
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Solution of the multistate voter model and application to
strong neutrals in the naming game

William Pickering and Chjan Lim
Phys. Rev. E 93, 032318 — Published 21 March 2016

DOI: 10.1103/PhysRevE.93.032318

http://dx.doi.org/10.1103/PhysRevE.93.032318


Solution of the multi-state voter model and application to strong neutrals in the

naming game

William Pickering and Chjan Lim
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA

(Dated: January 26, 2016)

We consider the voter model with M states initially in the system. Using generating functions,
we pose the spectral problem for the Markov transition matrix and solve for all eigenvalues and
eigenvectors exactly. With this solution, we can find all future probability probability distributions,
the expected time for the system to condense from M states to M − 1 states, the moments of
consensus time, the expected local times, and the expected number of states over time. Furthermore,
when the initial distribution is uniform, such as when M = N , we can find simplified expressions for
these quantities. In particular, we show that the mean and variance of consensus time for M = N
is 1

N
(N −1)2 and 1

3
(π2

−9)(N −1)2 respectively. We verify these claims by simulation of the model
on complete and Erdős-Rényi graphs and show that the results also hold on these sparse networks.

I. INTRODUCTION

The voter model is a well studied model in social opin-
ion dynamics [1–5]. In the binary case, each node in a
network is endowed with one of two states. In a single up-
date, a node is chosen randomly and adopts the state of a
randomly chosen neighbor. Although the model typically
specifies that the states are binary, we study the case in
which there are initially M states [6–9]. This is only one
avenue of extended study of the voter model. Other vari-
ants that have been considered include nonlinear update
probabilities [10–14] and the introduction of committed
minorities (zealots) [15, 16]. The majority vote model is
similar to the voter model, with the key difference being
that the opinion of every neighbor is considered during
an update [17–19].

We assume M can take any value from 2 to N , where
N is the number of nodes in the network. As the sys-
tem evolves, it inevitably eliminates a state completely.
That is, there will almost surely be M − 1 distinct states
in the network at some finite future time. This process
is repeated until consensus is reached and one opinion
dominates the network.

The microscopic rules of the voter model are un-
changed by introducing more states in the multi-state ex-
tension that we consider. Other extensions of the model
that modify the update rules by introducing more states
have also been studied [7–9]. Furthermore, models with
more than two opinion states allow for the considera-
tion of neutral opinions, and the behavior of these indi-
viduals has a vital role in the resulting features of the
system. The two word Naming Game, for instance, is
a multi-state social and linguistic model that updates
with different rules than the voter model and has notice-
ably distinct features [20–24]. For the Naming Game,
there are intermediate opinion-states that assume indi-
viduals are flippant. These individuals always convey an
extreme opinion with equal probability. When compared
with the three state voter model, the resulting features
of the model are in great contrast with those of the orig-
inal Naming Game [23, 25, 26]. However, we propose a

variant of the two-word Naming Game that presumes
neutrals take the role of “devil’s advocates”. In this
variant, neutrals choose to speak the opposite opinion of
the listener and choose no message if speaking with an-
other neutral. We call these individuals strong neutrals

since they actively convert others to the neutral position.
For this discussion, we also assume that when extremists
speak with each other, they bypass the neutral state and
remain extreme.
This Naming Game variant with strong neutrals out-

lined above exactly corresponds to the voter model with
three opinion states. Therefore, the qualitative differ-
ences between the voter model and the Naming Game
is due to the role of neutrals. The third state in the
voter model can be thought of as the strongly neutral
position [27]. In this context, neutrality itself constitutes
an opinion of its own that is independent of the other
states. Moderate individuals who accept a compromise
between the two extreme beliefs while rejecting the ex-
tremes themselves would fall into this category. They
would tend to speak the moderate opinion instead of ei-
ther extremes. This paper will provide much insight into
the properties of social systems with strong neutrals in
contrast to the weak neutral cases that have been con-
sidered previously in the Naming Game.
One may observe that many social discussions pose

a dichotomy between opposing viewpoints. Despite the
unique characteristics of each individual person, like-
minded groups often form quickly and dominate the dis-
course. This is certainly evident when considering politi-
cal parties, which show that only a few distinct opinions
are expressed on a national scale. It may seem counterin-
tuitive that these associations form so quickly when indi-
vidual thought would initially provide for much disagree-
ment. We will show that the multi-state voter model
reconciles how social and political systems quickly con-
dense into only a few dominating opinions for any value
of M . Using innovative methods of analysis, we will con-
firm that when M = N , the expected time to consensus
is barely larger than when M = 2 [6]. Furthermore, it
will be shown that O(N) opinion states will be eliminated
in O(1) time. These results indicate that the opinions of
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individuals quickly condense together into a few domi-
nating groups and that the system reaches consensus at
a much slower rate.

We will outline a very powerful procedure that can di-
agonalize the transition matrix for the multi-state voter
model. This procedure is a generalized application of the
methods used to diagonalize the binary state voter model
[28]. The model is viewed as an urn problem in which
two balls are chosen randomly and placed in the urn from
which the second ball was chosen. By using generating
functions, we will solve for all eigenvalues and eigenvec-
tors of the transition matrix, which in turn allows us
to easily find all future probability distributions. These
techniques can be traced to the solution of the Ehren-
fest urn model [29]. The multi-state voter model can be
thought of as an M urn system will N balls distributed
amongst them with the same update rules. To solve this
urn system by generating functions, we cast the spectral
problem as a partial differential equation that can be
solved. This the most natural approach since each inde-
pendent variable in the generating function corresponds
to an urn/opinion state. We verify previously computed
solutions (e.g. states over time) in addition to deriving
new solutions, such as local times and the moments of
the time to consensus.

The paper will be outlined as follows. In Sec. II, we
clearly define the complete graph model and the nota-
tion that will be used. In Sec. III, we will consider the
Markov transition matrix for a single update and solve
for its eigenvalues and eigenvectors. We use generating
functions to solve the spectral problem [28, 29]. This so-
lution has several applications and consequences that will
be described in detail in Sec. IV. In particular, we con-
sider the m step propagator, moments of consensus time,
expected local time, expected time to collapse, and exact
moments of consensus time. Also in Sec. IV, we consider
the case when the initial distribution is uniform, which
is always the case when M = N . In uniform cases, the
solutions we provide simplify considerably. We also com-
pare the exact solutions to simulation data of the voter
model on the complete graph and Erdős-Rényi random
graphs [30]. Numerical results indicate that solutions on
the complete graph also hold for Erdős-Rényi sparse net-
works.

II. THE MULTI-STATE VOTER MODEL

We assume throughout that there are N nodes and
that every node is connected to all other nodes. We ap-
ply the model on the complete graph primarily for ana-
lytical tractability. Each node in the network is initially
endowed with one of M possible opinion states denoted
by A1, A2, . . . , AM . We define the components of n(m)
to be total number of nodes with opinion Aj . The voter
model prescribes the random walk for the macro-state
vector n. That is, we can write for time step m,







n1(m+ 1)
...

nM (m+ 1)






=







n1(m)
...

nM (m)






+







∆n1(m)
...

∆nM (m)






. (1)

Here, ∆n contains the random nature of the walk at time
step m. In a single update, ∆ni = 1 and ∆nj = −1
for some i and j, which implies that ∆n = ei − ej for
standard basis vectors ek. The probability that ∆n takes
this value is prescribed by the rules of the voter model
and is given by

Pr{∆n = ei − ej |n(m) = α} =
αiαj

N(N − 1)
. (2)

This accounts for all lazy steps in the system as well since
there is a non-zero probability that ∆n = 0.

We define the macro-state probability distribution by

a
(m)
α = Pr{n(m) = α}. We now define a generating

function for the probability distribution of macro-states
at time step m as

Q(m)(x) =
∑

|α|=N

a(m)
α xα. (3)

The vector power is interpreted in the sense of the multi-
index notation of Laurent Schwartz [31], which shall be
used extensively. This generating function allows us to
very easily find a succinct expression for the Markov tran-
sition matrix for a single step of the multi voter model.
The form of the generating function allows us to de-
termine the shift and differentiation properties of Q(m).
These properties are given by

1.
αiαj

N(N−1)a
(m)
α −→

xixj

N(N−1)Q
(m)
xixj

2. a
(m)
α−ei+ej

−→ xi

xj
Q(m) [28, 32–34].

Using these properties, we can rewrite the spectral prob-
lem as an equivalent partial differential equation for the
generating function of the macro-state probability distri-
bution as

Q(m+1) −Q(m) =
M−1
∑

i=1

M
∑

j=i+1

(xi − xj)
2

N(N − 1)

∂2Q(m)

∂xi∂xj

. (4)

This constitutes a transition matrix that we wish to di-
agonalize. Given the diagonalization of the transition
matrix, we can find all future macro-state probability
distributions explicitly, which yield several exact solu-
tions. To accomplish this, we proceed to solve for all of
its eigenvalues and eigenvectors.
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III. SPECTRAL SOLUTION

We can solve the partial differential equation given in
Eqn. (4) exactly for all eigenvalues and eigenfunctions.
To do this, we write the eigenvalue problem in generating
function form. For eigenvalue λ with eigenvector v with
components cα. Let

G(x) =
∑

|α|=N

cαx
α (5)

be the generating function for the eigenvector v. Fur-
thermore, we require that each component in the vector
α is non-negative. This is because the index α directly
represents the number of individuals with each opinion
type. We can rewrite the eigenvalue problem for Eqn.
(4) as

N(N − 1)(λ− 1)G =
M−1
∑

i=1

M
∑

j=i+1

(xi − xj)
2 ∂2G

∂xi∂xj

. (6)

We solve for both λ and G by utilizing a linear change
of variables x → u and G(x) = H(u). Since the change
of variables is linear, we expect H to have the same form
as G. So, we define bα so that

H(u) =
∑

|α|=N

bαu
α. (7)

The change of variables is chosen so that the resulting
difference equation for bα is explicit. Having an explicit
equation for bα will allow us to to find all eigenvalues
and eigenvectors exactly. The change of variables that
accomplishes this is given to be

u1 = x1 − xM (8)

... (9)

uM−1 = xM−1 − xM (10)

uM = xM . (11)

With this change of variables we can write Eqn. (6) as

N(N − 1)(λ− 1)H =
M−1
∑

i=1

[

u2
i

(

HuiuM
−

M−1
∑

j=1

Huiuj

)

+

M−1
∑

j=i+1

(ui − uj)
2Huiuj

]

. (12)

To simplify this equation, we use the following identity:

M−1
∑

i=1

M−1
∑

j=i+1

(u2
i + u2

j)Huiuj
=

M−1
∑

i=1

(M−1
∑

j=1

u2
iHuiuj

− u2
iHuiui

)

. (13)

The proof of this identity is given in Appendix A. Ap-
plying the identity and canceling like terms reduces Eqn.
(13) to

N(N − 1)(λ− 1)H =
M−1
∑

i=1

[

− u2
iHuiui

−

M−1
∑

j=i+1

2uiujHuiuj
+ u2

iHuiuM

]

. (14)

We now rewrite this as a difference equation for the co-
efficients of H . By Eqn. (7), we obtain

N(N − 1)(λ− 1)bα =

M−1
∑

i=1

[

− αi(αi − 1)bα

−

M−1
∑

j=i+1

2αiαjbα + (αi − 1)(αM + 1)bα−ei+eM

]

. (15)

Let w(α) =
∑M−1

i=1 αi. We use this to reduce Eqn. (15)
to an explicit form given by

bα =
(αM + 1)

∑M−1
i=1 (αi − 1)bα−ei+eM

N(N − 1)(λ− 1) + w(α)[w(α) − 1]
. (16)

Recall that each αi ≥ 0.
Observe that if Eqn. (16) is non-singular for every α,

then every bα = 0. Since this corresponds to the triv-
ial solution to the eigenvalue problem, we discard these
solutions. Requiring a singularity in Eqn. (16) implies
that the eigenvalues for the transition matrix of the M
state voter model are

λw(α) = 1−
w(α)[w(α) − 1]

N(N − 1)
. (17)

Since many values ofα will yield the same value for w(α),
it is clear that there will be many repeated eigenvalues.
Given that w(α) ranges from 0 to N , the set of eigen-
values is the same for all values of M . However, the
multiplicities of each eigenvalue will vary with M .
The components of the eigenvectors can be found by

transforming back from H(u) to G(x). This will yield a
relationship between cα and bα. Using generating func-
tion techniques, this relationship is given by

cα =
∑

|β|=N

bβ(−1)αM−βM

M−1
∏

i=1

(

βi

αi

)

. (18)

Here, β is a multi-index that has M non-negative com-
ponents, similar to α. The mathematical derivation of
Eqn. (18) is given in Appendix B.
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IV. APPLICATIONS

With the solution to the spectral problem available, we
can exactly calculate several quantities and estimate oth-
ers. Below we define and calculate the expected collapse
times, the moments of consensus time, the expected lo-
cal times, and the expected number of states over time.
We also consider the special case when M = N , which is
when all nodes begin with a distinct opinion. The connec-
tion between the spectral problem and these exact solu-
tions is as follows. With all eigenvalues and eigenvectors,
we can explicitly diagonalize the Markov transition ma-
trix for the macrostates of the system. The probability of
achieving each macrostate governs each of the following
quantities, so having an exact m-step propagator allows
us to exactly calculate these solutions.

A. Moments of Collapse Times

The collapse times, τk, are the amount of scaled time,
m/N , until a state is eliminated from the system. That
is, if there are k states in the system, then the collapse
time is the time until only k − 1 states are present.
Once eliminated, a state can never be reintroduced in
the system. This process is repeated until each individ-
ual adopts a single consensus state.
Here, we estimate the collapse times for each k. We do

this by estimating the probability that k have survived
by at time m. We call this the survival probability and
denote it by Sk(m). Given that the system is martingale
and that the solution of the spectral problem is known,
the survival probability for M states can be bounded as
follows:

Sk(m) = O(λm
k ). (19)

One can verify that the dominant eigenvalues are λk by
considering the eigenvector cα = 1 and assuming that
the index α corresponds to macrostates where k states
have survived. This eigenvector provides a uniform upper
bound for the survival probability the system.
To find the moments of the time to collapse, we use

this to estimate the probability that the system collapses
at time m. This is equal to the difference between the
survival probabilities from time step m − 1 to m. That
is, by Eqn. (19), the probability of collapse at time m
is O[λm−1

k (1 − λk)]. Therefore, we can write the pth
moments of collapse time as

E[τpk ] = (1 − λk)

∞
∑

m=1

O
(

λm
k

(m

N

)p)

(20)

= O

{

p!

[

N − 1

k(k − 1)

]p}

. (21)

The estimate varies for various initial conditions, but is
asymptotically correct for all N , k, and p. We will make

use of this result when determining the asymptotic be-
havior of the moments of consensus time and the ex-
pected number of states over time.

B. Moments of Consensus Time

The consensus time, τ , is the amount of scaled time
until every individual adopts a single opinion. All con-
sensus states are absorbing, so once this state has been
achieved, all dynamics in the system halt. We can use the
solution to the spectral problem to find all moments of
the consensus time. Furthermore, we will use estimates
to find the asymptotic behavior for large N .
To find the consensus time, we define l(m) to be the

probability that the system reaches consensus at time m.
This is equal to the probability that the system has only
one individual that has a different state than all of the
others and then adopts the majority opinion. Therefore,
we write

l(m) =
1

N

M
∑

i=1

M
∑

j=1

j 6=i

a
(m)
ei+(N−1)ej

. (22)

Given the solution of the spectral problem, we can rep-
resent the macrostate probability as

a(m)
α =

∑

β

dβλ
m
β [vβ]α, (23)

where dα is the initial distribution expressed in the eigen-
basis. Let

sβ =

M
∑

i=1

M
∑

j=1

j 6=i

dβ [vβ]ei+(N−1)ej
. (24)

With this, the moments of the consensus time are given
by

E[τp] =

∞
∑

m=1

l(m)mp (25)

=
1

N

∞
∑

m=1

M
∑

i=1

M
∑

j=1

j 6=i

∑

β

dβλ
m
β [vβ ]ei+(N−1)ej

mp

(26)

∼
1

N

∑

β

p!sβ
(1 − λβ)p+1

. (27)

This is an exact solution for the moments of consensus
time. Note that the quantity sβ depends on the initial
distribution through dα. The eigenvectors, vβ can be
determined component-wise by Eqn. (18).
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The formula given in Eqn. (27) is exact for all N ,
p, and initial conditions. We now extract asymptotic
information about the moments of consensus time. In
particular, observe that the consensus time is the sum of
all collapse times. Therefore,

τp =

(

M
∑

k=2

τk

)p

(28)

=
∑

|γ|=p

(

p

γ

) M
∏

k=2

τγk

k . (29)

Here, γ is a vector with components γ2 . . . γM . The
multi-index notation is used to denote the multinomial
coefficients as well. Also, the collapse times are indepen-
dent random variables. So, when taking the expected
value of τp, we obtain

E[τp] =
∑

|γ|=p

(

p

γ

) M
∏

k=2

E[τγk

k ]. (30)

Using the estimate in Eqn. (21), this becomes

E[τp] =
∑

|γ|=p

(

p

γ

) M
∏

k=2

O

{

γk!

[N(1− λk)]γk

}

(31)

= p!N−p
∑

|γ|=p

M
∏

k=2

O

[

1

(1− λk)γk

]

(32)

= O



p!Np
∑

|γ|=p

M
∏

k=2

[

1

k(k − 1)

]γk



 (33)

= O



p!Np2−p
∑

|γ|=p

M
∏

k=3

[

2

k(k − 1)

]γk



 . (34)

We take the big-O outside of the product because as
the system evolves, the macro-state probability distribu-
tion tends to the uniform distribution, which corresponds
to the dominant eigenvalue in the system. This means
that the estimate given in Eqn. (21) without the big-
O is the exact solution. Furthermore, the moments are
bounded by the dynamics when M = N , which exam-
ined in Sec. IVE. The initial condition also may provide
further dependence on M , however this dependence is
bounded, which does not affect the validity of the result.
Let

η(M,p) =
∑

|γ|=p

M
∏

k=3

[

2

k(k − 1)

]γk

(35)

with

γ = (γ2, γ3, . . . , γM ). (36)

We can therefore write

E[τp] = O[p!Np2−pη(M,p)] (37)

We will now provide some of the fundamental proper-
ties of η(M,p). Intuitively, the meaning of η(M,p) is the
correction made to the estimate by changing M . First,
we show that η(M,p) is bounded above:

η(M,p) ≤
∑

0≤γ≤p

M
∏

k=3

[

2

k(k − 1)

]γk

(38)

=

M
∏

k=3

1−
[

2
k(k−1)

]p+1

1−
[

2
k(k−1)

] (39)

≤

M
∏

k=3

k(k − 1)

k(k − 1)− 2
(40)

= 3

(

M − 1

M + 1

)

(41)

This result shows that the moments of consensus time
can be estimated uniformly in M by O(p!Np2−p). The
dependence on M affects an O(1) factor of the moments
of consensus time that one may not wish to casually ig-
nore. For instance, when M = 2, we have η(2, p) = 1
whereas η(M,p) ≤ 3 for large M . This suggests that the
uniform estimate can be up to three times as high as the
exact solution as M changes. Furthermore, for fixed M
and as p → ∞, the estimate given by Eq. (41) is exact.
Therefore, we have that

η(M,∞) = 3

(

M − 1

M + 1

)

. (42)

For the first and second moments, evaluations of
η(M,p) are also given:

η(M, 1) = 2

(

1−
1

M

)

(43)

η(M, 2) =
2

3
(π2 − 9) + 2

(

1−
1

M

)2

−
2

3M3
+O

(

M−4
)

.

(44)

Eqn. (43) shows that the expected consensus time is
always O(N) regardless of the number of initial states
M . We use these particular cases will be used explicitly
in Sec. IVE when studying the exact solutions of the
moments of the consensus.
For small M , η(M,p) can be easily calculated exactly.

For M = 2, 3, 4, we have

η(2, p) = 1 (45)

η(3, p) =
3

2
−

3−p

2
(46)

η(4, p) =
9

5
− 3−p +

6−p

5
. (47)



6

1 2 3 4 5 6 7

5
10

15
20

25

p

ln
(T

p 
/ p

!)

Complete Graph
Erdos Renyi

FIG. 1. Simulation of the voter model for N = 100 and
M = 50 on complete and Erdős-Rényi networks, G(N, 1/3),
is plotted with p. For each p, the simulation is averaged over
1, 000 runs. Since η is bounded, Eqn. (37) predicts a linear
relationship with p with slope ln(100) − ln(2) ≈ 3.912. The
best fit line for the data is given, which has slope 3.951. Fur-
thermore, the data for these sparse networks accurately follow
the complete graph paradigm.

Note that as p → ∞, these solutions for η(M,p) exactly
match the upper bound given in Eqn. (41). The depen-
dence on p for each η(M,p) always takes the form of an
exponential attraction to the upper bound in Eqn. (41).

C. Expected Local Times

The local time is defined as the amount of scaled time,
m/N , spent at each macrostate n prior to consensus.
If Mα(m) is the number of times state n = α has been
visited by time m, then one can construct a random walk
model for each Mα. That is, we write

Mα(m+ 1) = Mα(m) + ∆Mα(m). (48)

The expected local time, therefore, is E[Mα(∞)] with
this notation. Taking the expected value of Eqn. (48)
and summing from m = 0 to m = ∞, we get

E[Mα(∞)] = E[Mα(0)] +
∞
∑

m=0

E[∆Mα(m)]. (49)

Now, Mα(0) = 1 if n(0) = α and equals 0 otherwise.

Therefore, E[Mα(0)] = a
(0)
α , which is given by the initial

condition. Similarly, ∆Mα(m) = 1 if n(m + 1) = α and

3.0 3.5 4.0 4.5

6
7

8
9

ln(N)

ln
(T

2 
/ 2

!)

Complete Graph
Erdos Renyi

FIG. 2. Simulation of the voter model on complete and Erdős-
Rényi networks, G(N, 1/3), is plotted with lnN . Data is av-
eraged over 2, 000 runs with p = 2, M = 20. For the complete
graph, Eqn. (37) predicts a linear relationship between the
second moment and lnN with a slope of 2. The best fit line for
the data on the complete graph is given, which has a slope
of 2.094. Data for these sparse networks is also accurately
predicted by complete graph results.

equals 0 otherwise. The probability that ∆Mα(m) = 1

is a
(m+1)
α . So, the local time for state n = α is

E[Mα(∞)] = a(0)α +

∞
∑

m=0

a(m+1)
α (50)

=
∞
∑

m=0

a(m)
α (51)

We use the diagonalization given in Eqn. (23) to com-
pute this. We ignore the terms that have eigenvalue 1
however because these correspond to consensus states.
We only consider non-absorbing states when consider-
ing local time. Let E[M ] take components E[Mα(∞)].
Therefore, the local time reduces to

E[M ] =
∑

β

λβ 6=1

dβvβ

1− λβ

. (52)

The components of M that correspond to consensus
states are meaningless, as it is understood that when the
system enters a consensus state, the dynamics halt en-
tirely. The other components are exactly equal to the
expected local time for their respective macrostates.



7

0 5 10 15 20 25 30

0
5

10
15

20
25

30

n1

n 2

0

1

2

3

4

5

FIG. 3. Example of expected local times for N = 30, and
M = 3. The initial condition is n1(0) = n2(0) = 10. Most
of the time is spent on the boundary where one of the states
had been eliminated. Each macrostate on the boundary has
nearly equal local time.

D. Expected States over Time

Given the solution to the spectral problem and the
expected collapse times, finding the expected number of
states over time, s(t), is straightforward. To do this, we
sum the collapse times, τk, from k = s + 1 to k = M .
Using Eqn. (21), we show that the time for s states to
exist in the system is

t =

M
∑

k=s+1

O

(

N

k(k − 1)

)

(53)

= O

[

N

(

1

s
−

1

M

)]

(54)

Here, t is interpreted as the scaled time m/N . Solving for
S shows that the expected number of states as a function
of time is

s(t) =

(

1

M
+

ct

N

)−1

(55)

for a constant rate c. This result is in agreement with
the literature regarding the multi-state voter model [6].

E. Ordering Dynamics for Uniform Distributions
and M = N

While the above solutions hold for all M , N , p, and

initial condition a
(0)
α , the ordering dynamics of the model

reduce significantly in the special case where the initial
condition is uniformly distributed. This is because the
uniform distribution is also an eigenvector for all M .
The eigenvalue that corresponds to this eigenvector is λk

when there are k distinct opinions in the system. There-
fore, the diagonalization reduces considerably, which al-
lows us to find simplified expressions for the above quan-
tities.
A special case of a uniformly distributed initial con-

dition is when M = N . This is when each individual
adopts a unique, personal opinion state prior to global
discussion. In this case, there is only one possible ini-
tial condition, and therefore uniformly distributed. Also,
notice that in the next iteration of the model, one state
will have been eliminated with probability 1. In this time
step, two individuals will have the same state while the
others possess distinct states. The probability distribu-
tion at this time step is uniform (constant). That is,
each state is equally likely to have the two individuals
than any other state during the first time step.
We can compute τk exactly for each k for the uni-

form case. Because the probability distribution of the
macrostates is an eigenvector, the estimates we calcu-
lated above are exact. In particular, the survival prob-
ability is given to be Sk(m) = λm

k . Thus, making this
substitution into the derivation given in Sec. IVA, we
find that the expected time to collapse from k states to
k − 1 states is given to be exactly

E[τk] =
N − 1

k(k − 1)
(56)

We now use this to find the exact number of states over
time. Recall from Sec. IVD that the time to achieve
s states is the sum of collapse times from k = s + 1 to
k = M . Therefore, we obtain

t =

M
∑

k=s+1

N − 1

k(k − 1)
(57)

= (N − 1)

(

1

s
−

1

M

)

(58)

Therefore, the expected number of states is given to be

s(t) =

(

t

N − 1
+

1

M

)−1

(59)

When M = O(N), this shows that O(N) states will
be eliminated in O(1) time. For example, take t = 1 and
M = N and observe that s(1) ∼ N/2. This shows that
the system retains only half of its initial number of states
at t = 1, which corresponds to a sweep of nodes in the
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FIG. 4. Data for the number of states in the system over
time is plotted for the voter model on the complete graph
and Erdős-Rényi networks, G(N, 1/3). In each case, we take
N = 100 and M = 100 and average the results over 1, 000
runs. The exact solution given by Eqn. (59) is also plotted.
This numerically suggests that the complete graph paradigm
accurately describes the dynamics on these sparse networks.

network. For any t = O(1), we find that only a fraction of
the initial number of states remain, so O(N) states were
eliminated in this time. This shows that these systems
quickly converge to O(1) states relative to the consensus
time.
Taking s = 1, the resulting value of t is the expected

time to reach consensus. Doing so shows that the ex-
pected time to consensus is

E[τ ] =
(N − 1)(M − 1)

M
. (60)

For M = N , this result also shows that the expected
number of interactions between individuals until consen-
sus is reached is exactly (N − 1)2 and that the consensus
time as close to N . When M = 2, the expected consen-
sus time is at most N ln 2 [35], which is not much less
than the M = N case.
We also expand the methods in Sec. IVB to find all

moments of consensus time. By combining the observa-
tion in Eqn. (30) with Eqn. (56), we can find that

E[τp] = p!(N − 1)p2−pη(M,p). (61)

By using Eqn. (43), note that the expected time to con-
sensus given in Eqn. (60) agrees with this result.
To find the second moment of consensus time, we apply

Eqn. (44) to Eqn. (61) to show that

E[τ2] = (N − 1)2

[

1

3
(π2 − 9) +

(

1−
1

M

)2

−
1

3M3
+O

(

1

M4

)

]

. (62)

Fig. 5 features this result. We can also use this to find
the variance of the consensus time. We combine Eqn.
(62) with the the p = 1 case to find that

V ar(τ) = (N − 1)2

[

1

3
(π2 − 9)−

1

3M3
+O

(

1

M4

)

]

.

(63)

This shows that the variance of the of the consensus
time for uniform distributions does not change much
with M . Furthermore, taking M = N , the first term
in the expansion makes for a good estimate, with higher
order terms being O(N−1). So, for M = N , we have
V ar(τ) ∼ 1

3 (π
2 − 9)(N − 1)2.
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00
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12

00
0

14
00
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16

00
0

M

T
2

Simulation
Exact
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FIG. 5. Simulation data for the second moment of consensus
time, T2, with N = 100 over 30, 000 runs is plotted. The
exact solution given in Eqn. (62) is given as the solid curve.
In addition, the upper bound found by applying Eqn. (39)
to Eqn. (61) is plotted as the dashed line. The upper bound
overestimates the data by a factor of 1.107007 at most.

V. CONCLUSIONS

The discussions above have shown many solutions to
the voter model. Some of these solutions, such as the
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expected time to consensus and the expected states over
time [6], confirm existing results about the ordering dy-
namics found by other techniques. The other solutions
require the above spectral analysis to address fully. In
particular, we found all moments of collapse time, all ex-
pected local times, and provided closed form expressions
for all moments of the consensus time for uniform ini-
tial distributions. We then used this to find the mean
and variance of the consensus time and showed that the
variance converges cubicly in M .
The above results offer several clues into the order-

ing of social systems. Eqn. (59) shows that only O(1)
time is needed until any constant fraction (e.g. 5%) of
the number of opinions remain in the system. This shows
that small groups of individuals assimilate very quickly to
form larger groups. In contrast, the time to achieve con-
sensus is expected to be much larger: t = O(N). These
observations have deep social meaning as it indicates that
large groups of the same opinion are more robust than
smaller groups. As the number of states in the system
grows, then the average size of each group sharing each
opinion decreases. With small group size, the above re-
sults indicate that it takes little time for these groups
to assimilate into larger, possibly majority groups. How-
ever, when there are fewer but larger groups, then much
more time and effort is needed for these groups to agree
upon a consensus opinion.
The results and methods found here show that there is

potential to solve other general opinion problems. Sim-
ilar multi-state models that may be solvable by these
techniques include the multi-allelic Moran model and the
diploid Moran model of Genetic Drift [36–38]. The K-
word Naming Game is one such model that has many
more than 2 states. The Naming Game with K-words
has 2K − 1 states, which makes numerical solution of the
ODE dynamics difficult [39]. The methods and results
given here are purely analytical and therefore can circum-
vent those numerical challenges. Compared to the M = 3
case of the voter model, the Naming Game has a much
smaller consensus time of O(lnN) [22, 40] compared to
the O(N) time of the 3-voter model. The variance of the
consensus time for the voter model is about 6.944× 104

for N = 500, which is lower than for the Naming Game,
whose variance is around 1.1 × 107 [41] with committed
fraction of 20%. Even though the Naming Game appears
to give a higher variance, the result also shows that it is
linear with N , whereas for the 3-voter, we showed that it
is quadratic. So, for N large enough, the variance of con-
sensus time for the 3-voter model will eventually become
much larger.
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Appendix A: Proof of Identity

Here we prove the identity given in Eqn. (13) that was
utilized to solve for all eigenvalues and eigenvectors of
the multi-state voter model. To begin, consider

M−1
∑

i=1

M−1
∑

j=1

u2
iHuiuj

=

M−1
∑

i=1





i
∑

j=1

u2
iHuiuj

+

M−1
∑

j=i+1

u2
iHuiuj



 .

(A1)
For the first double sum on the right hand side, we inter-
change the sums. Because the sums are dependent, we
obtain

M−1
∑

i=1

M−1
∑

j=1

u2
iHuiuj

=

M−1
∑

j=1

M−1
∑

i=j

u2
iHuiuj

+

M−1
∑

i=1

M−1
∑

j=i+1

u2
iHuiuj

.

(A2)
We relabel i ↔ j in the first sum on the right hand side
and separate the i = j term to obtain.

M−1
∑

i=1

M−1
∑

j=1

u2
iHuiuj

=

M−1
∑

i=1



u2
iHuiui

+

M−1
∑

j=i+1

u2
jHuiuj





+

M−1
∑

i=1

M−1
∑

j=i+1

u2
iHuiuj

. (A3)

Rearranging terms in this equation shows that

M−1
∑

j=i+1

(u2
i+u2

j)Huiuj
=

M−1
∑

i=1





M−1
∑

j=1

u2
iHuiuj

− u2
iHuiui



 .

(A4)

This concludes the proof of the identity of Eqn. (13).

Appendix B: Calculation of Eigenvector Components

In this section, we utilize generating function tech-
niques to relate bα to cα. One strategy is to substitute
u → x into the definition of H(u) and combine all terms
together. By definition, this must equal G(x) and so the
resulting coefficients must be cα. For large M , this be-
comes cumbersome, so we propose a more general means
of finding the relationship for any M using differentiation
properties of the generating functions. In particular, for
multi-index derivative operator Dα where |α| = N , we
have

DαG(x) =
∑

|β|=N

cβ(β)αx
β−α. (B1)
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Here, (β)α is the multi-index Pochhammer symbol,
which is defined by (β1)α1

. . . (βM )αM
. Because we de-

fined |α| = N , the only term in the sum that is non-
zero is when β = α. Therefore, DαG = α!cα, where
α! = α1! . . . αM !. With this observation, we use the defi-
nition of H to obtain

G(x) = H(u(x)) (B2)

=
∑

|β|=N

bβ

[

M−1
∏

i=1

(xi − xM )βi

]

xβM

M (B3)

=
∑

|β|=N

bβ

[

M−1
∏

i=1

βi
∑

γi=0

(

βi

γi

)

(−1)βi−γixγi

i xβi−γi

M

]

xβM

M .

(B4)

Simplifying the expression on the right side gives

G(x) =
∑

|β|=N

bβ
∑

0≤γ≤β

[

M−1
∏

i=1

(

βi

γi

)

xγi

i

]

×

(−1)N−βM−|γ|x
N−|γ|
M . (B5)

Now we take Dα of this equation for |α| = N . We found
that on the left side, we get α!cα. Therefore, we obtain

α!cα =
∑

|β|=N

bβ

[

M−1
∏

i=1

(

βi

γi

)

αi!

]

(−1)αM−βMαM !. (B6)

Therefore, we find that

cα =
∑

|β|=N

bβ(−1)αM−βM

M−1
∏

i=1

(

βi

γi

)

, (B7)

which is the desired relationship stated in Eqn. (18).
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[9] X. Castelló, V. Egúıluz, and M. S. Miguel, New J. Phys.

8, 308 (2006).
[10] M. De Oliveira, J. Mendes, and M. Santos, J. Phys. A

26, 2317 (1993).
[11] J. T. Cox and R. Durrett, Nonlinear voter models

(Springer, 1991).
[12] J.-M. Drouffe and C. Godrèche, J. Phys. A 32, 249
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