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We report on the collapse of bubble rafts under compression in a closed rectangular geometry.
A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when
bubbles submerge beneath the neighboring bubbles under compression, causing the structure of the
bubble raft to go from single-layer to multi-layer. We studied the collapse dynamics as a function
of compression velocity. At higher compression velocity we observe a more uniform distribution
of collapse events, whereas at lower compression velocities the collapse events accumulate at the
system boundaries. We propose that this system can be understood in terms of a linear elastic
sheet coupled to a local internal (Ising) degree of freedom. The two internal states, which represent
one bubble layer versus two, couple to the elasticity of the sheet by locally changing the reference
state of the material. By exploring the collapse dynamics of the bubble raft, one may address the
basic nonlinear mechanics of a number of complex systems in which elastic stress is coupled to local
internal variables.

PACS numbers:

I. INTRODUCTION

There are a number of soft matter systems exhibiting
highly nonlinear elasticity, at least in part due to the com-
plex interplay of elasticity and internal state variables.
Some examples include colloidal crystals and worm-like
micellar solutions, which exhibit banding [1, 2] under ap-
plied shear stress, monolayers and membranes that form
localized folds [3] under compression, and biopolymers
such as DNA [4–8] or alpha-helical polypeptides [9, 10]
that can kink (and locally melt) under torque. There
are significantly more complex many-body systems that
generate nonlinear responses to applied stress via the
adaptation of the internal dynamics of the constituent
elements in response to applied stress. In many cases
these internal dynamics are poorly understood, but for
the purposes of elucidating their collective mechanical re-
sponse, these internal states may be reduced to one of a
small number of states. For example, in studies of tis-
sue dynamics, the rate of cell division in tissues appears
to depend on applied stress [11, 12], and this mechani-
cal nonlinearity has been suggested to play a key role in
the pattern formation [13] in tissues, the development of
flowers [14], and the invasion of tumors into surrounding
healthy tissue [12, 15].

A minimal description of these complex systems can
be formed in terms of an elastic manifold coupled to a
discrete internal variable that determines elastic prop-
erties in at least one of two distinct ways. In the first
case, the state of elastic stress causes local transitions
in the material’s elastic constants; for example, in shear
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banding and biopolymer kinking, the material’s elastic
constants locally transition from a stiff state to a less
stiff one. To be more precise in the case of polypeptides,
bending can disrupt local hydrogen bonding in the helix,
and in DNA may induce local melting, which corresponds
to the breakdown of the base-pairing interaction. These
changes in internal molecular configurations affect the
local bending modulus of the biopolymer. For example,
local DNA melting decreases the bending modulus by a
factor of about fifty. Because the transition is to a softer
state of the elastic body at the expense of increasing the
local free energy of the chain, the system trades elastic
strain energy for locally increasing its internal free en-
ergy. This leads to a nonlinear strain softening of the
elastic body driven by the creation of localized “defects”
of the softer, but thermodynamically disfavored internal
configuration. Such effects have been explored using a
simple model – the helix-coil worm-like chain [9, 10]; we
refer to this nonlinear coupling between elasticity and
internal state variables as a type I coupling.
In contrast, the underlying elastic reference state, i.e.,

the state of zero strain, can itself evolve by e.g., cell divi-
sion in a tissue. When that local rate of cell division itself
depends on the state of stress, even a tissue in the linear
elastic regime can exhibit complex, nonlinear responses
to applied stress. There is also an inorganic example to
be found in CeO2 thin films with nanoscale pores, devel-
oped for use as supercapacitors [16]. In such materials,
charge storage occurs through the absorption of Li ions,
which lead to a local expansion of the pores, changing
the elastic reference state of the material. We refer to
these systems as having a type II coupling, and they will
be the focus of the current studies using bubble rafts.
There is a long history in condensed matter physics of

using bubble rafts as models of atomic solids. By tak-
ing advantage of the ∼ 107 increase in scale between
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bubbles and atoms, one may more easily visualize fea-
tures such as the motion of topological defects in crys-
tals [17, 18], stress relaxation [19] and shear-banding in
disordered materials [21–23]. In this article we propose
that bubble rafts may also be used to explore the inter-
play of elasticity and local internal variables that control
the elastic reference state. This class of problems is of
particular interest with regard to modern studies of tissue
growth and morphology. We perform experiments on the
compression of a disordered elastic solid composed of a
monolayer of bubbles at the air/water interface. The to-
tal number of bubbles is essentially fixed over the time of
a typical experiment. But, under sufficient compression,
this system stochastically forms local regions of double
bubble layers, the second layer being submerged under
the one at the surface. The doubling of the layer can
be treated as an elementary example of a discrete (two-
state or Ising) variable coupled to stress in the effectively
two-dimensional elastic manifold of the interfacial bubble
layer. Because the submerged bubble layer does not form
a continuous, stress-bearing network, the local transition
between the single and double layer can be represented
as a local discrete change in the elastic reference state –
the material jumps between a lower density (single layer)
and higher density (double layer) state. Thus the bub-
ble layer is a simple model of a two-dimensional elastic
manifold with type II interactions, using the terminology
introduced above.

In this case, the simple advantage of scale is less pro-
nounced because the bubbles are typically only one hun-
dred times larger than cells, but there are other advan-
tages stemming from the simplicity of the bubble raft. By
eliminating the biological complexity of the tissue, such
as chemical signaling and the active generation of internal
stresses, the bubble raft system allows one to develop and
test fundamental models of type II nonlinear elasticity.
The bubble raft also provides experimental advantages
in terms of time scale. The collapse dynamics we study
occurs on time scales of one to one thousand seconds, and
is thus slow enough to be amenable to video tracking but
fast enough to run multiple experiments rapidly. We be-
lieve there are direct applications of these results to more
complex systems including tissue growth and membrane
or monolayer folding.

We report on experiments exploring the collapse dy-
namics in a disordered bubble raft in a closed rectangular
geometry, focusing specifically on determining the spatial
probability distribution for double layer formation as a
function of compression speed. The rate-dependence of
the single- to double-layer transition demonstrates the
fundamentally nonequilibrium nature of the dynamics.
From a simple analysis of the compression modulus of
the bubble raft and its viscous flow over the aqueous
subphase, it is clear that the elastic compression mechan-
ically equilibrates rapidly on experimental time scales.
The single layer/double layer variable, however, is slow.
It falls out of equilibrium, trapping the system temporar-
ily in higher energy metastable states, which then slowly

relax through the formation of double layer domains.
We also propose a general model to describe the elas-

ticity of any linear elastic solid in which the strain-free
state of the material can discontinuously switch between
two states – a type II elastic nonlinearity. We explore
an elementary, one-dimensional example of this model to
study the nonequilibrium dynamics of double layer do-
main growth in the compressed system, using Glauber
spin dynamics to account for the single-to-double layer
transitions. The predictions of the model for the spatial
probability distribution of such transitions as a function
of compression speed are then compared to experiments
The remainder of the article is organized as follows.

In section II we detail the bubble raft collapse experi-
ments, and demonstrate the stochastic double-layer for-
mation kinetics under compression in section III. In sec-
tion IV, we develop the minimal model of this type II
nonlinear elasticity using an Ising variable representing
the single layer/double layer degree of freedom, coupled
to the linearly elastic bubble layer. We then explore a
one-dimensional example of this model. In our discus-
sion, we compare the model predictions to our experi-
ments, discuss open questions, and propose future work.

II. EXPERIMENTAL DETAILS

The bubble raft was prepared by flowing compressed
nitrogen through a needle under the bubble solution. The
bubble solution contains 15% of glycerol, 5% Miracle
Bubble, and 20% deionized water. The focus of this study
is the amorphous system composed of bubbles with radii
in the range of 0.3 mm to 0.5 mm. These polydisperse
bubble rafts were created by oscillating the needle during
bubble formation, generating small variations in bubble
size. The initial state is a contiguous array of bubbles
that fill the trough surface, forming a continuous elastic
sheet. Before compression, the typical gas-area packing
fraction for our bubble raft (i.e., the fraction of the bub-
ble raft area taken up by the bubbles) is ≈ 0.86. Details
of the bubble raft preparation can be found in our pre-
vious work [28].
The experimental setup is shown in Fig. 1. The ini-

tial bubble raft size is described as L×W0 for its initial
length and width, respectively. We considered two differ-
ent initial geometries for the bubble raft: 8cm×6cm and
8cm × 10cm. This allowed for an initial test of system
size and/or aspect ratio effects. No obvious impact of sys-
tems size or aspect ratio was observed, and the results
presented here all are from the 8 cm× 10 cm system.
The focus of the study was on the impact of the com-

pression velocity on the probability of double layer for-
mation. Compression of the bubble raft was achieved
through two movable barriers that were controlled by a
single stepper motor. The bubble rafts were compressed
at a constant velocity, which ranged from 1×10−4 mm/s
to 1 × 102 mm/s. The compressive strain in our experi-
ment is defined as L0−L

L0

= ∆L/L, where L0 is the initial
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FIG. 1: (color online) (a) A schematic of the experimental
setup and the geometry for the bubble raft. We applied
the compressive strain by moving the barriers towards to the
center. (b) A typical image of the compressed bubble raft.
Darker areas show doubling of the bubble monolayer and ∆X
indicates distances measured from the center line of the sys-
tem.

raft length.
Bubble raft collapse images were recorded by a CCD

camera with a maximum frame rate of 30 s−1. Over
the observable timescales, the stepper motor reaches its
steady-state velocity essentially instantaneously. The
bubbles also reach their terminal velocity very rapidly
on these timescales. One can make a simple estimate of
this time from the ratio of the Stokes drag on the bubble
to its mass. We estimate the bubble’s mass to be 4πa2tρ
(where t is the thickness of the bubble, ≈ 10−4cm and
ρ is the density of water), to arrive at a bubble mass of
∼ 10−6g. We also estimate the Stokes drag on a bub-
ble of radius a and velocity v to be ≈ ηav, where η is
the dynamical viscosity of water. Thus, we find the time
for the bubble to accelerate to its terminal velocity is on
the order of 10−3 s, which is not observable at our cur-
rent frame rates. Consequently, we do not observe the
acceleration of bubbles or any dynamical transients asso-

FIG. 2: Typical images of amorphous bubble raft under
compression at the same amount of the compressive strain
(∼ 0.66) with different compression velocities. (a)(b)are im-
ages with the compression velocity of 0.0086 mm/s and 8.6
mm/s. The initial size is 8 cm × 10 cm and the average bub-
ble radius is 0.4 mm for both sets of experiment. The scale
bars in images are 2 cm. A comparison of these images il-
lustrates the increased nucleation rate of double layers in the
middle of the raft when it is compressed at higher rates.

ciated with the acceleration of the barriers. In addition,
bubble coarsening does not occur over the time scales of
two hours in our experiment, consistent with previous
studies [29].
We used MATLAB to perform image processing and

analysis. With appropriate lighting and thresh-holding of
images, the single and double layers were distinguished
by their difference in overall brightness. These intensity
variations were used to identify collapse events.

III. EXPERIMENTAL RESULTS

Figure 2 illustrates the qualitative difference between
the collapse dynamics of amorphous bubble rafts at slow
(a, left) and fast (b, right) compression velocities. The
compression velocity of Fig. 2(a)(b) are 0.0086 and 8.6
mm/s, respectively. Both cases had the same initial size
of 8 cm × 10 cm. To compare the collapse distribution at
different compression velocities, we consider of equal the
raft at equal values of compressive strain (∆L/L0). The
images in Fig. 2(a) and (b) were both made at a com-
pressive strain of ∼ 0.66. For the system with the higher
compression velocity, the collapse events are uniformly
distributed throughout the raft; whereas for the slower
speed, nucleation of multiple layers near the boundary
dominate the dynamics. Also, the overall density of col-
lapse events appears to be greater for the faster speeds.
We also examined monodisperse bubble rafts with

poly-crystalline structure. Here we focus on the amor-
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phous bubble rafts as this provides a simpler elastic sys-
tem. The more ordered, monodisperse bubble rafts, ex-
hibited double layer growth that propagated along partic-
ular crystallographic axes. We will consider this behavior
in detail in future work.

To study the effect of compression velocity on the nu-
cleation dynamics, we focus on the formation of double
layers. As discussed above, double layers are identified
using the different intensity levels for the single- versus
double-layer regions. Using this analysis, we also observe
multilayer regions (greater than two) near the bound-
aries. The penetration length of higher order multi-layers
ranged from ≈ 3 mm to 1 cm over the course of compres-
sion. We avoid taking data on this boundary regime by
focussing on the central region of the trough, where only
single and double layers are observed.

The formation of the double layer regions is a stochas-
tic event so that the precise trajectory of double-layer
formation is irreproducible. Given the macroscopic en-
ergies involved in the transition from single to double
layer, the underlying source of stochasticity is nonther-
mal. Multiple experiments, however, allow one to build
up the probability density of collapse events (i.e., the
transition from a single to a double layer) as a function
of both space and time. We compute the probability of
a collapse event occurring a fixed distance away from the
compression barrier using the following procedure (that
is shown schematically in Fig. 1). We assume that the
probability of a collapse event is homogeneous along the
direction parallel to the barriers. Thus, we may average
the fraction of single layer in vertical slices taken parallel
to the barriers to obtain this probability. The position
of the vertical slices is defined relative to the center of
the trough - so that the zero position is fixed and posi-
tions left of center are negative. It will prove convenient
when discussing the comparison between these experi-
ments and our theory to convert the measured double-
layer probability Pi into “spin” variable via si = 2Pi− 1.
Thus, −1 < s < +1 corresponding to double layer proba-
bilities running from 0 to 1. In order to compare the dy-
namics at different compression rates, we used the com-
pressive strain ∆L/L0 as our measure of “time.” Finally,
due to the decrease in system length, we normalized the
off-center distance by half of the compressed raft length
(2∆x/L).

Typical probability distributions for the formation of
a multilayer are shown for low (0.0086 mm/s), medium
( 0.43 mm/s) and high (8.6 mm/s) compression veloci-
ties in Figs. 3 (a), (b), and (c). The color code, which
runs from s = −1 (red) to s = 1 (yellow), shows the sta-
tistical result for single layer and double layer. In gen-
eral, a high probability of collapse events accumulates
at the boundary and propagates inward for both fast
and slow compression velocities. The growth dynamics of
collapsed raft probability near the center of the trough,
however, are quite distinct for slow and rapid compres-
sion. For slow compression velocity, collapse probability
continuously and gradually propagates inward from the

FIG. 3: The probability of double layer formation expressed
in terms of −1 < s < 1 (red to yellow) as a function of
normalized off-center distance at a fixed total compressive
strain of 0.85. (a), (b), and (c) show results for compression
velocities of 0.0086, 0.43, and 8.6 mm/s respectively.

boundaries towards the center, as shown in Fig. 3(a). In
contrast, at fast compression velocity, the collapse prob-
ability initially propagates continuously inward from the
boundaries, but at a critical strain of ≈ 0.25, the collapse
probability rapidly jumps in the central part of the bub-
ble raft. Upon reaching the compressive strain of 0.55,
the whole surface of the bubble raft is a double (multi-)
layer structure. Thus, the stochastic dynamics of dou-
ble layer formation depends strongly on the compression
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velocity.

IV. THEORY

A. Multilayer raft elasticity

To explore the collapse dynamics theoretically, we con-
sider a simple, one-dimensional model of the bubble
layer [30]. We treat the two-dimensional bubble layer
as elastically equivalent to a one-dimensional array of
Hookean springs with spring constant k. To account
for the change in elastic reference state upon local layer
collapse, each spring selects one of two possible rest
lengths; the longer one corresponds to the single layer
configuration and the shorter to the double layer config-
uration. Thus, when compressed, elastic energy in the
spring chain can be reduced by transitions of some (or
all) springs from the longer to the shorter rest length.
We write the elastic energy of the spring chain

Hel =
k

2

N−1
∑

i=0

[ui+1 − ui +∆(σi)]
2

(1)

in terms of the displacements of the spring ends (nondi-
mensionalized by the bubble radius a) ui. The rest
lengths of the springs depend on a discrete, Ising-type
variable σ, which takes the values −1 and +1 when the
bubble layer is in its expanded single layer or compressed
double-layer configuration, respectively. In other words,
we require that

∆(σ) =

{

∆> σ = +1

∆< σ = −1
, (2)

where, as implied by the notation: ∆> > ∆<. Since the
length ∆> corresponds to two bubble radii 2a, and the
shorter separation corresponds to only one, we expect
that ∆>−∆< = a, although one is not required to make
this assumption in the more general implementation of
the model. We neglect the possibility of triple and higher
order layerings of the bubble raft. While these appear
near the walls in the experiment, they are not observed
in the interior of the bubble layer.
To complete the description of the energetics of a layer

configuration, we include a simple Ising description of the
layer variables σi:

Hs = −J

N−1
∑

i=0

σi+1σi + h

N−1
∑

i=0

σi. (3)

The implications of this description are two-fold. We
assume a “ferromagnetic” coupling J > 0 for the layer
variables, which implies that there is domain wall energy
associated with the transition between single and dou-
ble layers. This results from the fact that bubbles on
the boundary of the double layer necessarily have fewer

contacting bubbles and thus suffer a larger surface energy
cost due to their position. The second term, representing
an applied magnetic field in the standard Ising descrip-
tion allows for a fixed energy cost per area associated
with the formation of a double layer; for each transition:
σi : −1 → +1, the energy of the configuration increases
by 2h. We attribute this term to the (very small) effects
of buoyancy, although the energetic effects of different
packings in the first and second bubble layers cannot be
entirely discounted as contributing to this term as well.
Finally, we expect that h ≪ J for the bubble raft, as
explained in section IVC.
The combination of Eqs. 1, 3 completes our description

of the energetics of the model. Of course, any predic-
tions made regarding the stochastic dynamics of double
layer creation relies not only on the energetics of the sys-
tem, but also on the assumptions regarding the source of
noise in this inherently nonequilibrium system. There are
multiple nonthermal noise sources present including vi-
brations coming from the motor used to change the area
of the bubble raft and other ambient sources of vibra-
tion in the lab. The simplest assumption one can make
is to treat this as Gaussian white noise acting on all of
the degrees of freedom in an uncorrelated manner. This
is equivalent to assuming an effective noise temperature.
In what follows we make this assumption, but suppress
all references to temperature to avoid any confusion with
the thermodynamic temperature of the system. Thus,
the J coupling and the symmetry-breaking field in h in
Eq. 3 are inherently dimensionless quantities.

B. Raft collapse dynamics

To develop a dynamical theory for the system from the
above Hamiltonian, we write overdamped (model A [26])
dynamics for the displacement field

u̇i = −Γ
∂Hel

∂ui

, (4)

based on the assumption that any long range hydrody-
namic interaction is sufficiently screened by the small
depth of the aqueous subphase [27]. We necessarily in-
troduce one new parameter, Γ with dimensions of a mo-
bility. Using Eq. 1 and Eq. 4 we write a set of differential
equations for the displacement variables as

u̇i = kΓ [ui+1 − 2ui + ui−1 +∆(σi − σi−1)] . (5)

The right hand side of the above equation represents the
overdamped (i.e., diffusive) relaxation of density modes
in the bubble layer controlled by the constant kΓ, with di-
mensions of frequency. We justify the use of overdamped
dynamics by appealing to the small mass and large drag
forces on the bubbles; please see the discussion in Section
II.
The second term on the same side of the above equa-

tion couples spin variables to the elastic stresses in the
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bubble layer. To obtain this second term, we have writ-
ten the relation between the elastic reference state the
local spin variable as

∆(σ) =
(∆> +∆<)

2
+ ∆σ, (6)

where the constant ∆ = (∆> − ∆<)/2 measures the
change in the reference state associated with a local tran-
sition between the single and the double layer. The dis-
tinction between Eq. 6 and the original Eq. 2 is imma-
terial as long as σ takes discrete values of ±1. We will,
however, continue to use the linear form of the ∆(σ) when
we replace the discrete spin variable σ with a continuous
one si = 〈σi〉 representing the ensemble average of that
spin variable. We also introduce a simple Glauber-based
first order differential equation to describe the dynam-
ics of the time-dependent average of the spin-like layer
number variable si = 〈σi〉:

τsṡi = −si +
γ

2
(si+1 + si−1)− tanh (heff(t)) [1− γη] .

(7)
This corresponds to selecting a particular nonequilibrium
dynamics for the Ising system based on single stochas-
tic spin flips that do not conserve the total “magnetiza-
tion,” i.e., the amount of the system in single- or in the
double-layer configuration. This sort of spin dynamics
is well-described in the literature – see Ref. [24, 25]. It
represents a truncation of a system of differential equa-
tions representing the dynamics of the nth moment of the
spin distribution 〈σ1 . . . σn〉 in terms of higher moments.
The Glauber dynamics enforces a closure relation at the
second moment and is applicable in the limit of small
applied field h. Fortunately, this limit is appropriate for
the bubble raft system in which the energy difference per
bubble between the single and double layers is small. In
what follows, we will see that this approximation may
break down under large compressive loading, where the
elastic strain energy generates a large effective ordering
field, which dominates over the inherent one h. We re-
turn to this point in the discussion of the results.
In the Glauber approximation, the effect of the local

J coupling that energetically penalizes transitions in the
layer number enters the dynamical equations in terms of
γ = tanh(2J) and η = tanh(J); γ = 2η/(1+η2). Finally,
the function

heff(t) = tanh {h+ k∆ [ui+1(t)− ui(t)]} , (8)

provides the effective “local magnetic field” to which the
spin variables respond. The first term accounts for the
(small) energy difference between the single and double
layer bubble configurations that favors the single-layer
geometry. The second term is the elastic correction that,
under compression, is negative and that drives the local
spin variable from the single-layer (-) to the double-layer
(+) structure. In the standard derivation of Glauber dy-
namics and in our modified one as well, both h and k∆a

FIG. 4: (color online) Time evolution of the probability of
double layer appearance measured in terms of 〈s〉 (where
s = −1 (red),+1 (yellow) corresponds to single and dou-
ble layers respectively) as a function of the distance from
the walls. For slow compression V̄ = 0.1 (top) the double
layer, stabilized by the interaction with the walls smoothly
progresses inward a constant rate. At intermediate compres-
sion rates V̄ = 1 (middle), however, the probability of double-
layer appearance acquires a distinct step, indicating the in-
troduction of a quenched-in domain wall in the layer variable.
At higher compression rates V̄ = 10 the number of these
steps grows until they merge (bottom) and the double layer
grows uniformly. In all cases velocities are given in dimen-
sionless units – see Eq. 14 – , and D = 104, h = 0.1, J = 1.0,
∆̄ = 0.5, and k = 10. The time axis has been rescaled such
that the raft has the same compression at each time point in
all figures ( Time = 1, ∆L/L0 = 0.8 ). As time progresses
(to the right) lengths (vertical axis) are rescaled so that the
remaining width of the raft is fixed to be unity.
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FIG. 5: (color online) Time evolution of the probability of
double layer appearance as a function of the distance from the
walls along the compression direction for a significantly stiffer
layer: D = 104, h = 10−2, ∆̄ = 0.5, and k = 104 for V̄ = 0.1.
For these parameters the system exhibits six distinct steps
during the compression. As the velocity is increased, fewer
but larger steps occur; eventually, the step size reaches the
system size so a single, uniform jump from single to double
layer occurs.

have dimensions of energy. Due to our suppression of the
thermal energy scale in this derivation, the correspond-
ing energy denominator is missing here. We come back
to this point in the next section.
Taken together the first two terms on the right hand

side of Eq. 7 account for spin diffusion induced by that
nearest neighbor coupling and the local exponential re-
laxation to zero of the average si of the microscopic layer
variable σi. Of course, the final term on the right hand
side shifts the time-stationary value of si = S to

S = −e2J tanh [heff ] . (9)

This result is the usual mean-field solution of the Ising
model, at least in the limit of small h, where the Glauber
dynamics assumption is applicable.
If one were to assume that the spin dynamics were

fast, τs ≪ ḣeff/heff , the mean spin variables would sim-
ply track the effective magnetization. The spin dynamics
representing the formation of the double layer would be
slaved to the state of raft compression and independent
of compression rate. The other limit, in which we as-
sume that the spin variables are slow compared to the
rate at which the elastic variables relax, however, frees
the double layer formation to follow its own dynamics in
a manner that depends on the compression rate of the
raft. This latter case is also reasonable since the forma-
tion of the double layer is slow, relying on rare stochastic
events. The elastic relaxation of the bubble raft, on the
other hand, is rapid. It occurs on time scales associated
with the diffusive relaxation of compression in the elas-
tic network of bubbles coupled to the viscous subphase.
Consequently, we explore the nonequilibrium dynamics

of the coupled elastic and spin system, where the transi-
tions between spin up and spin down are slow in order to
address the formation of particular transient structures
obtained in the experiments as a function of compression

rate.
To explore the dynamics of the coupled system of spins

and elastic displacement variables, we numerically solve
Eqs. 4 and 5, but replacing the stochastic spin variables
σi by their ensemble average si to close the set of dy-
namical equations. These equations are solved subject to
boundary conditions such that the bubble layer is con-
tained to move with a given velocity at the boundaries

u1(t) = −uN(t) = vt, (10)

and that the system starts with a double layer at the
boundary

s1 = sN = +1, (11)

due to the favorable bubble-wall interaction. To compare
our results to experiment, we note that the probability of
observing a double layer at i is related to the mean-field
spin variable by Pi = (si + 1)/2. Thus, our solutions for
si may be directly compared to the measured probability
distributions as a function of both compression speed v
– see Eq. 10 – and the state of compression c = ∆L/L.
A representative sample of such solutions are shown in
Fig. 4.
Figure 4 shows the si for various values of compres-

sion speed, increasing down the column. It is clear that
the main qualitative features of the experiment are re-
produced here. First, at sufficiently slow compression
speeds, the double layer regime begins at the walls (where
double layers are heterogeneously nucleated) and a single
front of single- to double-layer transition moves inward
with compression until the entire raft becomes a double
layer. At very high compression speeds, one observes a
spatially uniform increase in the transition probability
from single to double layer, as experimentally observed –
see Fig. 3. The most interesting result of the theoretical
analysis occurs at intermediate compression speeds where
multiple steps in the probability distribution for double
layers appear. One observes at least two such steps in
the numerical results presented in the middle panel of
Fig. 4. There is some evidence of such step-like features
in the experimentally observed distribution of single and
double layers – see Fig. 3b. The theory also predicts the
formation of a hierarchy of many nested steps appear-
ing in the double-layer probability in sheets with much
higher compressional moduli as compared to the bubble
raft. An example of this theoretical result is shown in
Fig. 5, where one observes six such nested steps.

C. Time scales and comparison to experiment

In order to make a comparison between theory and
experiment, a discussion of time and length scales is in
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order. It is most simple to introduce nondimensional time
and space variables: t̄ = t/τs and ū = u/a respectively.
In terms of these variables, the relaxation of compression
is now given by

D = kΓτs, (12)

and the dimensionless ∆ appearing in Eq. 5 is replaced
by ∆̄ = ∆/a = 1/2. In the spin dynamics, given by
Eq. 7, the spin relaxation time scale is now unity. The
effective “magnetic field” heff(t̄) now depends on the di-
mensionless time t̄ via

heff(t̄) = tanh
{

h+ k∆̄a2 [ūi+1(t̄)− ūi(t̄)]
}

. (13)

Finally, in these nondimensionalized units, the compres-
sion speed is given by

V̄ = vτs/a. (14)

The dimensionless speeds corresponding to the experi-
mental fast and slow compressions are then 1.72× 10−1

and 1.72× 102 respectively.
The parameter D physically represents the separa-

tion of time scales between the equilibration of in-plane
stresses occurring on the time scale of 1/(kΓ) – see Eq. 5
– and the transition time for single to double-layer ex-
change, given by τs. For our model to be relevant, we
need the former to be much faster than the latter, or a
large value of D. The value of D in the experiment can
be estimated from the lifetime of the double layers and
the relaxation of compression waves across the system.
Given the observed lifetime of small double layer regions,
we take τs ∼ 10s. From the observed rapid (on the order
of milliseconds) relaxation of compression across the raft
as a whole, we estimate D ∼ 104.
We now turn to the estimate of the other parameters

entering the model. We may express the bubble spring
constant in terms of the bubble surface tension Tsurf and
radius a, using k ∼ Tsurf/a ≈ 10 dyn/mm2. Thus, we
find that k∆̄a2 ∼ 2.5erg. If we associate the magnitude
of the symmetry breaking field h with the work done
against buoyancy ∼ ρg(4π/3)a3 × a in pushing a bubble
down to the second layer in water of density ρ ∼ 1g/cc3,
we find that h ∼ 0.4 erg. Although this result justifies
our assumption that h ≪ k∆̄a2, we still do not know the
magnitude of the noise temperature in the system. Con-
sequently, we treat the overall scale of h, J as adjustable
parameters, consistent with the fact that h ≪ J ∼ k∆̄a2.

V. DISCUSSION

Using these numerical estimates, we find that the ex-
perimental data in the fast and slow compression regimes
is consistent with the model prediction of an inwardly
propagating wave of double-layer formation in the slow
compression regime and a spatially homogeneous flip in
to the double layer at high compression velocities. In

all cases, the system accommodates the loss of surface
area first by uniform compressive strain in the single-
layer raft (since D ≫ 1, elastic strain relaxes across the
system rapidly), but eventually this compressive strain
is relaxed by local transitions from single to double lay-
ers. At slow compression rates, this transition begins at
the walls, due to heterogeneous double-layer nucleation
there, and propagates inward with two symmetrically
placed transition fronts, in order to minimize the domain-
wall energy associated with J . At sufficiently high com-
pression rates, the elastic system is driven to higher com-
pressive strains as the single- to double-layer transition
becomes trapped in a metastable state. Eventually, the
energetically-unfavorable, high-compression single layer
jumps homogeneously into the favored double-layer state.

Most interestingly, the model makes the nontrivial pre-
diction of a stepwise double-layer probability distribu-
tion at intermediate compression rates. The dynamical
crossover from the slow dynamics of a single propagat-
ing front to the fast dynamics of homogeneous transition
proceeds via the formation of multiple propagating fronts
of single- to double-layer transition probability. In fact,
for sufficiently large J and for sufficiently high k, one can
follow the transition from a single front to homogenous
single- to double-layer transition through a continuous
reduction of the number of steps. One may consider the
single front to be in actuality the maximal number of
steps; the step size has been reduced to the microscopic
length cutoff (here the bubble size) causing these steps
to merge into a single smooth front. As the compression
velocity increases, the number of steps decreases and con-
sequently the typical step length grows. Eventually this
step length approaches the system size. At this point
the transition from single to double layer is effectively
homogeneous in space, and we recover the observed fast
compression dynamics.

As an example of transition region, one may observe in
Fig. 5 six distinct steps in the transition regime between
the (slow compression) front and the (fast compression)
homogeneous jump. It is to be noted that in order to
resolve this larger number of steps, the spring constant
had been increased to 104. As the spring constant is re-
duced (and as J is reduced) the steps become less sharp
so that the full hierarchy of steps cannot be resolved in
the dynamics. Using the parameters consistent with the
current set of bubble raft experiments, we expect to re-
solve no more than one or two steps.

The experimentally observed difference between single-
to double-layer dynamics associated with respectively
slow and fast compression is clearly reproduced by the
model. In addition, the experimental results, while noisy,
support the basic step-forming picture that emerges from
the model in that we see secondary fronts at intermediate
compression rates. The formation of these nested fronts
is a nontrivial prediction of the model, and their exper-
imental observation validates the basic structure of the
analysis. We cannot yet experimentally observe the much
richer structure of a large number of steps. Based on our
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numerical solutions of the model, however, we conclude
that the bubble raft is insufficiently stiff elastically (too
small k) to support the full step hierarchy. With our cur-
rent bubble radius of a few tenths of a mm, the elastic
constant is on the order of 10 dyn/mm

2
. Varying the

bubble diameter by 2 - 3 orders of magnitude in future
experiments will allow us to explore a similar range of
elastic constants.
Even if the stiffness of the raft were increased, ob-

serving the birth of multiple fronts in experiment (e.g.,
as in the theoretical prediction shown in Fig. 5) would
still prove difficult. This difficulty stems from the fact
that, as the number of fronts grows, the compression-rate
range consistent with their formation becomes quite nar-
row. Nevertheless, we believe that finding experimental
support (or refutation) of this model has broad implica-
tion for the nonlinear elasticity of a variety of biological
and synthetic materials, as outlined in the introduction.
Moreover, this work suggests a number of intriguing ex-
tensions, such as the correlation between the collapse and
the applied force under compression, understanding the
mechanics of these systems under more complex induced
strains (as opposed to uniform compression), and exper-
iments in which one directly drives the internal variable

to induce new stresses into the elastic manifold via lo-
cal and incompatible changes to the stress-free, reference
state. Such experiments will have important implica-
tions for the charging of super-capacitors. Finally, we
note that same analysis provided here for amorphous,
high symmetry elastic systems, can be extended to lower
symmetry crystalline materials. These allow more com-
plex changes to the local reference state beyond simple
changes in area. In addition, they allow the interaction
of changes in the reference state and local topological
defects in the structure. These extensions can also be
pursued using bubble rafts as a model system providing
a (perhaps unique) combination of access to collective
mechanics and the tracking of the microscopic strain and
internal state variables in nonequilibrium systems.
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