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We determine the impact of resource renewal on the lifetime of a forager that depletes its envi-
ronment and starves if it wanders too long without eating. In the framework of a minimal starving
random walk model with resource renewal, there are three universal classes of behavior as a function
of the renewal time. For sufficiently rapid renewal, foragers are immortal, while foragers have a finite
lifetime otherwise. In the specific case of one dimension, there is a third regime, for sufficiently slow
renewal, in which the lifetime of the forager is independent of the renewal time. We outline an
enumeration method to determine the mean lifetime of the forager in the mortal regime.
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I. INTRODUCTION

What is the impact of renewal of resources on the state
of a forager? If the environment is harsh and resources
regenerate slowly, foragers may be confronted by per-
petual scarcity. Thus a forager may often go hungry or
even starve. Conversely, in an abundant environment
where resources are quickly replenished, a forager may
never experience starvation risk. Our goal is to map out
the states of a forager as a function of the renewal time
within the framework of the minimal “starving random
walk” model [1] that we define below.

The random walk model has been frequently invoked
to describe the motion of foraging animals [2-4], as well
as a wide variety of classic applications [5-9]. In the
wild, foraging animals can die from many causes, such
as diseases or old age [10]. The underlying dynamics
from these causes of death can be described by a “mortal”
random walk that dies according to a specified lifetime
distribution [11-13]. This model also a variety of appli-
cations to diverse fields, such as the diffusion of light in
human tissue [14], and biologically-inspired search prob-
lems [15]. In the context of foraging, an important con-
tributor to forager mortality is the possibility that it is
unsuccessful in its search for food within its habitat [22].
Thus the age at which a forager dies is also determined
by its trajectory and the amount of available resources.
This coupling between the lifetime of a living organism
and its trajectory, along which environmental resources
are depleted, defines a nontrivial class of random-walk
problems [16-21]—including the starving random walk
model—that are relatively unexplored.

In the original starving random walk model [1], a ran-
dom walk irreversibly depletes its environment during
its wanderings, and starves if it wanders too long in a
resource-depleted region. Initially, each lattice site con-
tains one food unit. Whenever a forager, which under-
goes a random walk, arrives at a full site, the food is
completely eaten. Once depleted, a site remains empty.
Whenever the forager arrives at an empty site, it does
not eat. If the forager goes S steps without eating, it

(a)

Figure 1: Starving random walk with probabilistic resource
renewal in two dimensions: (a) initial state and later times
(b) & (c). Each site initially contains food that is eaten when
found by the forager. Food reappears on empty sites after
a random renewal time (represented here as glowing circles).
The forager starves if it wanders S steps without eating.

starves. We can think of & as the metabolic capacity of
the forager—the amount of time it can live without food
before starving. Asymptotic expressions for the walker
lifetime and the territory visited at the starvation time
were given in one dimension [1]. Estimates for these two
quantities in dimensions d > 3 and a lower bound for
the territory visited at starvation in d = 2 were also
given. These results provide a first step in quantifying
the interplay between the trajectory of a forager and the
consumption of food and their effect on the lifetime of
the forager.

However, the natural resources being consumed—
preys, plants, water, and nutrients—typically obey their
own dynamics. In particular, consumed resources usu-
ally do not disappear permanently [23, 24]. Instead, they
typically regenerate a certain time after they have been
depleted [25-27]. This basic fact motivates our study of
starving random walks with the possibility of renewal of
resources (Fig. 1).

As we will discuss, resource renewal substantially mod-
ifies the properties of a starving random walk. Using ex-
treme trajectory arguments, we will argue that the cor-
relations induced by the coupling between the trajectory
of a forager, its metabolic capacity S, and the dynamics
of the resources lead to three universal regimes of behav-
ior that are determined by & and the bounds R; and
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Figure 2: Model phase diagram. The shaded zone, where the
lifetime is independent of renewal rate, occurs only d = 1; the
two other regimes arise for any d. The thresholds between
these regimes are given by Egs. (1) and (6).

Rs of the support of the renewal time distribution, but
are insensitive to the shape of this distribution (Fig. 2).
We will first demonstrate the existence of a transition
between an immortal regime, in which the forager can-
not starve, no matter what its trajectory, and a mortal
regime, where the forager must eventually starve. Both
regimes arise in any spatial dimension. We will also show
that a third regime arises in one dimension only, in which
renewal is so slow that the forager lifetime is the same as
in the case of no renewal. We also develop an enumera-
tion method that yields, in principle, the exact value of
the mean lifetime of a forager in the mortal regime.

We will first address the case of starving random walks
with deterministic renewal in one dimension (Sec. II).
In Sec. III, we extend our basic results to the case of
probabilistic renewal and to higher dimensions. Some
brief conclusions are given in Sec. I'V.

II. DETERMINISTIC RENEWAL IN 1D

Let us first investigate starving random walks with de-
terministic renewal in one dimension. Such a determinis-
tic mechanism describes plants that grow at a fixed rate
to reach an edible size a fixed time after having been pre-
viously defoliated [28]. We posit that food that is eaten
at time step ¢ reappears at time ¢+ 7R, with R an integer.
In each time step, the time elapsed since an empty site
was depleted is increased by one and food appears at any
site where this time equals R. As part of this same time
step, the walker hops to one of its nearest neighbors. If
the site contains food, which may have appeared just be-
fore the walker arrives, the food is eaten. We call the set
of empty sites, which may or may not be connected, the
“desert”.

A. Immortality

For a forager with metabolic capacity S € N, we now
determine the range of the renewal times for which im-
mortality arises. A forager is immortal if it survives for-
ever on any trajectory, and, in particular, on the most
unfavorable trajectories. The set of such trajectories is
infinite, but they all possess the common pattern (Fig. 3)
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Figure 3: Illustration of the common pattern (inside the
dashed rectangle) of all extremal trajectories for the case of
renewal time R = 9. This pattern consists of depleting two
consecutive sites at one end of the desert. The forager wanders
inside this desert which gradually shortens until it reaches
length 2. The pattern ends when the walker is certain to land
on a food-containing site. Green dots denote food-containing
sites and the numbers give the ages of each site.

that the walker depletes two sites in a row at one end of
the desert, before wandering within the desert as long as
possible until being certain, because of resource renewal,
to land on a food-containing site (see Appendix A for
details). It takes R time steps before food reappears on
one of these two sites (Fig. 3). Thus, roughly speaking,
when R < S, the forager necessarily survives. The pre-
cise criterion actually is R < R*, with

S
R* =
{S+1

due to the even-odd oscillations of a nearest-neighbor
random walk (Appendix A).

S even,

S odd, (1)

B. Mean Lifetime in the Mortal Regime

On the other hand, when R > R*, the forager is mortal
and thus eventually starves with probability 1 because we
can construct trajectories that necessarily lead to starva-
tion. These trajectories again involve the forager first
carving out a desert and then wandering strictly within
this desert so that renewal does not reach the forager be-
fore it starves. In contrast to the situation in Fig. 1, the
walker starves before it reaches a site where the resource
has been regenerated. By their very existence, such tra-
jectories are achieved with non-zero probability. From
classical results about Markov chains (see, e.g., [29]), ev-
ery trajectory will eventually generate a configuration for
which the forager starves. Thus there are two regimes of
behavior—immortality and mortality. The boundaries
between these regimes depend only on the metabolic ca-
pacity S of the forager and the renewal time R.

Using the Markov chain formalism, we can, in princi-
ple, determine the mean lifetime of the forager by enu-
merating the configurations of the system as the forager
wanders. A configuration is defined as the location and
age of each empty site in the desert, the position of



the forager in the desert, and the number of time steps
elapsed since the forager last ate. Here the age of an
empty site is the time since the food was last consumed
at this site. Thus a newly empty site has age 0, while a
site that will regenerate at the next step has age R — 1.
Because the desert has a finite size, the number of config-
urations is finite. We can therefore write the transition
matrix that describes the evolution of the system at each
step of the forager and thereby extract its mean lifetime.

Let us illustrate this enumeration for the simple case of
S =2 and R = 3. For this example, there are five distinct
configurations (Fig. 4). State () arises after the first step,
and the evolution of the system from one state to another
is shown in the figure. The associated transition matrix
is

0 010 0
1/2 0 01/20
0 120 0 0 E<§?) @)
1/2 0 01/20
0 1/20 0 1

where the states are listed in order D—(®), with

0O 0 1 0
{12 0 012
Q=10 120 0 | (3)
1/2 0 0 1/2
and V = (0, 3,0,0). We define the matrix (see [29])
2212
1211
— (T _ -1 —
1213

where Q7 is the transpose of Q). Each entry N;; in this
matrix is the average time that a system, which ulti-
mately reaches starvation, spends in configuration j when
it starts from configuration ¢ [29]. From this matrix we
can extract the mean absorption time ¢; starting from
the state i. These are given by

t 1 7
] 1] (5
t5] =N 1] 7|8 (5)
t4 1 7

Thus the mean lifetime of the forager is t; + 1 = 8§,
because after the first step, the system is necessarily in
the state D). In principle, this method can be extended
to higher dimensions and also to probabilistic renewal
with a bounded support of renewal times. However, in
practice, this approach quickly becomes intractable be-
cause the number of possible configurations becomes pro-
hibitively large when both R and S are large. Neverthe-
less, this approach gives a well-defined prescription for
computing the average time until the forager starves.
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Figure 4: State space of the system for metabolic capacity
S = 2 and renewal time R = 3. The circled numbers denote
the distinct states and T is the time elapsed since the forager
last ate.

C. Renewal Independent Regime

In one dimension, the mortal regime class can be fur-
ther divided in two sub-regimes: (a) forager lifetime de-
pendent on R, and (b) renewal independence—lifetime
independent of R. Clearly, as R increases, the forager
lifetime decreases and approaches the no-renewal limit-
ing value as R — o0o. Does this decrease stop when R
reaches a finite critical value RY, or does the decrease
continue as R — oo? To resolve this question, we de-
termine if there is at least one trajectory for which the
forager can return to a replenished site without starving.
If there is such a trajectory, then renewal is relevant, as
the lifetime of the forager depends on the renewal time.

For a forager to return to a site on which food is re-
newed requires: (i) living long enough for such a renewal
to occur and (ii) staying sufficiently close to this site to
reach it without starving. These two attributes are most
easily satisfied for a site (which we take as the origin) at
which food has just been eaten and is surrounded by full
sites. We determine the largest value of R for which the
forager can return to this origin after the food at this site
has been renewed.

To return to the origin without starving imposes the
constraint that the forager does not stray more than S
steps from the origin. Moreover, to maximize the time
that the forager wanders, it should eat only when it re-
ally needs to, that is, every S steps. The trajectory on
which the forager lives the longest while staying within &
steps of the origin therefore consists of the following com-
ponents (Fig. 5): (i) The forager creates a semi-desert
of length S on one side, say to the right, of the ori-
gin. During this creation of the semi-desert, the forager
eats by moving to a previously unvisited site only every
S steps. (ii) The forager successfully crosses this semi-
desert, which is the longest possible for which a success-
ful traversal is possible. (iii) The forager creates a mirror
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Figure 5: Optimal trajectory for a forager to live the longest
and still be able to return the origin O and consume the re-
plenished resource on this site, for the case S = 5. (i) The
forager eats a site on the right edge of the desert every S
steps until carving the largest semi-desert that it can cross.
(ii) The forager crosses the desert. (iii) Reflection of stage
(i). (iv) The forager crosses the left semi-desert to reach the
origin. Such an excursion lasts R steps (Eq. (6)).

image semi-desert of length S to the left of the origin.
(iv) The forager crosses this left semi-desert and fetches
the regenerated food at the origin.

The duration of this excursion is roughly 252, as the
forager has eaten 2S times when it returns to the ori-
gin. The enumeration of the above sequence of moves
(Appendix B) gives the maximal renewal time R with

S even,

252 —3S +4
Rt = 6
{ S odd. (6)

252 -S+1

For R < R', a forager has a non-zero probability to eat
food at a site where renewal has occurred. Conversely, for
R > RI, a forager cannot reach any replenished site, so
that renewal has no impact on the forager lifetime. Hence
the mean lifetime does not gradually converge to the lim-
iting no-renewal value, but rather reaches this value for
R = R' + 1. Thus we infer that there exists a renewal-
independent regime (Fig. 2) for the lifetime of the forager.

III. EXTENSIONS

We now extend the starving random walk model with
resource renewal to accommodate two ecologically real-
istic features: (i) probabilistic renewal, in which the re-
source is regenerated at a random time after depletion,
rather than after a fixed time R, and (ii) starving random
walks with resource renewal in higher dimensions.

A. Probabilistic renewal

Suppose that each empty site is replenished a time 7
after the resource at that site has been consumed, with

7 drawn from a continuous distribution with support
[R1,Rs] C RT. This means that for a given site renewal
cannot happen before a time R; and also that replenish-
ment necessarily occurs within a time Ro after depletion.
We make no assumption on the shape of this distribution.
In particular, Ry can be zero and R, can be infinite.

In the case of deterministic renewal (Sec. II), we saw
that the random walker is immortal when it is certain
to land on a food-containing site before starving, even
on the most unfavorable trajectories. The criterion for
immortality in this case is determined by R < R*, with
R* given in Eq. (1). For probabilistic renewal, the walker
is sure to land on a food-containing site before starving
if every renewal time in the support of the renewal-time
distribution is smaller than R*. Therefore, immortality
is assured when Ry < R*. However, if the upper bound
R is infinite, that is, if replenishment on some sites can
take an arbitrarily long time, immortality cannot occur.

On the other hand, if Ro > R*, there exist patterns
of steps for the random walker that lead to starvation,
as in the case of deterministic renewal. Hence the walker
is mortal. Additionally, the enumeration method pre-
sented above for deterministic renewal can be implement
in a similar manner for the case of probabilistic renewal.
In the probabilistic case, however, food does not reap-
pear at a fixed time after depletion but at a time that
is drawn from the renewal time distribution. What this
means practically is that the number of configurations in
probabilistic renewal is larger than that for deterministic
renewal. Moreover, if the support of the distribution of
renewal times is unbounded, the enumeration approach
fails because the number of configurations is infinite.

We also argued in Sec. II that there exists a second
transition inside the mortal regime between a sub-regime
in which dynamics of the renewal controls the lifetime
of the walker and a sub-regime where the lifetime be-
comes independent of the renewal dynamics. We inferred
the existence of this transition by constructing the ex-
tremal trajectory that demarcates this second transition
(Fig. 5). If renewal has not occurred at the origin when
the walker reaches this site at the end of the pattern of
steps of Fig. 5, then renewal has no impact on the tra-
jectory. Thus, the renewal independent regime arises if
every depleted site remains empty for at least R steps.
In the case of probabilistic renewal, this second transition
occurs when Ry > RT.

These results are summarized in the phase diagram of
Fig. 2; this is our key result.

B. Higher dimensions

We now turn to starving random walks on higher-
dimensional lattices for the general situation of proba-
bilistic renewal. The class of trajectories that are the
least favorable for the survival of walker (see Fig. 3), still
arises in higher dimensions. Hence the immortality crite-
rion Ry < R* derived in the previous subsection remains



valid, independent of the spatial dimension. Moreover, in
the mortal regime, the enumeration method still works
and can be used to determine the mean lifetime of a ran-
dom walker.

In contrast to the transition to immortality, a tran-
sition to a renewal-independent regime does not occur
in higher dimensions. The unique feature of one dimen-
sion is that the walker must traverse the desert that was
carved by its previous trajectory to reach replenished
sites. In contrast, in higher dimensions, there always
exist trajectories on which a forager can stay alive for an
arbitrarily long time and still return to the replenished
sites without starving, because it can avoid the desert
instead of having to cross it. Thus the renewal time—
no matter how long—always affects the lifetime of the
forager in greater than one dimension. Thus in higher
dimensions there is only an immortal regime and a mor-
tal regime in which the lifetime is function of the renewal
dynamics. The transition between these two regimes is
determined only by the upper bound of the distribution
of renewal times, and not by the shape of this distribu-
tion, or by the spatial dimension.

IV. SUMMARY AND CONCLUSION

To summarize, the renewal of resources has a dra-
matic effect on starving random walks. There exist three
regimes of behavior as a function of the renewal time R:
(i) an immortal regime where a forager can live forever,
(ii) a mortal regime where the forager lifetime is finite
and depends on R, and (iii) a renewal-independent mor-
tal regime where renewal does not affect the lifetime of a
forager. The latter arises only in one dimension, in which
the average forager lifetime equals the value obtained in
the absence of any renewal. In contrast, regimes (i) and
(ii) arise in any spatial dimension and are universal with
respect to the distribution of renewal times. The transi-
tions between these regimes depend only on the bounds
of the support of the renewal-time distribution and not
on its shape. Much of this new phenomenology is con-
trolled by the times between visits to distinct sites in a
random walk, an apparently unexplored feature of site
visitation statistics of random walks. Finally, we out-
lined an enumeration method to determine the mean for-
ager lifetime in the mortal regimes (ii) and (iii). Average
values of other basic observables, such as the number of
distinct sites visited at starvation, the number of sites in
the desert, the time spent in a certain configuration, can
also be extracted from this approach.

Immortality is the main new feature that arises as a
result of resource renewal. If a wandering organism can
survive without food longer than the time needed for re-
sources to be replenished, its lifetime is no longer limited
by starvation but rather by external constraints (such as
predation, diseases, life expectancy of the species, etc.).
We speculate that perhaps the metabolic capacity of a
given species is determined by the characteristic time for

renewal of resources.

This work represents a first step to provide insight of
the impact of resource renewal on the fate of a forager
that depletes its environment by consumption. While
most of our qualitative analysis was specific to the case
of one dimension, our approach applies for any spatial di-
mension and also to arbitrary renewal dynamics. A basic
question that we have not fully addressed is the analytic
determination of the mean lifetime of the walker in the
mortal regime. This calculation is of particular impor-
tance in two dimensions where it should be directly ap-
plicable to the modeling of animal behavior. In addition
to developing a more complete theory in two dimensions,
the inclusion of additional realistic features to this model,
such as sensory awareness of the forager, or interactions
between several foragers, such as sharing resources, are
needed to give a more realistic description of ecosystems.

We acknowledge NSF Grant No. DMR-1205797 (S. R.)
and ERC starting Grant No. FPTOpt-277998 (O. B.) for
partial support of this research.
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Appendix A: The bound R*

We provide the details for the determination of Eq. (1),
in the case of deterministic renewal. This bound for R*
depends on the parity of the metabolic capacity S be-
cause of the even-odd oscillations of the nearest-neighbor
random walk. As described in the main text, the most
unfavorable trajectories—on which the walker remains
the longest without eating—possess the common pattern
of eating two consecutive sites at one edge of the desert
and then wandering as long as possible inside the desert,
without depleting any additional site. This last feature
implies that the desert gradually shortens as renewal hap-
pens, finally confining these most unfavorable trajectories
to a two-site desert, made of the first two depleted sites
of the pattern (see Fig. 6).

PP P e S
i nesas:
Z1 - IN L
I I\ |
i
s

time

Figure 6: More detail of the common pattern (inside the
dashed rectangle) of all extremal trajectories for renewal time
R = 9. This pattern starts by depleting two consecutive sites
at one end of the desert (shaded in blue). The forager then
wanders inside this desert which gradually shortens (shaded
in red) until it reaches length 2 (shaded in yellow). The pat-
tern ends when the walker is sure to land on a food-containing
site. Green dots denote food-containing sites and the numbers
give the ages of each site.

Depending on the value of S, the walker either survives
long enough to eat when renewal happens on these two
sites (in the immortal regime), or starves (in the mortal
regime). We determine the maximal value of the renewal
time R* that corresponds to the immortal regime for an
example of most unfavorable trajectory for two consecu-
tive values of S (Fig. 7). The walker is sure to eat before
starving when the renewal time is R = R*, even on this
unfavorable trajectory (left column of Fig. 7), but can die
if R =R*+1 (right column of Fig. 7). For this example,
which can be generalized to every value of S, we see that

S
R* =
o

S even,

S odd. (A1)
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Figure 7: Destiny of the walker on the most unfavorable tra-
jectories, for: (left column) the maximal renewal time R*
that leads to immortality, and (right column) for the minimal
value of R that leads to mortality. The cases of odd and even
metabolic capacities S are shown in (a) and (b), respectively.
For both even and odd S, the maximal value of R that yields
immortality is the smallest even integer equal to or greater
than S§. Here T denotes the number of steps since the last
meal. The dots represent food and the cross indicates the
walker. Empty sites are labeled by the time elapsed since the
food on these sites was eaten.

Appendix B: The bound R'

We now give the details to derive Eq. (6) for the case of
deterministic renewal. Note that the bound for R also
depends on the parity of the metabolic capacity S be-
cause of the even-odd oscillations of the nearest-neighbor
random walk. If renewal is sufficiently quick, there exist
trajectories for which the walker can return to a replen-
ished site, in particular the origin of the walk, before
starving. On the other hand, if renewal is too slow, then
the walker either dies before this renewal happens, or

carves a desert that is too large to be crossed without
starving.

As mentioned in the main text, the maximal value Rf
of the renewal time for which the walker has a chance to
return to the origin after the resource on this site has been
renewed requires that: (i) the walker lives long enough for
this renewal to occur, and (ii) the walker must stay suf-
ficiently close to the origin to be able to reach it without
starving. The walker can satisfy these two constraints by
eating approximately every S steps and by staying within
a segment, of size 2S5 centered on the origin.

The trajectories on which the walker lives the longest
while remaining within S steps of the origin consist of
the following (Fig. 3): (i) The walker creates a desert of
S sites on one side of the origin, say the right. During
this creation of the desert, the walker waits as long as
possible between each meal, that is to say S steps if S is
odd, or § —1 steps if S is even. Indeed, starting from the
right edge of the desert, the walker needs an even number
of steps to come back to this edge; thus an odd number
of steps is required to eat (and deplete) the resource at
the next site on the right side. (ii) The walker crosses the
desert and reaches the site to the left of the origin after
S steps. (iii) The walker creates a mirror image desert
on the left side of the origin, by depleting S — 1 new
sites. (iv) The walker crosses the left desert and reaches
the origin after S steps. For the maximal value Rt of
the renewal time, the walker finally reaches the origin at
the end of stage (iv) at the time step where the origin
regenerates.

We now determine Rt by counting the number of steps
on this trajectory. The walker eats the site on the right of
the origin at time step 1, and then takes a time S(S —2)
if §is odd, and (S — 1)(S — 2) if S is even to complete
the phase (i). Similarly, the phase (iii) lasts S(S — 1) if
S is odd and (S —1)? if S is even. Moreover, the phases
(ii) and (iv) both last S steps independent of the parity
of §. Assembling these results yields the critical value:

S even,

2582 —3S +4
Rl = { S odd. (B1)
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