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Abstract

Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-

wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on

colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of

virus with different length and opposite chirality leads to the formation of rafts — micron-sized

domains of one virus species floating in a background of the other viruses [Sharma et al., Nature

513, 77 (2014)]. In this article we study the interaction of such rafts using liquid crystal elasticity

theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile

for both a single raft and two rafts in a background membrane, and the interaction between two

rafts as a function of their separation. We find that the chiral penetration depth in the background

membrane sets the scale for the range of the interaction. We compare our results with the exper-

imental data and find good agreement for the strength and range of the interaction. Unlike the

experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt

angle at the raft edge.
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I. INTRODUCTION

Placing a system of monodisperse rodlike viruses (e.g. filamentous bacteriophages) in

the presence of a non-adsorbing polymer leads to effective depletion attractions that drive

lateral association of rods. When the rodlike particles are chiral, their lateral interactions

have a preferred twist, causing them to form a variety of fascinating one-rod-length thick

assemblies, including one-dimensional twisted ribbons, braided ribbons, starfish shapes and

membranes with twist domain walls [1–11]. Considerable theoretical effort has been devoted

to modeling and understanding the properties of these self-assemblies (e.g., [4, 5, 7, 9–19]).

Mixing rods of two different lengths yields yet more interesting structures. Sharma et

al. [20] recently studied mixtures of the filamentous bacteriophages fd -Y21M and M13KO7.

The two viruses have the same diameter, but fd -Y21M virus has a contour length of 880 nm

and has right-handed chirality, while M13KO7 has a contour length of 1,200 nm and exhibits

left-handed chirality [6, 21]. Over a broad range of polymer depletant concentrations, the two

rod species co-assemble to form bidisperse membranes (still one-rod-length thick), but the

distributions of the rods within the membrane depend sensitively on polymer concentration.

At low polymer concentrations rods mix homogeneously, while at high concentrations they

undergo macrophase separation. At intermediate polymer concentrations, Sharma et al.

observed equilibrium microphase separation of the two viruses into highly monodisperse

micron-sized colloidal rafts composed of the shorter fd -Y21M virus, floating in a background

membrane composed primarily of the longer M13KO7 viruses.

By manipulating the positions and sizes of rafts with optical tweezers, Sharma et al. [20]

measured the interaction potential between pairs of rafts, which they found to be repulsive

and exponentially decaying with raft edge-edge separation. They suggested a physical mech-

anism for this repulsion, noting that the formation of right-handed rafts in a background

of left-handed rods helps alleviate the frustration that arises from the incompatibility of

chiral twist and membrane layer formation. They provided evidence for this explanation by

measuring the rod tilt angle at the edge of the rafts, and found that the raft interaction

potential for rafts of different sizes collapses on top of each other when rescaled by the tilt

angle at the edge. Furthermore, they found that the range of the interaction is independent

of raft size, while the strength grows linearly with increasing raft size.

In this paper we present quantitative modeling of the physical mechanism suggested by
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Sharma et al., focusing on the role of liquid crystal director elasticity in the interaction

of chiral rafts. We do not address the formation or optimal size of the rafts. We assume

that rafts of a particular size have formed (either naturally or via manipulation by optical

tweezers), and determine the tilt angle in their interiors and the intervening background

membrane, by numerically minimizing the Frank elastic energy. We then compute the inter-

action between the rafts by comparing the free energy of the system (rafts plus background

membrane) with a reference system in which the rafts are far apart and noninteracting. Our

tilt angle profiles support the physical mechanism for the repulsive raft interaction suggested

by Sharma et al. [20]. The theory allows prediction of how the strength of the raft inter-

action potential depends on a number of experimentally controllable parameters, such as

raft size, the magnitude of chiral twist and elastic moduli for raft or background rods. We

find that the twist penetration depth in the background membrane sets the characteristic

decay length of the the raft interaction. Thus, as observed in the experiments, we find that

the decay length is independent of raft diameter. Also in agreement with experiment, we

find that the strength of the raft interaction increases with increasing raft diameter. One

discrepancy between theory and experiments is that experimentally measured interaction

potentials for different-sized rafts collapse into a single curve when rescaled by the tilt angle

at the raft edge [20]; our theoretical curves come closer together upon rescaling but do not

fully collapse.

The mediation of the raft interaction by the background director field is an example of

a more general phenomenon of membrane-mediated interactions between membrane inclu-

sions, of which there are examples in liquid crystal systems [22–25], models of embedded

proteins in biological membranes [26, 27] and lipid rafts in cell membranes [28, 29]. The

bidisperse filamentous bacteriophage experiments established a highly controllable experi-

mental platform with which to measure such membrane-mediated interactions. Our theory

provides a means to probe the physical mechanisms underlying these measurements.

This paper is organized as follows. In the next section we describe the director free

energy model used in our analysis, and our numerical method for its minimization. In

Sec. III we first present the predicted tilt angle profile of a single raft in a background

membrane of opposite chirality, followed by the tilt angle profiles and interaction potential

for two such rafts. We compare our results with the experimental data of Ref. [20]. Sec. IV

offers concluding remarks. The appendices contain technical details of the discretization of
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the free energy and a calculation of the tilt angle at the interface between two semi-infinite

membranes of different chirality.

II. FREE ENERGY AND ITS MINIMIZATION

We consider a single, flat smectic layer of chiral fd viruses whose long axes are specified

by a director field n̂. The de Gennes free energy density for this system in the single Frank

constant approximation is given by [30]:

fn =
1

2
K[(∇ · n̂)2 − 2qn̂ · (∇× n̂) + (∇× n̂)2 + q2] +

1

2
C sin2 θ. (1)

where K is the Frank elastic constant, q is the chirality, θ is the tilt angle of the director

with respect to the membrane normal and C is the tilt energy modulus. The term (∇× n̂)2

is the sum of bend and twist energy densities. Director twist is expelled from the interior

of the membrane, but can penetrate near the edges over a distance λ =
√

K/C, the twist

penetration depth [30]. To model virus mixtures we will allow q and C to depend on position,

taking on values qr and Cr in the rafts and qb and Cb in the background membrane. The

three dimensional molecular director field n̂ can be expressed in terms of θ and ϕ (the

azimuthal angle in the plane of the membrane) by:

n̂ = (nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ). (2)

With the membrane normal chosen along the z axis, fn is given by:
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K
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(

cosϕ
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∂x
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)]

+
C

2
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We discretize the free energy density (see Appendix A for details) and then use the

Newton-Gauss-Seidel method [32] to minimize its value. The Newton-Gauss-Seidel method

is specified by [33]:

θnew(x, y) = θold(x, y)−
δfn/δθ(x, y)

“δ2fn/δ2θ(x, y)”
(4)

ϕnew(x, y) = ϕold(x, y)−
δfn/δϕ(x, y)

“δ2fn/δ2ϕ(x, y)”
(5)
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where “δ2fn/δ
2θ(x, y)” is calculated as the derivative of δfn/δθ(x, y) with respect to θ(x, y)

at a grid point (x, y) and similarly for ϕ. The quotation marks indicate that these derivatives

are not the discretized form of a real second-order functional derivative, which would involve

a delta function [33]. The iteration is repeated until the change in the total free energy of

the system is less than one part in 107.

We consider a grid of points in a square box of side L = 60 (measured in units of the twist

penetration depth λ) with periodic boundary conditions. The box is meant to represent a

small portion of the membrane far from its edge. The initial spacing between neighboring

grid points is 0.5, yielding a grid of 120 × 120 points. Within this box we place two rafts,

defined as discrete circular areas of radius R. For grid points lying inside the rafts q = qr,

while for points outside q = qb, where qr and qb have opposite signs and possibly different

magnitudes. We initialize the director at each grid point in the box as a small random

fluctuation about the z axis and relax the system using Eq. (5). After a few thousand steps

(each step being a loop over all grid points), the grid close to the edges of the rafts is refined

by adaptive mesh refinement [34]. Figure 1 shows a simple example of mesh refinement

applied to a single raft. After the system equilibrates, the interaction potential (measured

in units of K) between the two rafts is extracted by comparing the total free energy of the

system with that of a reference system where the two rafts are far enough apart that no

significant interaction exists.

III. RESULTS

A. Single raft

We first investigate a single raft of radius R with chirality equal in magnitude and opposite

in sign to the surrounding background, i.e., qb = −qr = q. We assume that the tilt modulus

C has the same value within the raft and the background membrane, i.e., Cr = Cb; thus,

the penetration depth λ =
√

K/C has a common value as well. For simplicity we assume

that the sign of the chirality changes abruptly at the edge of the raft; we consider other

chirality profiles when we study two rafts. Figure 2 shows the tilt angle θ0 at the raft

boundary as a function of R (measured in units of λ). We have chosen q = 0.71, the value

used in Ref. [16], where circular membranes bounded by the polymer depletant solution
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FIG. 1. Illustration of mesh refinement for a single raft of radius 4 centered at (10,10). A much

finer grid was utilized in obtaining our results.

were studied by numerically solving the Euler-Lagrange equation for fn. In that case the

relevant boundary conditions were zero tilt at the center of the membrane and zero director

torque at the edge. From the figure we see that, in the case of the raft surrounded by a

chiral membrane of opposite chirality, the value of θ0 is larger than in similarly sized circular

membranes surrounded by depletant [16], although this difference decreases as R increases.

This decrease at large R is consistent with an analytic calculation (see Appendix B) of θ0

at the interface between two semi-infinite membranes of equal and opposite chirality. This

calculation yields the same value for θ0 as found in Ref. [7] for a semi-infinite membrane

bounded by a polymer depletant with zero director torque at the boundary.

Figure 3 shows the tilt angle θ through a cross section of the raft and background mem-

brane. In the figure we compare our results to those obtained in Ref. [16] for circular

membranes surrounded by depletant. From the figure we see that as R increases, the θ

profile for the raft becomes more symmetric about the edge of the raft and is almost per-

fectly symmetric once R & 5 and θ decays nearly to zero at the center of the raft. This

approximate critical value of R was also noted in Ref. [16] for the tilt profile in isolated

circular membranes. From the figure we also see how the system accommodates the oppo-

site chiralities of the raft and background. Starting from the center of the raft and moving

outward, the tilt angle grows, following the twist preferred by the raft rods, until reaching
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FIG. 2. Tilt angle θ0 (stars) at the edge of a single raft as a function of the raft radius R (measured

in units of λ) with q = 0.71 in a background membrane with chirality equal in magnitude and

opposite in sign. The solid circles are the corresponding tilt angle values from Ref. [16] for circular

membranes surrounded by depletant.

the edge of the raft. As one moves into the background membrane where the viruses have

opposite chirality, the rods twist in the opposite sense and the tilt angle decreases.

To check the accuracy of our model, we computed θ0, the tilt angle at the edge of the

raft, for different mesh sizes. Our results are shown in Figure 4, where the horizontal axis

shows the smallest mesh size at each refinement level, and the value of θ0 is taken as an

indicator of the influence of refinement levels. The initial coarse mesh size is 0.5. Three

different raft sizes were tested, and the result shows that θ0 converges at the same rate for all

three raft sizes as the mesh size is decreased, which indicates that our method is numerically

consistent.

B. Two rafts

We now consider the more complex and interesting situation of two rafts composed of

rods of the same chirality fixed in a background membrane of opposite (but not necessarily

equal) chirality. We relax the constraints λb = λr (i.e., Cb = Cr) and |qb| = |qr| so that

we can explore the parameter space more fully, and compare our results with data from the

experiments [20]. As in the case of a single raft, we use adaptive mesh refinement near the

edges of the rafts, and compute the tilt angle and raft interaction potential as functions of

the edge-to-edge separation D of the rafts measured in units of λb (we explain below why
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FIG. 3. Tilt angle θ (solid line) in a single raft surrounded by a background membrane of equal and

opposite chirality (q = 0.71) as a function of the x coordinate (units of λ) measured from the center

of the raft. The values of θ are compared with the results (dashed curve) found in Ref. [16] for

circular membranes surrounded by depletant. The centers of the raft and the circular membrane

are both located at the origin. The vertical dashed-dotted line denotes the edge of the raft and

circular membrane.
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FIG. 4. Dependence of θ0, the tilt angle at the raft edge, on mesh refinement h with q = 0.71 for

four different values of raft radius (measured in units of λ). The horizontal axis is the finest mesh

size level (i.e., near the raft edge), measured in units of λ.
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we choose to measure lengths in units of λb rather than λr). Figure 5 shows grayscale plots

for the tilt angle computed by minimizing fn for two rafts of radius R = 4 at several values

of D for the case λb = λr. The lightest rings in the figure (corresponding to the maximum

value of θ) occur near the edges of the rafts. The figure illustrates the origin of the repulsive

force between rafts already discussed in Ref. [20]. When the rafts are far apart (Figs. 5 c,

d), the regions of maximum θ are full circles centered on the raft centers. As in the case of

a single raft (see Fig. 3), starting from the center of one of the rafts and moving radially

outward, the tilt angle grows until reaching the edge of the raft, then decreases as one moves

into the background membrane where the viruses have opposite chirality. As the second

raft is approached, the tilt angle begins to grow again until it reaches the edge of the raft,

subsequently decreasing as one enters the raft interior. Thus, the preferred chiral twist in

both the rafts and the background near their interfaces is satisfied. However, when the edges

of the rafts are separated by a distance less than 2λb the preferred twist is no longer fully

satisfied, as indicated in Figs. 5a, b.

1. Dependence of the interaction strength on control parameters

The above discussion suggests that the characteristic length scale of the raft interaction

is λb, the twist penetration depth in the background membrane. We confirm this assertion

by comparing the interaction as a function of the raft separation in units of λr and in units

of λb . Figures 6a and 6c show the raft interaction measured in units of λr. In Fig. 6a the

values of λr and R are held fixed while λb is varied; in Fig. 6c the value of λb is held fixed

while λr and R are varied (such that λrR is held fixed). Figures 6b and 6d show the raft

interaction measured in units of λb . In Fig. 6b the value of λr is held fixed while λb and

R are varied (such that λbR is held fixed); in Fig. 6d the values of λb and R are held fixed

while λr is varied. All other parameters are kept fixed. From Figs. 6b and 6d we can see

clearly that the interaction curves for rafts of different radii and values of λr collapse when

we measure lengths in units of λb.

Given that the raft interaction is mediated by the twist in the intervening background,

we expect the range of the interaction to be determined by the distance over which the tilt

angle in the background is appreciably larger than zero. As we saw in Fig. 3 this distance

is approximately 5 (in units of λb), and we see from Figs. 6b and 6d that the interaction
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FIG. 5. Tilt angle θ profile for a system of two rafts with radius R = 5 and qb = −qr = 0.71, for

four values of the edge-to-edge separation D of the rafts (which is given by their center-to-center

separation minus the raft diameter). The value of θ is indicated by the grayscale bar to the right

of each figure. Here we choose λr = λb = λ and measure lengths in units of λ. The figure shows a

portion of the total system, which is a square of side L = 60. The maximum tilt angle θ0 occurs

at the edge of the rafts. (a) D = 0, (b) D = 1, (c) D = 2, (d) D = 4.

potential φ has dropped by an order of magnitude when D ≈ 5λb.

Since the interaction range is determined by λb, we keep λb = 1 throughout the following

analysis and consider the dependence of the interaction strength on qb, qr, Cr and R. Figure

7 shows the effects of these parameters on the raft interaction, by plotting on a semi-log

scale the raft interaction as a function of D. In each case, the data is fit to an exponential

form with decay length 1 (in units of λb). We see that all of these parameters have very

little effect on the decay length, supporting the assertion made above that λb determines

the range of the interaction. From the figure we see that increasing the values of qb, |qr|

or R increases the strength of the interaction, while increasing the value of Cr decreases
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FIG. 6. Raft interaction potential φ (units of kBT ) as a function of edge-to-edge separation. (a)

and (b): λr = 0.5, R = 3λr; in (a) all lengths are in units of λr, in (b) all lengths are in units of

λb; (c) and (d): λb = 0.5, R = 3λb; in (c) all lengths are in units of λr; in (d) all lengths are in

units of λb. Note the collapse of the curves in (b) and (d) where the unit of length is λb.

the strength. This result is readily understood in physical terms: increasing qb or |qr| leads

to a larger value of the tilt angle at the raft edge, increasing R leads to a greater area of

overlapped twisted domains for a given edge-to-edge distance, while increasing Cr leads to

a smaller value of the tilt angle at the raft edge.

In Sec. IIIA we assumed that the chirality jumped discontinuously from qr to qb at the

raft edge. In studying the interaction between two rafts, we have also considered a linear

chirality profile of width 2Ltran centered on the edge of the raft, exploring five values of

Ltran/R (Fig. 8). We find that the interaction is insensitive to the value of Ltran/R except
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FIG. 7. Dependence of raft interaction φ (units of kBT ) on qb, qr, Cr and R. All lengths are

measured in units of λb and Cb = 4. The exponential expressions in the legend are fits to the

data. (a) qr = −0.355, λr = 1.333, R = 2.231. b) qb = 2, λr = 1.333, R = 2.231. c) qr = −1.42,

qb = 1.42, R = 2.231. d) qr = −1.42, qb = 1.42, λr = 1.333.

at large raft separations, D & 7. In figs. 6, 7 and 10 we have set Ltran/R = 0.045. We have

also considered the effect of the chirality profile on the tilt angle. Figure 9 shows that the

tilt angle at the edge of the raft changes by more than 15% as Ltran is varied, a surprising

result given the insensitivity of the raft interaction potential to the width of the chirality

transition.

Our results are based on the one elastic constant approximation to the director free

energy, Eq. (1). Small differences among the elastic constants should not have a significant

effect on our results. However, increasing the twist elastic constant will reduce the value

of the tilt angle at the raft edge and also increase the strength of the interaction between
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FIG. 8. Raft interaction potential φ (units of kBT ) of two rafts of radius R = 2.231 (units of

λb) for five different linear chirality profiles where the chirality varies linearly from qr = 1.42 to

qb = −1.42 over a distance 2Ltran centered on the edge of the raft. Here Cr = 2.25 and Cb = 4.0.

.

the rafts as it is primarily a twist deformation that mediates the interaction. We have also

assumed that any interfacial energy between the raft and background membrane does not

depend on the director orientation at the interface and thus would not contribute to the

Frank energy. However, the edges of isolated virus membranes have been observed to be

rounded over [3], i.e., the director tilts by 90◦. One could then imagine that there exists an

interfacial energy favoring director tilt, leading to a raft edge tilt angle greater than that

found in our present theory which assumes only chirality-induced tilt. A greater tilt angle

would in turn yield a stronger interaction between the rafts as the twist deformation would

be larger.

2. Comparison with experiments

To compare our theoretical results with the experimental data of Ref. [20], we convert

our units to physical units using λb = 0.65µm and K = 125kBT [20]. The comparison is

shown in Fig. 10, where we plot the potential φ as a function of D. Since in the experiments

the background rods show stronger chirality and a shorter penetration depth than raft rods,

we set |qb| > |qr| and λr > λb, and chose values by eye that provided the best fit. The

theoretical results show reasonable agreement with the data. While there is at present not
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In each case qr = 1.42, qb = −1.42, Cr = 2.25 and Cb = 4.0.
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FIG. 10. Comparison of theoretical results for the raft interaction potential φ (symbols) with

experimental data (lines) [20]. Here, qr = −1.42, qb = 2, λr = 1.33λb, chosen by eye to provide the

best fit. Theoretical units were converted to physical units using λb = 0.65µm, K = 125kBT .

sufficient data to stringently test the validity of a fit with three parameters, the ability of

the theory to predict the functional form of the interaction profile and the trend of the

interaction strength with varying R is insensitive to the adjustable parameter values.

A discrepancy between theory and experiment is that rescaling the experimentally mea-

sured interaction potentials by the maximum tilt angle θ0 collapses the results onto a single
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curve [20], whereas rescaling the theoretical interaction potentials in this manner brings

the curves closer together but does not result in collapse. However, we note that the the-

oretical prediction of the boundary tilt angle is sensitive to the imposed chirality profile

(Fig. 9). Moreover, since the experimental twist penetration length (over which most of the

twist variation occurs) is on the order of the diffraction limit, it is not clear whether the

theoretical value of θ0 can be directly mapped onto the experimental value. Thus, more

information about the structure of the experimental raft edges may be required to address

this discrepancy.

IV. CONCLUSIONS

Motivated by experiments [20] on colloidal membranes exhibiting chiral rafts floating

in a background membrane, we have theoretically studied the director-mediated interaction

between two such rafts. We numerically minimized the Frank free energy in the single elastic

constant approximation on a two-dimensional mesh using the Newton-Gauss-Seidel method

with adaptive mesh refinement near the raft edges. We computed the interaction between

the rafts by comparing the free energy of the system (rafts plus background membrane) with

a reference system in which the rafts are far apart and noninteracting. In agreement with

the interpretation suggested in Ref. [20], we found that the characteristic length scale of the

interaction is the chiral penetration depth of the background membrane. In particular, an

isolated chiral raft in a background of rods with opposite chirality is stabilized by twisting

of the background rods. The decay of this twist with distance from the raft is set by the

membrane chiral penetration depth. Juxtaposing two rafts with an edge-to-edge separation

less than twice the background penetration depth perturbs the preferred chiral twist in

the background membrane between them, leading to a repulsive interaction. As in the

experiments, we found that the strength of the raft interaction increases with increasing

raft diameter. One discrepancy between our theory and the experiments is that Sharma et

al. [20] found that rescaling the interaction by the tilt angle at the edge of a raft collapses

the results for different sized rafts on to a single curve. Our theoretical curves come closer

together upon rescaling, but do not fully collapse. We also note that our theory, based on a

director-mediated interaction between the rafts, will always produce a repulsive interaction

and cannot explain the observation of Sharma et al. [20] that liquid bridges form between
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rafts at high depletant and ionic strength concentrations.

Appendix A: Discretizing the free energy

We discretize fn, Eq. (3), on a square grid using the finite difference method for first

and second order partial derivatives of θ and ϕ with respect to x and y. We consider

three neighboring points along a coordinate direction to evaluate derivatives at the central

point. We use the symmetric derivative approximation to the first derivative and the central

difference approximation to the second derivative. However, because of the periodicity of θ

and ϕ and the equivalence of n̂ and −n̂, some care is required as we now discuss.

Let n̂1, n̂ and n̂2 be directors at three neighboring grid points A, B and C located from

left to right on the x axis and we wish to evaluate the derivatives at the central point B. For

a fixed value of the central director n̂, four possible rotations may occur for the three points:

(1) n̂1 to n̂ to n̂2, (2) −n̂1 to n̂ to n̂2, (3) n̂1 to n̂ to −n̂2, (4) −n̂1 to n̂ to −n̂2. Among

the four, we select the one that minimizes the total rotation angle per unit distance and

thus the Frank energy. For example, for candidate (1), we compute the angle α between n̂1

and n̂, and the angle β between n̂ and n̂2. Then the total rotation angle per unit distance

equals α/AB+β/BC, where AB, BC are the distances between the neighboring grid points

(these distances may not be equal due to mesh refinement). The director −n̂ corresponds

to θ → π − θ, ϕ → ϕ + π. Then we get the derivatives for θ directly by finite difference

method. For ϕ, we need to consider ϕ+ 2π and ϕ− 2π as well, and we select the candidate

which minimizes the sum of the first and second order derivatives.

Appendix B: Tilt angle at interface between two semi-infinite membranes of differ-

ent chiraility

In this appendix we calculate exactly the value of the director tilt angle at the interface

between two semi-infinite membranes of different chirality. If the membranes have equal and

opposite chirality we find that the tilt angle has the same value as when a single semi-infinite

membrane is bounded by a polymer depletant and zero director torque is assumed at the

interface [7].

We consider two semi-infinite membranes lying in the x − y plane and in contact along
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the y axis. The membrane in the x > 0 half-plane has chirality q1 > 0, while the one in the

x < 0 half-plane has chirality q2 < 0. The symmetry of the semi-infinite geometry dictates

that the director tilts by an angle θ in the y direction only and the free energy density fn

(Eq. (3)) simplifies to:

fn =
K

2

(

dθ

dx
− q(x)

)2

+
C

2
sin2 θ, (B1)

where the local chirality q(x) is specified above. The corresponding Euler-Lagrange equation

is given by:

λ2 d
2θ

dx2
− λ2 dq

dx
− sin 2θ = 0, (B2)

with λ =
√

K/C. For the assumed discontinuous jump in the chirality we have:

dq

dx
= (q1 + |q2|)δ(x). (B3)

Integrating Eq. (B2) from x = −ǫ to x = ǫ we find in the limit ǫ → 0:

dθ

dx

∣

∣

∣

∣

ǫ

−ǫ

= q1 + |q2|. (B4)

The first integral of the Euler-Lagrange equation is given by:

λ
dθ

dx
= ± sin θ, (B5)

where the upper and lower signs correspond to x > 0 and x < 0, respectively. Combining

Eqs.(B4) and (B5) we obtain in the limit ǫ → 0:

sin θ(0) =
λ

2
(q1 + |q2|), (B6)

where we have assumed that θ is continuous at the interface, x = 0. From Eq. (B6) we see

that if q1 = −q2 = q then sin θ(0) = λq which is identical to the result found in Ref. [7] for

a semi-infinite membrane bounded by a polymer depletant imposing zero director torque at

the interface.
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