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The spatial distribution of people exhibits clustering across a wide range of scales, from household
(∼ 10−2 km) to continental (∼ 104 km) scales. Empirical data indicates simple power-law scalings
for the size distribution of cities (known as Zipf’s law) and the population density fluctuations as a
function of scale. Using techniques from random field theory and statistical physics, we show that
these power laws are fundamentally a consequence of the scale-free spatial clustering of human popu-
lations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of
scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our
theory by empirically measuring the power spectrum of population density fluctuations and show
that the logarithmic slope α = 2.04 ± 0.09, in excellent agreement with our theoretical prediction
α = 2. The model enables the analytic computation of many new predictions by importing the
mathematical formalism of random fields.

I. INTRODUCTION

Human populations exhibit remarkably simple proper-
ties given the complexity of socioeconomic interactions
between humans and their environments[1]. One such
example is the well known Zipf’s law[2] for cities: the
rank of a city is inversely proportional to the number of
people who live in the city. If the most populous city in
the United States has a population of Nmax,US ∼ 8×106,
the second most populous city will have a population of
1
2Nmax,US ∼ 4 × 106, the third 1

3Nmax,US ∼ 2.7 × 106,
and so forth. This simple relation fits empirical data
extremely well[3, 4]. A mathematically equivalent for-
mulation of Zipf’s law is that the underlying distribution
of cities follows a power law[5]; namely, the probability
that a city has a population N scales as 1/N2.

The remarkable simplicity and empirical success of
Zipf’s law have attracted significant theoretical attention
and debate[3, 6, 7], though there is no consensus on the
origin of Zipf’s law. Existing work treats cities as the
fundamental entities of the theory, with population as a
property of each city. For example, Gibrat’s law applied
to cities[3, 8, 9], which states that the fractional growth
rate of a city is independent of its population, will drive
the distribution of city populations to a log-normal dis-
tribution. The tail of the log-normal distribution then
gives rise Zipf’s law.

Our approach is conceptually different: we treat the
population density as the fundamental quantity, thinking
of cities as objects that form when the population den-
sity exceeds a critical threshold. The situation is there-
fore conceptually and mathematically analogous to the
formation of galaxies in the universe, where non-linear
gravitational collapse occurs when the matter density ex-
ceed some critical value. Our conceptual advance here is
also a practical one, since we can apply the mathemati-
cal tools developed for analyzing random fields[10] to the
problem at hand.

Before proceeding with a technical derivation of our re-
sults, let us briefly summarize them. The starting point

is to model human population density as a random func-
tion of spatial position. A function of spatial position is
a field, and thus human population density will be mod-
eled as a random field (for a review of relevant topics in
random fields, see [11, 12] and especially [13]). To lowest
order, a single random variable in elementary statistics is
characterized by a mean and a variance. A random field
may be regarded as a higher dimensional generalization
of a single random variable. By analogy, a random field
is characterized by a mean and a power spectrum, which
can be thought of as a generalization of variance. The
power spectrum gives the amount of fluctuations of the
field as a function of scale. To derive the form of the
power spectrum for human population density, we in-
voke scale-invariant random growth, similar in spirit to
Gibrat’s law.

We move on to derive Zipf’s law. Our derivations
involve the simple assumption that some cities emerge
above some critical population density threshold. To
count the number of cities in our model, one must an-
swer the following mathematical question: given a ran-
dom field characterized by a power spectrum, how often
does the random field take on values greater than a cer-
tain threshold? This is a frequently asked question in
the context of cosmology, and the Press-Schechter (PS)
formalism allows us to analytically compute the answer.

We demonstrate that our derivation of Zipf’s law is
more general than the motivating random growth model;
we argue that the only key ingredient is scale invariance
in two spatial dimensions. In other words, whereas previ-
ous work tends to focus on how Zipf’s law emerges from
concrete models, we argue that Zipf’s law naturally oc-
curs in a very large class of statistical models. In the lan-
guage of statistical physics[12], the existence of Zipf’s law
is only a function of the universality class of the statisti-
cal model; it is independent of the “microscopic” details
of the system’s dynamics which are undoubtedly complex
in the case of human populations.



2

II. DERIVATION OF ZIPF’S LAW

We now proceed with the detailed derivation. To start,
consider the human population density ρ as a function
on R2, the 2D Euclidean plane. Since we will be inter-
ested in regions much smaller in size than the radius of
the Earth, we will ignore the effects of curvature. The
fluctuations relative to the average population density
δ(x) ≡ [(ρ(x)/ρ̄)− 1] can be expanded in Fourier modes

δ(x) =
1

2π

∫
d2k δk e

−ikx.

Up to a conventional normalization factor of 2π, this
equation simply rewrites the population fluctuations as a
sum of plane waves e−ikx, each weighted by a factor δk.
Since the left hand side is a random variable, the right
hand side must also be a random variable; since every
term except for δk on the right hand side is manifestly
deterministic, δk must be a continuum of random vari-
ables, with one random variable for each wave vector k.
Just as an ordinary random variable is characterized by
a variance, each δk is characterized by a number P (k)
called the power spectrum, which is defined as

〈δk δ∗k′〉 = (2π)2δ2D(k− k′)P (k), (1)

where δD is the Dirac delta function (not to be confused
with the fractional over-density δ(x). By assuming rota-
tional symmetry, the power spectrum becomes a function
only of magnitude P (k) = P (k). Equation (1) makes pre-
cise the statement that the power spectrum P (k) quanti-
fies the amount of statistical fluctuations associated with
a given frequency k.

It is conventional to define a dimensionless power spec-
trum in the number density ∆2(k) ≡ k2P (k)/(2π), which
represents the typical (squared) fractional over-density of

people (δρ/ρ)
2

on the spatial scale ∼ 1/k. To make fur-
ther progress, we must fix the functional form of ∆(k)
by some theoretical principle. To this end, consider an
over-density of size ∼ 1/k. At a discrete time step, this
over-density might grow or shrink in spatial coverage. As
a concrete example, consider a collection of farms (with a
characteristic population density of a few people per typ-
ical farm area) in otherwise relatively uninhabited coun-
tryside. At each time step, a farm could be added or
destroyed. In this way, our unifying principle of random
walkers is conceptually similar to previous work on the
random growth of firms [14]. Therefore, the spatial size of
the over-density might grow or shrink, while δρ/ρ (a num-
ber associated with farms) will be held constant. More
precisely, we define a monotonically decreasing function
X(k) such that limk→∞X = 0, which quantifies the spa-
tial extent of an over-density. This function might rep-
resent the area of the over-density X(k) ∝ 1/k2 or its
perimeter X(k) ∝ 1/k, but our derivation will not de-
pend on the detailed form of X. We can then perform
a change of variables and view ∆(k) as a function of
X: ∆(X(k)) = ∆(k). The unifying principle is that all

over-densities can grow or shrink spatially, executing a
random walk in X. This process can continue until the
overdensity disappears (X = 0), or the over-density takes
up some maximum Xmax, where Xmax ≡ X(kmin) is set
by the continental length scale ∼ 1/kmin. For a large
ensemble of over-densities, this is a diffusion-like process
with reflecting boundary conditions obeying

∂∆

∂t
= D

∂2∆

∂X2
(2)

with some diffusion constant D. We are only interested
in the late-time behavior of equation (2). Any initial
conditions will relax to the steady-state solution ∆(X)→
constant for 0 ≤ X ≤ Xmax on a timescale Trelax ∼
X2

max/D. We intuitively expect Trelax to be reasonably
short, since the geographic mobility timescale of ∼ 5 yrs
(in the United States, ∼ 35% of people change residences
within 5 years[15]) is considerably shorter than, say, the
population growth timescale ∼ 30 yrs set by the typical
age of parenthood. Any initial conditions set by antiquity
or perturbations to the system (e.g. catastrophic events
that displace many people) should be quickly erased. We
therefore predict that on sufficiently long timescales,

P (k) ∝ k−2. (3)

We test this prediction in Figure 1 against publicly avail-
able data from the Center for International Earth Science
Information Network (CIESIN) and Centro Internacional
de Agricultura Tropical (CIAT)[16]. We find the best fit
slope P (k) ∝ k−α to be α = 2.04 ± 0.09, where we have
reported the ±1σ uncertainties. Our theoretical predic-
tion is therefore in excellent agreement with observations
across a broad range of spatial scales, from a few km to
∼ 103 km.

Before further developing the theory, a more intuitive
derivation of P (k) ∼ k−2 is worth mentioning. Over a
large range of length scales our model is scale free, imply-
ing P (k) ∼ k−α for some α. In d spatial dimensions, the
left hand side of equation (1) has units of k−2d, the Dirac
delta function has units of k−d, so P (k) should have units
of k−d. Since there are no other dimensional parameters
relevant to our theory (the diffusion constant has units
of [X]2T−1, but there are no other constant with units
of time T ), we must have α = d = 2 in two spatial di-
mensions. In this sense, geometry and scale invariance
uniquely determines the slope of the power spectrum.

In fact, this simple argument demonstrates that
P (k) ∝ k−2 is a universal feature of 2D models that have
no parameters with units of length to some power. Effec-
tive field theory, a powerful technique for studying any
statistical physics system, can be used to further sharpen
this statement; this is done in Appendix D. The deriva-
tion in Appendix D provides perhaps the most rigorous
way of justifying the statement that P (k) ∝ k−2 is a
generic property of models with scale invariance in two
dimensions, since effective field theory should capture the
equilibrium properties of any statistical model on scales
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FIG. 1. (Color online). Empirically measured power spec-
trum P (k) ∝ |δk|2 ∼ k−α of population density fluctuations
as a function of the spatial wavenumber k. The best fit slope
α = −2.04±0.09 (solid blue line) is virtually indistinguishable
from the predicted slope α = −2 (dashed orange line). The
data was obtained by taking the diagonal entries (to avoid
anisotropy from rectangular gridding) of a discrete Fourier
transform of a 1000 × 1000 arcmin2 map of the population
density of a section of the continental United States. The
area was selected to minimize artifacts due to boundary con-
ditions defined by lakes and oceans.

smaller than the system scale but sufficiently large such
that densities can be approximated by smooth functions.

With a power spectrum P (k) in hand, it is possible to
calculate the number of cities as a function of their pop-
ulation N . We picture cities of area A as discrete objects
which form when the population density as a function
of spatial coordinates ρ(x), or equivalently δ(x), aver-
aged over an area A surpasses a critical threshold, δC . In
other words, we choose the surface area A such that the
total integrated population N =

∫
x∈A ρ(x) d2x = ρC×A,

where the critical density ρC = ρ̄(1 + δc).

This is shown pictorially in Figure 2. [This assump-
tion can be relaxed, allowing for the average population
density of a city to vary systematically with size. In our
model, this corresponds to a critical threshold that varies
with A. In this case, the excursion set formalism can be
used with a moving barrier[17]. We will ignore this sub-
tlety, since Zipf’s law is still obtained in the limit that
δC � σ. Also, since the numerical value of the threshold
is not fixed, we could also consider the case where the
threshold varies by country. Again, Zipf’s law would be
obtained for each country.]

The counting of cities is now a well-posed question.
Computationally, one could find the number distribution
of cities with the following algorithm. Generate via a
Monte Carlo procedure many realizations of the random
field with mean 0 and power spectrum P (k) = P0k

−2.
Find the regions where the random field exceeds a certain
threshold. Measure the size of each region, and multiply
the area of each region by the population density thresh-
old; define this to be the population of each city. Repeat
for many Monte Carlo iterations, and then make a his-

togram of the size distributions of each region. One can
verify numerically that the resulting number distribution
n(N) would scale approximately like

n(N) ∝ N−2, (4)

where N is the population of the city and n(N) is the
number density of cities of size N . However, we can in
fact show analytically that the number distribution takes
this form using the Press-Schechter (PS) formalism[10],
traditionally used in the context of cosmology to predict
the abundance of gravitationally-bound objects given a
power spectrum of the fluctuations in the cosmic mat-
ter density. However, we emphasize that the formalism
is in essence a purely statistical one, which does not re-
quire or employ any facts from cosmology. The excur-
sion set formalism[18] provides a more rigorous deriva-
tion, but the PS formalism has the benefit of simplicity.
The end result is identical in either case. We provide a
self-contained proof of equation (4) in Appendix A.

By integrating equation (4) with respect to N , we
find that the number of cities above a certain population
threshold scales inversely with the population threshold.
This statement is equivalent to Zipf’s law: the rank of a
city is inversely proportional to its size.

III. CONCLUSION

In summary, we have presented a derivation of Zipf’s
law and successfully predicted the power spectrum P (k)
of population density fluctuations in the continental US.
These derivations stemmed from two fundamental ingre-
dients: scale-invariance and 2D geometry. Remarkably,
there is a wide range of possible models and an even
wider range of initial conditions to which our results are
insensitive. One such model involves random walks of
the sizes of clusters of people on all scales, which can be
viewed as a vast generalization of Gibrat’s law. How-
ever, as we have emphasized, even this generalization is
still a relatively specific example in the class of all models
which will lead to Zipf’s law.This shows that the origin
of these laws is fundamentally the scale-free nature of
clustering in human populations. This is an appealing
feature, enabling us to forgo any fine-tuning arguments
in explaining the empirical data.
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Appendix A: The Press-Schechter formalism

The Press-Schechter formalism (for a pedagogical
overview of the PS formalism and its generalizations, see
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FIG. 2. (Color online). Schematic illustration of our approach. On the left, a simulated population density map with a power
spectrum P (k) ∝ k−2 is displayed. Darker pixels indicate higher population densities. On the right, we select and color pink
all pixels above a certain population density threshold from the simulated map on the left. In our formalism, a city is identified
with each pink cluster, appropriately smoothed on the length scale of the cluster. Scale invariance implies that cities of all sizes
appear on the map, as confirmed by visual inspection. In our formalism, the statistical size distribution of pink cluster gives
us the population distribution of cities, which agrees with Zipf’s law.

section 3.4 of [19].) allows us to answer the well-posed
question: given a random field with an associated power
spectrum P (k), how often does it exceed the threshold?
More specifically, suppose there is a class of objects (e.g.
cities) that form when the population density exceeds a
certain threshold ρ(x) > ρthreshold. Furthermore, let the
size R of each object be defined as the maximum radius R
such that the average population density ρcircle,R within
a circle of radius R centered on the object is given by

ρcircle,R = ρthreshold. (A1)

It is conventional to define a smoothed density field

δA(x) =

∫
d2kWA(k) δk e

−ikx/(2π)2, (A2)

where the low-pass window function WA(k) = 1 if k ≤
1/
√
A and WA(k) = 0 otherwise. This smoothed field

is simply the original field δ(x) with the high-frequency
fluctuations subtracted out, leaving behind the slowly-
varying components.

For a fixed x, δA(x) is a random variable with prob-
ability distribution pA(δA). The key insight of the PS
formalism is to identify the fraction fA of people living in
cities of area A or larger with the cumulative probability
f = 2

∫∞
δC
pA dδ. This is illustrated in Figure 2. To make

further progress, we must assume something about the
functional form of pA. The conventional PS formalism

assumes that pA is a Gaussian with mean 0 and vari-

ance σ2(A) ≡
∫ 1/
√
A

kmin
dk kP (k)/ (2π) ∝ ln k/kmin. If each

Fourier mode is statistically independent of every other
Fourier mode, the density field will be the sum of many
independent Fourier modes and will therefore be approx-
imately Gaussian. However, for the sake of generality,
we will not assume that δ is normally distributed. In-
stead, we only assume that pA has a universal shape for
all A. Since the mean of δA is zero for all A by defini-
tion, and since for any random variable θ the associated
standard deviation obeys σaθ = aσθ, this allows us to
write pA(δ) = g(δ/σ(A))/σ(A) for some general proba-
bility density function g. Differentiating fA yields n(N),
the number of cities on Earth’s surface with population
N = ρ̄A per unit area per unit population:

n(N) = −νg(ν)
ρ

N

d lnσ

dN
∝ 1

N2

g(ν)

ln(Nmax/N)
, (A3)

where we have defined ν ≡ δC/σ(N), the number of stan-
dard deviations associated with city formation. Note that
for ν � 1, g(ν) is a slowly varying function of N for two
reasons: the first derivative of g around ν = 0 is small
for small deviations from the mode, and ν is only a weak
function of N . Thus, equation (3) implies that the loga-
rithmic slope d log n/d logN tends to −2 in the limit of
N � Nmax. This limit is empirically justified, since even
the largest cities in the world contain only ∼ 10−3 of the
world’s population. Hence we arrive at equation (4).
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Although our results are largely independent of
the exact form of pA(δ), let us briefly comment on
its possible form. If pA(δ) deviates from a Gaussian,
this implies that different Fourier modes in human
population density are correlated, a generic result of
non-linear interactions. Note, however, that δ ≥ −1 is
strictly bounded from below, since human population
density is always positive-definite: ρ ≥ 0. Hence, pA
cannot be exactly Gaussian. At some level, non-linear
interactions must come into play. If the population
density fluctuations were typically small δ . 1, one
might expect that a Gaussian distribution could be a
good approximation; however, everyday experience tells
us that population density fluctuations can be quite
large. Indeed for New York City, δ ∼ 300. Hence,
a theory of human population density growth must
necessarily be a non-linear.

Appendix B: Derivation of the inverse-rank
friendship law

As a second application of our formalism, let us derive
the average number of friends a person has in a given
region. We again adopt a simple model, where we de-
fine a region to be a community if the population density
exceeds some critical value δ ≥ δc. This defines geo-
graphic equivalence classes on the inhabited regions, such
that every person is a member of a community. Since
real-world social networks are highly clustered and only
a small fraction of people serve as connections between
communities of friends [20], this assumption should be
a good approximation for our purposes, since the more
complicated topology of real-world friendship networks
will mainly affect higher order quantities that involve
friends-of-friends and friends-of-friends-of-friends. Fur-
thermore, we assume that the average number of friends
D a given person has is asymptotically independent of
the size of the community. This second assumption is
essentially the assertion of the existence of the famous
Dunbar’s number [21, 22], an upper limit on the number
of people a given person can sustain social relationships
with.

To compute the probability in the model, we consider
two people A and B with NAB people closer to A than B.
If A is a member of a community with size Nc � NAB , A
and B are almost certainly friends. On the other hand, if
A is in a community of size Nc � NAB , it will be nearly
impossible for A and B to be friends. There is thus a
turnover scale at ∼ NAB which dictates whether or not
A and B will be friends; the probability is therefore deter-
mined by two independent events: the probability that
A is in a community of size N greater than the turnover
scale and the probability pf = D/N that A and B are
friends given that A and B are in a community of size
N , for large N � D. Since we know from the previ-
ous discussions that in such a model, the number density

of communities scales asymptotically with ∝ 1/N2, and
each community has N people, the probability pc that a
randomly chosen individual is in a community of size N
scales ∼ 1/N . Hence,

p(NAB) =

∫
g(N,NAB)pc(N)pf (N)dN

∝
∫
N>NAB

1

N

D

N
dN ∝ 1

NAB

(B1)

where g has the properties that 0 ≤ g < 1, g ≈ 1 for
N � NAB , and g � 0 for N � NAB . The details of the
function will depend on the geometry of the communities
but do not concern us here as we are only interested
in the scaling. We have thus derived the inverse-rank
friendship law, previously proposed[23] to fit empirical
data. We stress that our derivation is based entirely
on theoretical considerations and therefore provides an
explanation for the “physical” origin of the law.

Appendix C: Two-point correlation function

In this appendix, we analytically compute the two-
point correlation function[24] ξ(x − y) = 〈δ(x)δ(y)〉,
which is the inverse Fourier transform of the power spec-
trum. The correlation function will play an important
role in Appendix D. Physically, the correlation function
measures the degree to which the existence of an over-
density or under-density at some position x increases the
likelihood that an over-density or under-density will be
found at y. Assuming circular symmetry, the inverse
Fourier transform is a Hankel transform of order 0:

ξ(r) =

∫ ∞
0

k dk

2π
P (k)J0(kr), (C1)

where J0 is the first Bessel function. Taking P (k) =
P0k

−2 and a long-wavelength cutoff km gives us an inte-
gral that can be written in terms of special functions

ξ =
P0

2π

∫ ∞
km

dk
J0(kr)

k
=
P0

4π
G23

01

(
(kmr/2)2

)
, (C2)

where G is the Meijer G function. Defining a reduced
area a = k2mr

2/2 and consider separations that are small
compared to the system size (corresponding to the scale
of continents) a� 1, we can expand

ξ(r) ≈ P0

4π

(
−γ +

1

2

(
− ln a+ a− a2

8
+

a3

108

))
(C3)

where γ ≈ 5.7721 is Euler’s constant and we only neglect
terms O

(
(kmr)

8
)
. The second term guarantees that ξ �

1 for sufficiently small a and ξ < 0 for a & 0.51. Most
importantly, we note that for r much smaller than the
system size,

ξ(r)→ −P0

4π
ln r. (C4)
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Since it is possible to invert a Fourier transform, any 2D
model which predicts a correlation function that logarith-
mically diverges for small r must have a power spectrum
of the form P ∝ k−2 for k � km.

Appendix D: Effective field theory

The basic program of effective field theory is the fol-
lowing: given a statistical physics system in a fixed num-
ber of dimensions (in this case D = 2), write down the
Hamiltonian

H =

∫
d2xH(δ,∇δ,∇∇δ, . . . ), (D1)

such that H contains all terms which are consistent
with the symmetries of the system. By universality, the
macroscopic properties of the system should then be re-
flected in the field theory. For a pedagogical introduction
to this approach, see [12]. In our case, the symmetries are
particularly constraining: we want the Hamiltonian to be
invariant under scaling operations x→ λx in addition to
translations and rotations of the Euclidean plane. Un-
der a change of scale, the population density transforms
like a scalar, so δ(x)→ δ(λ−1x) while d2x→ λ2d2x and
∇δ → λ−1∇δ. Hence scale invariance requires that each
term inH contain exactly two derivatives to cancel the λ2

from the area element. Rotational symmetry then limits
us to only one possible term (∇δ)2:

H =
1

2

∫
d2x (∇δ)2, (D2)

which is simply a free scalar field in two dimensions.
Adding any interaction term to H of the form V (δ) is not
allowed, as d2xV (δ) would not transform correctly un-
der a scale. Using standard field theory techniques, one
can show that the correlation function ξ(r) has the form
of (C4); hence for wave vectors k � km (corresponding
to physical scales shorter than the system size), we must
have that the power spectrum P ∝ k−2. This concludes
our proof that a scalar random field in 2 spatial dimen-
sions will have a power spectrum P ∝ k−2.

Let us make some further comments about (D2) that
may be helpful to readers unfamiliar with effective field
theory techniques. In particular, we can use (D2) to con-
struct alternate theories that also will yield power spectra
P ∝ k−2. For example, the generic Langevin equation,
specialized to the case where the Hamiltonian is given by
(D2), is just the famous diffusion equation with a noise
term[12]:

∂δ

∂t
= −λ∇2δ + η, (D3)

where δ is the fractional population over-density and
η is a fluctuating random variable. Notice that while
this model also involves a diffusion equation, it is con-
ceptually distinct from equation (2). Here we think of
population as physically diffusing in Cartesian space; in
equation (2), the diffusion is not happening in Carte-
sian space but in Fourier space. Since (D3) was derived
from a Langevin equation corresponding to the Hamilto-
nian (D2), its equilibrium properties must be described
by (D2); hence it follows that P (k) ∝ k−2. Note, how-
ever, that the noisy diffusion model lacks parameters di-
mensions of length to any power. Thus, our simple di-
mensional analysis argument presented after equation (3)
still holds, and provides a simpler derivation of the power
spectrum.
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1931).
[9] J. M. Samuels, The Review of Economic Studies 32, 105

(1965).
[10] W. H. Press and P. Schechter, ApJ 187, 425 (1974).
[11] E. Vanmarcke, Random fields: analysis and synthesis

(World Scientific, 2010).

[12] M. Kardar, Statistical physics of fields (Cambridge Uni-
versity Press, 2007).

[13] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay,
ApJ 304, 15 (1986).

[14] E. Zambrano, A. Hernando, A. Fernandez-Bariviera,
R. Hernando, and A. Plastino, ArXiv e-prints (2015),
arXiv:1504.07666 [nlin.AO].

[15] D. K. Ihrke and C. S. Faber, Geographical Mobility: 2005
to 2010, Tech. Rep. (U.S. Department of Commerce,
2012).

[16] NASA Socioeconomic Data and Applications Center,
Gridded Population of the World , Tech. Rep. (Center for
International Earth Science Information Network, Cen-
tro Internacional de Agricultura Tropical, 2010).

[17] R. K. Sheth and G. Tormen, MNRAS 308, 119 (1999),
astro-ph/9901122.

[18] J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser, ApJ
379, 440 (1991).

[19] A. Loeb and S. R. Furlanetto, The First Galaxies in
the Universe, by Abraham Loeb and Steven R. Furlan-



7

etto. ISBN: 9780691144917. Princeton, NJ: Princeton
University Press (Princeton, 2013).

[20] D. J. Watts and S. H. Strogatz, nature 393, 440 (1998).
[21] R. Dunbar, Journal of Human Evolution 22, 469 (1992).
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