in the argument of the exponential. We
can simplify this part by use of the Jacobi-Anger expan-
sion [54]:

eiz cos θ =

∞∑
n=−∞

inJn(z)einθ, (13)

where Jn is a Bessel function of the 1st kind. Then equa-
tion 12 becomes:

x(t ≥ τ) = (14)((
A2 +A1e

iωτ(1−ξA2
1)
)
eiω(t−τ)(1−ξ(A2

1+A2
2))
)
×

∞∑
n=−∞

inJn (2ξω(τ − t)A1A2) e−inωτξA
2
1einωτ .

At this point it is helpful to define a characteristic fre-
quency shift Ω = ωξA2

1 and pulse amplitude ratio α =
A2/A1. With these substitutions and some algebraic ma-
nipulations, equation 14 becomes:

x(t ≥ τ) = (15)
∞∑

n=−∞
eiω(t−nτ)i3nA1e

iΩ(nτ−t)eiΩα
2(τ−t)×

[Jn(2αΩ(t− τ)) + iαJn−1(2αΩ(t− τ))] .
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We may now identify terms in the solution that vary on
different time scales. Oscillatory terms containing “ωt”
in their argument vary rapidly in time, whereas terms
with “Ωt” will vary much more slowly since the frequency
shift is much smaller than the fundamental frequency
(Ω/ω � 1). Thus we can write

x(t ≥ τ) =

∞∑
n=−∞

G (Ωt) eiω(t−nτ) (16)

where

G(Ωt) = i3nA1e
iΩ(nτ−t)eiΩα

2(τ−t)× (17)

[Jn(2αΩ(t− τ)) + iαJn−1(2αΩ(t− τ))] .

Equations 16 and 17 apply to only a single oscillator
which is excited by two delta function pulses. An echo
involves the coherent sum of many oscillators at a given
point in time. Each oscillator may have a different fun-
damental frequency, ω. Thus the echo amplitude, X, will
be given by

X(t ≥ τ) =
∑
m

∞∑
n=−∞

G (Ωmt) e
iωm(t−nτ), (18)

where ωm is the fundamental frequency of the mth os-
cillator, and Ωm = ωmξA

2
1. When performing the sum

over m, the exponential term eiωm(t−nτ) will vary rapidly
with time and sum to zero since ω is different for every
oscillator, i.e., the total signal will be decoherent. How-
ever, if t = nτ , the exponential term will be near unity
and the oscillators will be coherent. The echo amplitude,
X will then depend only on G(Ωmt), which varies slowly
with time since Ωm � ωm. One important consequence
of equation 18 is that not only do we expect an echo at
t = 2τ , but also multiple echoes at t = 3τ, 4τ, etc. This is
a distinguishing feature of classical echoes in anharmonic
oscillators. The simplest description of a quantum me-
chanical spin echo only contains features at t = 2τ . At
later times the precessing spins become incoherent.

Let us assume that the excitation pulse excites a nar-
row band of oscillators with similar anharmonicity, so
that Ωm is approximately constant, and we may drop
the subscript m. If we only consider the first echo, i.e.
t = 2τ and n = 2, then G becomes:

G2τ = −A1e
−iΩτα2

(iαJ1(2Ωτα) + J2(2Ωτα)) . (19)

so that the echo amplitude is approximately given by

X ∝ |G2τ | = A1

√
α2J1(2Ωτα)2 + J2(2Ωτα)2. (20)

In this form it is apparent that the echo amplitude de-
pends on the pulse spacing, in contrast to spin echoes.
Specifically, the echo amplitude tends to zero at small
pulse spacings. This can be seen by considering the fre-
quency shift of the oscillators as a slowly-varying phase.
If the phase does not have time to evolve between the

FIG. 4. (Color online) Proxy for echo amplitude |G2τ |, nor-
malized by the first pulse amplitude A1, as a function of
Ωτα (see equation 19). Over a broad range of values for
the ratio of pulse amplitudes α, the maximum echo occurs for
1 < Ωτα < 2.

excitation pulses, then its effect on the dynamics will
be reduced. The appearance of multiple echoes and the
dependence on pulse spacing will be discussed in more
detail in section V.

Figure 4 shows shows how equation 19 depends on the
quantity Ωτα. Of particular importance is where the
maximum echo is located. When the second pulse am-
plitude is comparable to the first pulse amplitude (i.e
α ≈ 1), then the maximum echo is achieved when Ωτ ≈ 1.
This means that the characteristic frequency shift of the
oscillators should be the inverse of the pulse spacing. The
requirements to achieve the maximum echo amplitude
are technically different in spin echoes, where the sec-
ond pulse (π-pulse) should be twice as large as the first
(π/2-pulse), given they are the same duration.

V. ECHOES IN MODEL GLASSES

The discussion up to this point has only considered iso-
lated, independent, anharmonic oscillators. We now turn
our attention to echoes in model glasses. We emphasize
here that each “oscillator” is a normal vibrational mode
of the disordered solid. The echo signal is the sum of
the vibrational motion of all of the excited modes. For
very small amplitudes, each mode is linearly indepen-
dent. However, for larger amplitudes they will necessarily
couple energy between different modes, invalidating our
analysis in the previous section. As illustrated by Figure
3, the normal modes are naturally anharmonic, so that
an echo should be observable so long as the amplitude
of each mode is not too large, and they remain linearly
independent.

When excited by an acoustic pulse near T = 0, a single
vibrational mode will increase in amplitude, and the final
amplitude of vibration will depend on difference between



7

0 500 1000 1500 2000 2500 3000
0.0

0.4

0.8

0.0

0.4

0.8

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.1

0.15

0.2

0.25

(a)

(b)

P
/
P
m
ax

P
/
P
m
ax

FIG. 5. (Color online) (a) Echo amplitude, normalized by
Pmax, vs. time for two different values of pulse spacing τ . A
third example, with an intermediate value of τ , is shown in
Figure 1a. Each signal is the average of 10,000 independent
systems, each composed of 1000 particles. The pulse width
is tp = 45 cycles, and the pulse frequency is ω0 = 0.025. (b)
Normalized echo amplitude vs. τ . The error bars represent
the size of the noise between the second pulse and the echo.
The red line is a fit to the data using equation 21.

the frequency of the oscillator and the frequency of the
exciting pulse, in addition to the spatial coupling to the
polarization of the excitation (equation 3). The number
of modes excited by a given pulse is inversely propor-
tional to the duration of the pulse. For long pulses, only
modes with frequencies near the excitation frequency will
be driven to large amplitudes, whereas for short pulses,
many modes of different frequencies will be excited (e.g.,
a delta-function pulse will excite modes of all frequencies
equally).

A second pulse at a later time can either increase or
decrease the amplitude of an individual mode, depend-
ing on the phase difference between the mode and the
excitation. An echo will be formed by the average of an
ensemble of vibrational modes, which become coherent
at a later point in time. For systems composed of 1000
particles, we found that averaging over 10,000 indepen-
dent systems was necessary in order to achieve a suffi-
cient echo signal above the background noise. Figure 5a

pulse amplitude F0
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FIG. 6. Echo amplitude versus pulse amplitude F0. Each
data point is the average of 10,000 independent systems, each
composed of 1000 particles. The pulse width is tp = 45 cycles,
and the pulse frequency is ω0 = 0.025, which is below ω∗

as shown in Figure 2a. The decay at long times is due to
nonlinear coupling between the modes which causes energy
to spread to other modes in the system.

shows the averaged amplitude at two different values of
pulse separation τ . Both pulses have identical amplitudes
(F0 ≈ 5 × 10−5), and identical pulse durations: tp = 45
cycles (this value for tp was chosen because it was close to
the value used in the original experiments which observed
phonon echoes at low temperatures in glasses [22]). In
both plots, the echo is apparent at t ≈ 2τ . Taking into
account the finite pulse width (tp), the exact position of
the echo is 2τ+2tp, since τ is measured from the center of
each excitation pulse and the first pulse begins at t = 0.

Figure 5b shows the echo amplitude (normalized by
Pmax) as τ is varied. This dependence can be understood
using equation 20. We fit the data to the form:

|A2τ | = K1

√
J1(K2τ)2 + J2(K2τ)2, (21)

where K1 and K2 are fitting parameters. The best fit
is shown by the red line in Figure 5. This is essentially
the same curve as the red line in Figure 4. The error
bars represent the average noise in the amplitude in the
region between the second pulse and the echo. Although
equation 21 is derived from the dynamics of a single os-
cillator, both K1 and K2 represent an average over the
different modes excited by the pulses. Since K1 ∝ A1,
and A1 represents the initial amplitude, its value will
vary considerably from mode to mode. However, K2 will
be more uniform since it represents the frequency shift,
Ω, and only modes that satisfy Ωτ ≈ 1 will contribute to
the echo.

The reasonable agreement in Figure 4 is due to the fact
that the condition Ωτ ≈ 1 can be achieved by increas-
ing τ rather than the amplitude, so that the nonlinearity
remains a perturbation to the system and their is little
cross-talk between adjacent modes. However, if we vary
the pulse amplitude instead of τ , then we inject more en-
ergy into each mode at higher amplitudes and the echo
amplitude is reduced due to nonlinear couplings between
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FIG. 7. Multiple echoes are not observable in the average
response of 10,000 systems due to noise limitations. Each
system has 1000 particles. The pulse amplitude and frequency
are the same as in Figure 1a and Figure 5a. The red arrow
indicates the predicted position of the echo at t = 3τ .

modes, which is not accounted for in the model. Fig-
ure 6 shows a peak in the echo amplitude as the pulse
amplitude is varied. This is expected from equation 20,
and illustrated in Figure 4. However, the data in Fig-
ure 6 decays much more rapidly, which is likely due to
the coupling between modes for larger pulse amplitudes,
where energy is being redistributed to other modes in the
system.

When compared to spin echoes, a defining character-
istic of anharmonic echoes is the occurrence of multiple
echoes after just two pulses (equation 16). Figure 7 shows
the average response of 10,000 systems of 1000 particles
each, identical to Figure 1a and Figure 5a, except ex-
tended to longer times. Multiple echoes are clearly not
visible. This is likely due to the signal noise in this re-
gion. One possible remedy is to average over many more
systems, since the noise decreases as

√
N , although this

was computationally prohibitive. One may reasonably
expect the 3τ echo to be reduced in amplitude by the
same factor as the 2τ echo is with respect to the pulse
amplitude. If this is true, then it is not surprising that
the 3τ echo is not visible since it would clearly lie below
the noise.

If one applies a third pulse to the system, then there
will be a total of four echoes that can be observed. The
positions of these echoes are τ1, τ2, τ1 + τ2, and τ1 −
τ2, where the times are referenced with respect to the
position of the third pulse. The pulse spacing τ1 refers to
the first and second pulse, and τ2 refers to the second and
third pulse. This is true for both two-level system echoes
(i.e. spin echoes), as well as the classical anharmonic
echoes that we are treating here. Figure 8 shows a three-
pulse echo sequence in jammed systems. The signal is
the average of 10,000 systems composed of 1000 particles
each, and is identical to Figure 1a, with the addition of
a third pulse at a later time. If the third pulse is placed
prior to the first echo, then τ1 − τ2 is positive, and all
four echoes occur after the three pulses.
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FIG. 8. (Color online) Echo signal from 10,000 averaged sys-
tems, as in Figure 7, with the addition of a third pulse after
the first echo. The three-pulse echo sequence produces four
total echoes, with the positions indicated by the red arrows.
This is a characteristic of both parametric (spin) echoes and
anharmonic echoes.
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FIG. 9. Echoes in systems with Lennard-Jones interactions.
The signal is the average of 10,000 independent systems, each
composed of 1000 particles. The pulse width is tp = 45 cycles.

Although jammed systems of frictionless spheres pro-
vide the simplest example of model glasses, we have also
studied echoes with more realistic two-particle potentials.
Figure 9 shows the average response of 10,000 systems,
each composed of 1000 particles with Lennard-Jones in-
teractions. Specifically, we use a Kob-Andersen binary
system, as described in section II. The density of states
of these systems looks somewhat different from jammed
systems [27]. The excitation frequency was chosen to be
approximately 5% of the maximum frequency in the sys-
tem, and consistent with the longest-wavelength plane
wave which could fit inside the simulation boundaries
(Figure 1b). The echo looks nearly identical to those
in Figure 1a and 5a, where the particles interact via
Hertzian potentials.

All of the data that we have reported here so far has
been taken on systems with 1000 particles, then aver-
aged over many configurations. This is partially due to
the fact that the calculation and characterization of the
dynamical matrix and vibrational modes is straightfor-
ward. We can also average over fewer configurations of



9

systems with a larger number of particles and obtain sim-
ilar results. Figure 10 shows an echo signal resulting from
averaging the response of 5000 systems, each composed
of 8000 particles. Each cubic system of particles is twice
as long on one side as a 1000 particle system, so the fre-
quency of excitation was smaller by a factor of two, and
the wavelength was longer by a factor of two (cf. Figure
1b).

However, for systems with more than 8000 particles,
the computational requirements to observe an echo be-
come expensive. This is mostly due to the fact that our
simulations require simulating many thousands of cycles
of low-frequency oscillations. However, we can estimate
the conditions necessary to observe an echo in only one
system, rather than averaging over many systems. In
order to observe an echo clearly, there must be a suffi-
cient number of excited modes, Ne, which will average
to zero in regions between the pulses and the echo. The
number of excited modes is proportional to the number
of systems, Ns, the density of vibrational states at the
excitation frequency, D(ω), and inversely proportional to
the pulse width, tp:

Ne ∝
NsD(ω)

tp
. (22)

For simplicity, let us assume that the density of states
obey’s a Debye-like behavior, so that D(ω) ∝ Npω

2,
where Np is the number of particles in the system. The
pulse width used in our simulations is tp = 45 cycles
= 45× 2π/ω. Then equation 22 reduces to

Ne ∝ NsNp
(
ω

ωD

)3

. (23)

The frequency in equation 23 has been normalized by
the Debye frequency in order to easily compare to exper-
iments. We are interested in comparing our simulations
with experiments from low temperature glasses where
possible. For that reason we chose tp = 45 cycles, and
ω/ωD ≈ 0.0002, which are typical values used in the orig-
inal experiments which observed phonon echoes in glasses
at low temperatures [22]. Using these values, Ne ∼ 640.
We would need the same number of excited modes in a
single system to see the echo. If we assume we have one
system (Ns = 1), then we would need Np ≈ 8 × 1013

particles to observe an echo at such low frequencies. We
have also assumed that the density of states is quadratic
in frequency. At temperatures below T = 100 K, the den-
sity of states in glasses is known to decrease faster that
ω2 [55–57]. This would only strengthen the dependence
of Ne on ω, and necessitate even larger systems in order
to observe an echo, thus our estimate constitutes a lower
bound on the system size.

We would of course like to observe an echo in a single
system, but this is computationally unfeasible. Not only
does it require very large systems, but it also requires
that the anharmonic oscillators do not couple the energy
in between them strongly. In order to minimize this latter
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FIG. 10. Amplitude versus time showing an echo in systems of
8000 particles. The signal is the average of 5000 independent
systems. The pulse frequency is half of that used in 1000-
particle systems. The pulse width is tp = 45 cycles.

constraint, we suggest that we only apply frequencies in
the region of the quasi-localized modes.

The amount of coupling depends on the frequency dif-
ference between two modes: ω1 −ω2. As we increase the
number of particles, the density of states also increases,
so the frequency spacing between the modes decreases.
This is unavoidable. Also, the amount of coupling de-
pends on the spatial overlap between the modes. Plane
waves are extended modes that will inevitably share par-
ticle vibrations. However, two localized or quasi-localized
modes, if sufficiently far away from each other, will have
very little coupling, regardless of the frequency.

Thus, given a fixed excitation frequency ω, asNp →∞,
the energy flow between modes will eventually destroy
the coherence of the echo. This can only be remedied if
most of the excited modes are quasi-localized so that they
can still behave as independent anharmonic oscillators.
We suspect that echoes could be observed in a single, very
large system provided that the density of plane waves is
much smaller than the density of quasi-localized modes.

VI. CONCLUSIONS

These results illustrate how the anharmonic vibra-
tional modes in a jammed system of particles can give rise
to phonon echoes, similar to those measured in glasses at
low temperatures. The mechanism of echo generation is
distinctly different from echoes produced by quantum-
mechanical two-level systems [41]. In our simulations,
echoes are produced by a purely classical mechanism
caused by the frequency shift of the anharmonic vibra-
tional modes. This shift acts as a slowly-varying phase
which evolves in the time between the pulses, resulting
in a non-zero average of the ensemble.

The anharmonicity of the vibrational modes can be
studied at T = 0. At low frequencies, model glasses
based on jammed sphere packings have quasi-localized
modes that contribute to the density of states [30]. It has
been argued that jammed systems are marginally stable
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FIG. 11. (Color online) Quantum mechanical picture of en-
ergy levels corresponding to the low-frequency excitations in
glasses. The double-well is the traditional view of the ori-
gin of two-level systems, where the lowest energy level is split
in two by the presence of the barrier. Alternatively, a wide,
anharmonic potential can produce low-frequency modes, non-
uniform level spacing, and nonlinear acoustic phenomena such
as echoes.

and inherently close to an instability where the structure
will rearrange [58–60]. The contribution of such incipi-
ent instabilities to the density of states is currently be-
ing evaluated [61]. The anharmonicity that is important
for echoes is generated by the frequency shift of a mode
with increasing amplitude; this is due to expansion non-
linearity [62, 63], and is measurable at small amplitudes.
If the amplitude becomes too large, then there will be
energy transfer between modes and the modes will lose
coherence. At even higher amplitude in a system with
only finite-ranged interactions, the contacts can break
and reform [64]. This would destroy echo formation.

The echoes observed in our simulations have many fea-
tures which are consistent with parametric, two-level sys-
tem echoes, such as the three-pulse echo sequence (Fig.
8). However, many features are quite different. First,
anharmonic echoes do not have a simple, intuitive condi-
tion for maximizing the echo signal, such as a π/2 pulse
followed by a π pulse. In fact, Figure 4 shows that the
maximum echo amplitude is a complicated function of
pulse spacing and amplitude. However, here we note that
for small amplitudes, equation 20 reduces to:

|G2τ | =A1α
2Ωτ = A1A

2
2ξωτ, (24)

which is in agreement with previous authors [45], and
has the same dependence on A1 and A2 as the small-
amplitude result for spin echoes [22].

Graebner and Golding [22] measured this small-
amplitude dependence in silica glass, and also showed
that the maximum echo intensity does not precisely oc-
cur when A1 = A2/2, among other discrepancies with a
model of echoes based on two-level systems. In addition,
at small amplitudes, Graebner and Golding observed a
small increase in echo amplitude with pulse spacing. This
feature is characteristic to anharmonic echoes and is seen
in our simulations (Fig. 5b). However, the experiments
probe ≈ 1000 times lower frequencies than we can access
in the simulations, and also involve additive reflections
of pulses, so a more quantitative comparison is compli-

cated. Qualitatively, we note that the appearance of mul-
tiple echoes after two excitation pulses in the echo exper-
iments [22] is a natural and unique feature in anharmonic
echoes, and does not depend on the details of the system.

At very low temperatures, a quantum mechanical pic-
ture of the dynamics is certainly necessary. The tradi-
tional explanation for the excess excitations in glasses
at very low temperatures relies on two-level tunneling
systems created by the splitting of the ground state en-
ergy in a double-well potential (Fig. 11). The distribu-
tion of the energy barriers are assumed to be broad, and
the states are spatially localized. We offer an alterna-
tive picture based on localized, anharmonic vibrational
modes that can be understood both classically and quan-
tum mechanically. A wide and shallow anharmonic po-
tential (Fig. 11), characterized by low-frequency, nearly-
unstable modes, will have energy levels which are not
equally spaced. These modes arise naturally due to the
amorphous nature of the solid, and do not depend on
specific particle interactions.

Our results have focused solely on the origin of phonon
echoes in glasses, and have not addressed many other
well-known nonlinear acoustic properties in glasses, such
as saturation of attenuation and hole-burning. However,
the existence of these phenomena in glasses may not be
restricted to models that require two-level systems. Past
theoretical results suggest that some universal thermo-
dynamic properties in glasses need only modest assump-
tions about the nature of the low-temperature modes
[65]. More recent results show that universal features
of acoustic attenuation in glasses can be explained by
generic, elastically-coupled resonant modes, and that the
details and origins of the resonant modes are less impor-
tant [15].

Finally, we note that the simulations presented here
were performed on small systems. The detailed prop-
erties of the anharmonic modes at very low-frequencies
have yet to be investigated due to computational lim-
itations on system size. One benefit of using jammed
spheres with finite-ranged repulsions as a model glass is
that there are two limiting regimes to investigate [62].
Although the limit N → ∞ is inaccessible, we can take
the limit ∆φ → 0, bringing the system on the verge of
instability. In this regime it is well known that jammed
systems develop an enormous increase in the density of
states. The fate of these excess modes as the the system
is compressed above ∆φ = 0 provides a starting point
for our understanding of the low-frequency, anharmonic
modes.
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