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When a disordered solid is sheared, yielding is followed by the onset of intermittent response
that is characterized by slip in local regions usually labeled shear-transformation zones (STZ). Such
intermittent response resembles the behavior of earthquakes or contact depinning, where a well-
defined landscape of pinning disorder prohibits the deformation of an elastic medium. Nevertheless,
a disordered solid is evidently different in that pinning barriers of particles are due to neighbors that
are also subject to motion. Microscopic yielding leads to destruction of the local microstructure and
local heating. It is natural to assume that locally a liquid emerges for a finite timescale before cooling
down to a transformed configuration. For including this characteristic transient in glass depinning
models, we propose a general mechanism that involves a “pin-delay” time Tpd, during which each
region that slipped evolves as a fluid. The new timescale can be as small as a single avalanche
time-step. This is a local, effective and dynamical in nature, mechanism that may be thought as
dynamical softening. We demonstrate that the inclusion of this mechanism causes a drift of the
critical exponents towards higher values for the slip sizes τ , until a transition to permanent shear-
banding behavior happens causing almost oscillatory, stick-slip response. Moreover, it leads to a
proliferation of large events that are highly inhomogeneous and resemble sharp slip band formation.

Extreme phenomena in nature appear in a wide range
of scales, from the abrupt nano-deformation of materi-
als to earthquake faults that extend several miles. At
all scales, avoiding such phenomena requires a deep un-
derstanding of the disparate timescales leading to sepa-
rate as well as collections of events. Material plastic de-
formation displays characteristic intermittency in a wide
range of systems: single crystals [1], bulk metallic glasses
(BMG) [2–4], disordered granular solids [5, 6], colloids [7],
frictional contacts [8, 9]. While numerical simulations of
materials can be very detailed at short timescales, the
detailed study of a collection of abrupt events remains
still out of reach. The theoretical intuition for such sys-
tems comes from the thorough study of interface depin-

ning: a d-dimensional elastic string travelling on a land-
scape of quenched disorder in d + 1 dimensions under
the help of a uniform external force [10]. In complex
disordered solids, though, while the assumption of an
elastic medium appears reasonable, the one related to
quenched disorder should be placed under scrutiny: Pin-
ning disorder for every particle originates in the actual
interface that attempts to depin (other nearby particles);
a disordered solid pins itself during deformation. A ba-
sic consequence is that local glass depinning is not im-

mediately followed by re-pinning; instead, in short-time
transients (compared to typical avalanche durations), the
system behaves locally as a fluid of finite viscosity η; the
timescale for such fluid-like transients should not neces-
sarily be at the particle motion timescale – instead, it
should correspond to the timescale for the system to tra-
verse through local metastable minima before ultimately
reaching the global metastable minimum. In a sense, this
timescale should be proportional to the number of steps
needed to reach each metastable minimum in a quasi-
static steepest-descent algorithm. In the context of de-
pinning models we call this phenomenon pin-delay, gen-
eralizing the concept of complex fluid thixotropy [11]: the

dε(x)
τpd

ε

V
p(
x
)

Vp

(a)

(b) (c) (d) (e)

FIG. 1: Thixotropic effects in depinning modeling.
Lower panel shows schematics how different mechanical states
can be viewed in terms of their local potential well. Viscoelas-
ticity brings particles back to their minima after the removal
of the external stress, while in a liquid particles jump away
from their minima. Thixotropy corresponds to the curious
case where the minimum becomes deeper with time. Such a
phenomenon is pronounced in materials that are composed
of highly anisotropic/chainy molecules. Depinning is thus a
liquid form; to add thixotropy, minima should become deeper
after yielding. Upper panel shows a typical random pinning
potential for a single interface location Vp(x) as a function
of plastic strain, as it is used in simulations. As external
force increases, the interface slips by dǫ(x), the pinning poten-
tial disappears and then It reappears thixotropically (dashed
lines) to its parent form during time Tpd. We consider, in
simulations, the simplest case where at time Tpd the poten-
tial appears in a single step.

change from a solid-like elastic gel to a flowable fluid as
a function of time at fixed external stress. Thixotropy
in fluids deeply originates in the chainy/anisotropic and
hard-core/impenetrable nature of the local degrees of
freedom/molecules: We conjecture that it is this kind
of anisotropy that can lead hard-core systems to de-
velop shear-band phenomena. In this paper, we focus on



the problem of plastic deformation in disordered solids
and we investigate how pin-delay influences the statis-
tics of avalanches and global strain behavior in a sim-
ple model. We show that the pin-delay effect drasti-
cally leads to shear-banding without explicitly consid-
ering local anisotropy. We conjecture that local poten-
tial anisotropy which is abundant in thixotropic fluids,
should be also observable in other disordered solids in
their flowing mesoscale state.

Plastic deformation in disordered solids, such as BMGs
or granular piles, has been a topic of interest for sev-
eral decades [12–15]; recently, it has become clear in well
controlled experiments that it does not evolve smoothly
but through plastic bursts that organize into stick-slip
stress oscillations with universal scaling [5]. In a para-
dox, strongly disordered solids display plastic bursts
along STZs [16] that spatially organize along strongly or-

dered sharp (nanometer-range) slip bands, a phenomenon
coined slip localization. In simulations, avalanche statis-
tics in both two and three dimensions [17] display univer-
sal behavior [19, 20] with the critical exponent τ ≃ 1.3
if the particle ensemble follows steepest-descent dynam-
ics. That universality class appears to be consistent
with a simple, coarse-grained model of interface depin-
ning [21, 22]. In retrospect, for less dissipative dynam-
ics, Salerno and Robbins [17] reported in both two and
three dimensions a crossover where the stress drops dis-
play different universal statistics with τ ≃ 1.6 and larger
and strongly anisotropic plastic bursts [23].

Overdamped dynamics has been essential in the study
of avalanche critical behavior, since it facilitates the def-
inition of events’ start and end points, as well as cor-
relates with some experimental evidence, especially in
granular systems’ dynamics. Departing away from that
assumption to more complex local dynamics, such as un-
derdamped finite inertia dynamics or thixotropic aging, is
typically avoided. Finite inertia carries a system over suc-
cessive (in deformation) pinning-potential energy minima
to minimize elastic interactions and its effect appears
similar to thixotropy, in essence. The common approach
used to include such, still over-damped, effects is through
emulating a frictional stick-slip mechanism, with rules
that lower pinning barriers after the initial slip [24–29],
without successive minima jumps or direct elastic interac-
tion minimization of any sort. All studies of this type find
that addition of local weakening introduces a global stick-
slip instability discontinuously [25, 26, 29, 30]. Another
approach to model such effects is through the inclusion of
viscous effects in the elastic interaction, however the be-
havior is questionable near the depinning transition [48].
Finally, in mean-field approaches of interface depinning
it is possible to study effective acceleration terms, but
they do not alter the critical exponents and qualitative
behavior near depinning [31].

In this paper, we propose a mechanism to introduce
such weakening memory-effects through which abrupt lo-
cal slip leads to the disappearance of the local pinning
potential for a characteristic timescale Tpd. This is a lo-
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FIG. 2: Effect of D on serrated flow distributions.
We set L = 128 and Tpd = 8. The evolution of serrated flow
structure is shown as D increases. When D < D∗, its increase
leads to a flow stress increase, due to competing effect of the
relaxation. When D > D∗, stick-slip behavior is observed.

cal thixotropic feature that we conjecture to be present
in all disordered solids, independent of composition or
scale of fluctuations. During the interval Tpd, the system
flows locally as a fluid of viscosity η (considered a mate-
rial property that can be thought as an analog of New-
tonian fluid viscosity, but defined for transients between
slip events). This mechanism is a dynamical weakening
effect that may be present in systems which are character-
ized by strongly anisotropic interactions and hard-core ef-
fect frustrations (the basic features of thixotropic fluids).
The dynamical nature of this weakening should be con-
trasted to typical friction-related weakening effects that
generically appear in analogous studies. [25, 26, 29, 30]
In our model, weakening and aging effects are directly
inter-connected, in contrast to friction-related investiga-
tions.

We follow Talamali et al.’s approach [21] for d = 2
systems and assume that plastic deformation in disor-
dered solids is modeled by the xx−component of the
strain tensor ǫ ≡ ǫxx = −ǫyy. The interaction due
to local slip is the stress generated by local deforma-
tions of a random medium [32], which takes the form

F̃int(k, ω) = (− cos(4ω) − 1)ǫ̃ where k, ω are the po-

lar coordinates in Fourier space [34] and ǫ̃, F̃int are the
transforms of the interaction and the strain. We scale
the interaction strength by c = 0.1, equivalent to modi-
fying the strain-slip scale. We initialize the L×L system
with ǫ(x) = 0 ∀ x and stress thresholds fp(x) taken from
a uniform distribution [0, 1). We increase the external
stress F quasistatically until yielding, and then, the fol-
lowing evolution equation is solved,

dǫ(x)

dt
= σ(x) = Fint(x) + F − fp(x)− k̃v(x) (1)

Assuming that fp(x) corresponds to a pinning poten-
tial resembling the one in Fig. 1 (upper panel), we im-
plement a simple algorithm to integrate the above equa-
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FIG. 3: Scaling collapses of slip size probability distributions. Size distributions are shown at D = 10−5, 100 and 101

at Tpd = 8, k̃ = 0.2. At high D, there is a clear drift of the critical exponent τ to ∼ 1.7, the cutoff scaling exponent also changes
from ∼ 1.1 to ∼ 1.7 and the shape of the scaling function is clearly modified with an observable hump at large sizes.

tion, in that there is a strain increase dǫ(x) randomly
picked from a uniform [0, 1) distribution (characteristic
of the pinning potential) when σ(x) > 0. The stress is

decreased by k̃v(x) at each time-step, where k̃ is a local
material weakening parameter and v(x) represents the
fraction of STZs that yielded at the previous time-step.
[49] The term k̃v(x) is common in depinning phenomena
of disordered magnets and implies a demagnetizing effect
due to a response from the material boundary [44]. In
the case of disordered solids (BMGs or granular mate-
rials) it is common in terms of a phenomenological di-
latation effect that reduces the flow. Dilatation, viewed
as a reduction of solidity, has two principal effects from
a depinning viewpoint: First, the flow rate is reduced;
Second, effective pinning weakens for a brief time inter-
val. Thixotropic effects (cf. Fig. 1 (lower panel)) describe
the latter effect, and can be implemented in the follow-
ing way: for every element x that slipped at time t, we
demand that fp(x) = 0 for a pin-delay time-interval Tpd

that is an integer multiple of the unit time-step in an
avalanche. Then, in the simplest possible ansatz, dur-
ing the pin-delay time after the slip, the system locally
evolves as a fluid, assuming a fluidity coefficientD ≡ 1/η,

dǫ(x)

dt
= Dσ(x) (2)

When time Tpd has lapsed or the avalanche stops, a ran-
dom thresholding force is picked. The avalanche stops
when σ(x) < 0 ∀ x.

We first investigate this model as a function ofD ≡ 1/η
for fixed Tpd = 8. The external stress required to main-
tain the steady state behavior starts decreasing and de-
velops stick-slip oscillations as D > D∗ ≃ 1 (cf. Fig. 2,
D∗ is defined through the instability towards ). The
critical exponent τ for the power law behavior of the
slip size distribution increases from ∼ 1.3 [34] to ∼ 1.52

(and up to 1.65 − 1.7 for D > 1) and the form of the
universal scaling function acquires a large-event hump
(cf. Figs. 3, 4). It is possible to perform a scaling col-
lapse for the two different regimes at small and large D
(cf. Fig. 3): the behavior stays universal but the cutoff S0

scales differently with the system size, ∼ L1.1 at low D
and ∼ L1.7 at high D. For intermediate D ≃ D∗ ≃ 1, we
observe a smooth exponent crossover. Avalanche dura-
tions (which are directly proportional to the stress drops
in this model) display analogous behavior with their crit-
ical exponent changing from 1.6 to 2.1 and their cutoff
exponent also changes from ∼ 1.15 to ∼ 1.7. For a scal-
ing distribution P (S) ∼ S−τ , that is trivially normalized∫
P (S,L)dS = 1, one has P̃ (S) ≡ LαP (S) = g(S/Lα).

Finally, we mention that at large D the scaling collapse
is not complete (the functional form at the cutoff region
weakly changes) because an additional variable is present

in the scaling function, k̃. The decrease of k̃ leads to a
hump at larger sizes (cf. Fig. 4(b)) and with the current

definitions, keeping k̃ fixed implies positive scaling of the
average avalanche size with the system size [21]; thus,
larger system sizes are closer to the parent depinning
critical point; if we hold the distance from the critical
point fixed (ie. by modifying k̃ to keep 〈S〉 fixed as the
system size increases at D = 0) then a multi-variable
scaling collapse is possible, in the spirit of previous work
on models of interface depinning [36].

It is interesting that the two different regimes com-
pared to D∗ can be understood through an order param-
eter, the amount of slip that took place during relaxation
(Eq. 2) in comparison to the net slip (the sum of the re-
sult of Eqs. 1 and 2). The ratio of the relaxation slip
over the net slip seems to display a strong increase from
∼ 0 at D ≃ D∗, and the increase becomes more drastic
as k̃ is smaller (cf. Fig. 5). The behavior of this ratio
with D suggests that the new D > D∗ regime is charac-
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FIG. 4: Effect of Tpd and k on serrated flow distributions. a. The increase of Tpd leads to exponent increase, and

behavior that resembles the large D behavior. Here D = 0.1, k̃ = 0.2. b. The increase of k̃ (Tpd = 8, D = 0.2) leads to
reduction of the cutoff size. Distributions are shifted by factors of 4 for clarity.

terized by deformation, filled with spanning events, that
displays a discontinuity as function of the driving force
F . D∗ displays a dependence on k̃ and Tpd which qual-

itatively resembles a scaling relation D∗ ∼ k̃θ/T η
pd with

θ ≃ 1 and η ≃ 2 (cf. Fig. 4); however, the precise form of
this dynamical transition surface requires further inves-
tigation and lies beyond the purpose of this work.

For the behavior as a function of Tpd for fixed D, we

find that at low D < D∗(k̃, Tpd), the increase of Tpd

leads to smaller avalanches following the same parent
distribution and similar critical exponents, acting in a
sense like increasing k̃. However, the strength of D is
too small to build correlations among different STZs and
thus, the critical exponents remain unaltered. However,
as D > D∗(k̃, Tpd) (cf. Fig. 4(a)) the increase of Tpd leads
to larger avalanches, higher exponent τ (up to ∼ 1.7)
and a hump in the probability distribution that grows as
∼ 1/k̃.

When k̃ decreases, independently of the value of D,
there appears to be a consistent drift of the exponent
τ towards higher values, but the scaling function dis-
plays the characteristic hump (cf. Fig. 4(b)), and in that
regime the critical exponents change drastically. The
avalanche sizes at the hump scale as ∼ 1/k̃ and it appears
plausible to conjecture that for any D there is a small
enough k̃ below which stick-slip behavior emerges, given
the dynamical nature of the weakening effects. Anal-
ogous dynamical-weakening-induced stick-slip behavior
has been also suggested in terms of crystal plasticity
aging mechanisms that led to the characterization of
avalanche oscillators. [37].

The D > D∗(k̃, Tpd) regime is not critical in that
it is dominated by spanning events, it corresponds to
the “moving phase” in interface-depinning language for

any stress. This is an expected outcome, since for large
D, slow relaxation or creep overcomes any tendency for
avalanches, so for any stress there is smooth flow in the
system. It is only for small D that there is a transition as
a function of stress, from small events (“pinned” phase)
to large ones (“moving”). However, since the weakening
mechanism presented here is truly dynamical in nature,
the off-critical exponent of the small-event distribution is
strongly influenced by the dynamical mechanism in the
presence of the spanning events.

Large events at the hump of the distributions, at
largeD, display a non-trivial system-spanning anisotropy
along the diagonals, resembling sharp slip band forma-
tion (cf. Fig. 6(c)), in a strong amplification of the
anisotropic features at D = 0 [21] (see also Fig. 6(a)).
The features of Fig. 6 (right) are qualitatively inde-
pendent of short-range features of the interaction, since
they persist in the presence of a small-amplitude lapla-
cian/diffusion term in the interaction (∼ k2). The pin-
delay mechanism appears as a possible candidate to
explain the onset of sharp shear bands in disordered
solids under shear, as the strain profile is driven towards
anisotropy as well (cf. Fig. 4(d)) in a consistent, discon-
tinuous manner. It is worth noting that there are several
suggestions for the onset of slip bands related to slow
structural relaxations [38, 39]. Most of existing mecha-
nisms correspond to a local weakening effect – here, the
weakening is dynamical in nature and comes out of a
balance of strengthening and weakening in spatially sep-
arated regions, through long-range mutual stress interac-
tions.

The “pin-delay” mechanism in models of interface de-
pinning is generally applicable. It is possible to for-
mally introduce the “pin-delay” mechanism in depin-
ning models by redefining the pinning term’s strength
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FIG. 5: Effect of D on serrated flow distributions. We
set L = 128 and Tpd = 8. The fraction of slip during re-
laxation compared to net slip is shown. A transition is clear
at D ≃ D∗

≃ 1, where the net slip is a clear outcome of
the competition between relaxation and avalanches. Different
plots correspond to different k̃. The fit, for k̃ → 0, of the plot
to an exponential gives our estimate for D∗. The yellow line
(color online) corresponds to such an exponential fit. Increas-
ing the system size L plays an important role on the small D
deviations from the fit.

fp(x) = −∂Vp(ǫ)/∂ǫ(x) (cf. Fig. 1), which is tradition-
ally time-independent in such a way that adds a specific
time-dependence. In our model, fp → Cpd(t)fp (where fp
is a typical random-pinning force, satisfying a typical ran-
dom distribution, as in typical interface-depinning mod-

els) with Cpd(t) =
1

Tpd

∫ t

−∞
dt′e−(t−t′)/Tpd(1−Θ(ǫ̇(x, t′)−

vth)) or Cpd(t) =
∏t

t′=t−Tpd
(1 − Θ(ǫ̇(x, t′) − vth)) (the

latter applies directly to the model numerically solved
in this paper) and the pinning term [10] is multiplied
by Cpd(t), while all other stress terms are multiplied by
Cpd(t) + 1/η(1− Cpd(t)). When the system locally slips
ǫ̇ > vth (where vth is a threshold for viscoplastic flow
rates), it locally flows with viscosity η for time Tpd to
minimize the local stress with no pinning force present.
After the timescale Tpd, usual pinning forces develop, de-
rived by a local pinning potential such as in Fig. 1.

Molecular dynamics simulations of disordered parti-
cle configurations in Refs. [17, 23], showed that disor-
dered solids undergoing underdamped dynamics enter
a regime where τ appears to show a crossover from
∼ 1.3 to ∼ 1.6, estimated through the careful investi-
gation of stress drops. This exponent crossover together
with qualitative features (hump) of the identified scal-
ing function resemble the behavior of our model. How-
ever, in those simulations, system-spanning events were
not clearly identified – possibly suppressed due to simula-
tional artifacts. Our work suggests that system-spanning
events are a clear characteristic of this phase. Our model
suggests an apparent resemblance with the features of
those simulations: The exponent that characterizes the
scaling of the distributions’ cutoff S0 with the system
size (Salerno et al. [17] also label it α) drifts from ∼ 0.9
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FIG. 6: Shear band formation due to pin-delay. Here
L = 128, k̃ = 0.2, Tpd = 8. The avalanche slip strain is shown
on the left due to a typical large event near the cutoff of the
distributions. The two dimensional strain-profile is shown on
the right at the same strain as the one for the event shown.
Upper: For small D, there are large events (left) but they
appear non-spanning and not leading to shear-band forma-
tion [21]. Lower: Large events lead to shear-band formation
in the strain profile. Large events at the hump location of the
avalanche size distribution display sharp slip-band formation
that is spanning along the diagonal, with thickness that de-
creases with system size. Our results are unaffected by a small
diffusion term added to the elastic interaction for regularizing
short-range interaction effects.

to ∼ 1.6 in the underdamped regime; it resembles the
drift observed here for the same exponent, from ∼ 1.1 to
∼ 1.7 (or for the stress drops/durations, from ∼ 1.15 to
∼ 1.5). The relative drift of the cut-off exponent is fully
controlled by the same mechanism that controls the drift
of τ , since it represents the onset of the system-spanning
events (that appear in the hump of the distribution) and
leads to off-critical system behavior. We should note that
the energy drops is a feature that we cannot predict in
our current model approach since it does not include an
explicit energy functional that is minimized. The distinc-
tion between energy, strain and stress jumps is not trans-
parent in the current model. There are ways to study
models that use energy functionals, making simulations
more expensive [37], and this is a direction that shall be
pursued. It is worth noting that the super-linear sys-
tem size dependence of the avalanche cutoff in our model
is clearly connected to the onset of shear-band forma-
tion. While in Ref. [17] there is no mention of this shear-
banding connection, more recent simulations [18] indicate
that the inclusion of inertial effects in particle based dy-
namics has an even more stringent effect on the steady-
state behavior, and it makes the plastic flow curves non
monotonous, which for a large system are typically ex-
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pected to result in strain localization.

The model studied in this work includes two distinct
forms of dynamics that are intertwined through the for-
mation of discrete, abrupt events or avalanches. Experi-
mentally, there is a lot to be said about relaxation prop-
erties of disordered solids and glasses, but it is generally
well understood that two types of relaxation modes exist:
the α-relaxation modes activated at the glass transition
temperature and the β-relaxation modes activated at a
somewhat lower than the glass transition temperature.
While still unclear [45], there is a correlation of the for-
mer (α) with large-particle, spatially correlated, slow mo-
tions, while the latter (β) associate with small-particle,
fast and relatively uncorrelated slip. In the model of this
paper, STZ slip dynamics obviosuly corresponds to β-
relaxations while slow, viscous relaxation after the fast
slip can be thought to correspond to α-like relaxations.
The strong effect of fluidity D on the capacity of the sys-
tem towards shear-banding flows can be thought as the
fragility parameter, signifying the dependence of the in-
verse relaxation time for the α-relaxation modes on tem-
perature (m = d ln(τα)/d ln(T/Tg)).

In addition, one can understand the analogy between
existing models of glasses under shear by considering the
basic phenomenology of granular systems under shear.
For example, in the case of hard-disks under shear,
the expectation is that the contact number locally dis-
plays a strong fluctuation with time, in between shear-
events. [46]

Our model’s distinctive feature is that it contains time-
intervals during the avalanche process where the pinning
potential is locally absent. This mechanism resembles
other dynamical weakening mechanisms [37, 41, 42] that
function during long waiting intervals in-between events,
in that there are time intervals where direct minimiza-
tion of the stress is pursued in a fluid-manner, with no
pinning involved. Nevertheless, such dynamics is active
in our model only during avalanche events and is due
to the disordered nature of the microstructure, while
previous efforts focused on thermal relaxations (struc-
tural in nature) competing with avalanches to mini-
mize elastic interactions. In comparison to the current
model, static frictional stick-slip mechanisms appear sim-
ilar (both mechanisms assume that after local slip, pin-
ning barriers drop), but lead to apparently different phe-
nomenology, as demonstrated in this manuscript. Differ-
ences are due to two key ingredients: i) the capacity of
the system to locally seek the true stress minimum (aside
from local barriers) for a small but finite timescale Tpd, ii)
the fact that local slip during time Tpd takes the system
farther away from the local depinning threshold, albeit
after having built collective, self-organized, correlations
with the rest of the system.

Finally, we would like to discuss connections of our
modelling approach with typical free-volume models. In
such theories [47], based on associated self-evident exper-
imental evidence, there is a suggestion that free-volume
increase happens at short times (dilation) during shear,

while there is slow decrease at longer times. A typical
model of the type suggests,

dǫ

dt
∝ cfσ (3)

where cf is the flow defect density, while σ is the stress,
which in constitutive models it is assumed to be exter-
nal; for our purposes this is the stress felt by a single
STZ excitation, locally. Following the experimental anal-
ysis of disordered solids, it is clear that cf has a non-
trivial evolution in time, where the onset of a strain-
rate leads to a defect creation rate dcf/dt ∼ cf (ln cf )

2ǫ̇
while then, the defect concentration tend to decay to-
wards its “equilibrium” value dcf/dt ∝ −cf(cf − ceq). It
is clear, that this physical picture aims to apply inside
a single STZ of our model. Namely, one should con-
sider that fp ∝ 1−cf ≡(concentration of non-flowing de-
fects) in the large enough STZ. Then, fp has a creation
rate dfp/dt ∝ cf (cf − ceq) and a destruction rate that
takes place just after yielding dfp/dt ∝ −cf (ln cf )

2ǫ̇ with
cf ∝ 1 − fp. This model has a very similar structure to
the model solved in this paper, however it is more realistic
and should be solved in a separate work, in comparison
to existing experiments. Such a model can be interpreted
in terms of our construction in the following way: The
model of this paper is based on a simple version of the
STZ modeling, where the effective temperature dynam-
ics is intrinsically encoded in the dynamics of deformed
regions. However, in the context of such phenomenology
it is natural to expect that free-volume modeling applies
to the length scale below the size of a single STZ, and
consequently to timescales close to the time unit, exactly
as we discussed.

Experimentally, to our knowledge, there are no well ac-
cepted estimates for the critical exponents in avalanche
behaviors for disordered solids, such as BMGs or granu-
lar/colloidal systems. However, there are several promis-
ing experiments that render support to our results. De
Richter et al. [5] in studies of sandpile avalanches at an in-
cline observed a set of quasi-periodic bursts in addition to
an apparent exponent drift for τ , if compared to typically
suggested exponent values [28]. Further, Fall et al. [7] re-
ported discontinuous slip band formation in colloidal sys-
tems with controlled increasing thixotropy. Also, the typ-
ical behavior of BMGs where slip band formation appears
easier [13] at higher temperatures (where viscosity is
lower) and smaller deformation rates (allowing for full re-
laxation during events), as naturally expected in our con-
struction. While in support of our results, further exper-
iments are needed to clarify the leading mechanisms for
slip band formation and avalanches in disordered solids
under shear, especially under controlled conditions such
as colloidal systems with increasing thixotropy [7] or vari-
able interaction range [40]. In summary of our model’s
contribution to the phenomenology and experiments, we
believe to provide several important clues for the origin of
shear-banding in disordered solids: First, our model rep-
resents a novel phenomenological interpretation of free-
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volume fluctuations in disordered solids in the language
of interface depinning modeling. [10]. Second, it may pro-
vide alternative explanations for the rate-dependence of
shear-banding at low rates [12] in terms of a novel mech-
anism, that of thixotropic aging. Third, it provides an
insightful connection between thixotropic-driven shear-
banding and shear-banding in disordered solids, such as
BMGs or granular solids. Thixotropy, a phenomenon
deeply originating into anisotropic/chainy molecules and
hard-core effects, might provide us a strong insight in
why shear banding emerges in disordered solids.
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