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We introduce a general contagion-like model for competing opinions that includes dynamic resis-
tance to alternative opinions. We show that this model can describe candidate vote distributions,
spatial vote correlations, and a slow approach to opinion consensus with sensible parameter values.
These empirical properties of large group dynamics, previously understood using distinct models,
may be different aspects of human behavior that can be captured by a more unified model, such as
the one introduced in this paper.
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I. INTRODUCTION

The study of opinion dynamics, which has received
considerable attention from statistical physicists, net-
work scientists, and social scientists [1–8], explores the
dynamics of competing ideas or opinions via interactions
between individuals. Example application areas include
voting patterns [5, 6, 9–16], product competition [17],
and the spread of cultural norms and religions [18–20].
The goal of our work is to gain new insights into opinion
dynamics by introducing a well-motivated model that can
simultaneously describe multiple empirical observations
which have previously been explained by several different
models.
A wide range of models have been proposed to explain

individual features of opinion dynamics observed in em-
pirical data. For example, some models have focused on
producing nonconsensus in equilibrium [2, 4, 21], while
others can reproduce observed vote distributions [12, 14],
or long-range vote correlations [22]. Because we believe
these observations are all fundamentally related, we in-
troduce a new model, called the Competing Contagions
with Individual Stubbornness (CCIS) model, which can
robustly explain the above behaviors using agent-based
dynamics designed to mimic observed human behaviors.
Not only does the CCIS model match the aforementioned
observations with consistent parameter values, it is gen-
eral enough to incorporate a wide array of plausible fac-
tors affecting the success of opinions in the real world,
allowing for agents with a neutral state, opinions that
are stronger than others, and opinions that may be in-
troduced after an earlier opinion has spread through a
population. Here, for simplified modeling and analysis,
we focus on the case of equal strength opinions intro-
duced at the same time and leave these other cases for
future work.

∗ keith@umd.edu

In the CCIS model, at any given time point, individu-
als can either be in a neutral state or in one of Q different
opinion states. Opinions can change over time as indi-
viduals try to “convince” others in their social network
to adopt their opinion. In our model, individuals exhibit
”stubbornness,” meaning that the longer an opinionated
individual keeps his or her opinion, the less likely they
are to switch to a new one. This property has been seen
empirically in previous studies [23]. We distinguish this
from other models in which individuals resist changes in
their opinion independent of time, e.g., [6, 14–16, 24, 25].
Within the CCIS model, individuals that have held on to
their opinion for a long time will eventually completely
lose the ability to be convinced by one of their neighbors
to adopt a different opinion. However, all opinionated
individuals move back to the neutral state at a constant
rate, which is designed to allow for a large fraction of “in-
dependent” voters, as is the case for the United States
electorate [26]. Once an individual becomes neutral, they
can switch opinions to any of their neighbors, which cre-
ates longer timescale opinion dynamics.

The remainder of the paper is structured as follows.
We first describe related work (Section II) and then pro-
vide the details of our model and algorithm implemen-
tation (Section III), before comparing the results of our
model to empirical data (Section IV). We then analyze
the dynamics of our model using a series of approxima-
tions (Section V) and numerically study the consensus
time outside of the parameter ranges for which our anal-
ysis is valid (Section VI). Finally, we conclude with a
discussion of future work (Section VII).

II. RELATED WORK

In this section, we review the empirical studies that
motivate the CCIS model and we discuss related models.

In recent years, large sets of empirical data have al-
lowed researchers to better observe collective social dy-
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namics [12, 13, 22, 27–30], leading to new insights in the
field. We first focus on two themes that have received re-
cent attention: candidate vote distributions [12, 13, 22]
and spatial vote correlations [22].

Two important studies on election data from sev-
eral countries demonstrate that vote distributions, when
rescaled by Q/N , where Q is the number of candidates
and N is the number of voters, often collapse to a uni-
versal distribution (see inset of Fig. 2) [12, 13]. Two
recent models have been proposed to explain this behav-
ior [12, 14].

A model by Fortunato and Castellano [12] assumes
that voters are convinced to vote for a specific candidate
unique to each of Q social networks, with no interaction
between voters of opposing candidates. While the model
provides good agreement with vote distribution data and
demonstrates how “word-of-mouth” or contagion-style
spreading can play an important role in observed vot-
ing patterns, it cannot capture one important feature of
real elections − that candidates seem to often compete
for a common set of voters [31–33]. Hence, we believe
that a model with competing opinions on a single net-
work, such as the one introduced in this paper, is needed
to for a more complete picture of how individual level
dynamics can translate to observed voting patterns.

Another model by Palombi and Toti, which does in-
clude interactions between supporters of different candi-
dates, yields qualitative agreement with empirical data
on vote distributions by assuming a network of interac-
tions with significant structure (non-overlapping cliques
connected by sparse random links) as well as a distribu-
tion of zealots (unwavering candidate supporters) that is
related to the underlying clique structure of the network.
By contrast, our goal is to show agreement with empiri-
cal data on both vote distributions and voter correlations
using a somewhat more generic network of interactions
and without imposing any connection between candidate
preferences and network placement for any individuals.
The contagion-inspired framework of our CCIS model,
e.g., the inclusion of a neutral state and a tunable trans-
missability parameter, gives it the flexibility to match the
two aforementioned empirical patterns of interest while
simultaneously remaining relatively simple.

Recent empirical studies have shown that the spatial
correlation of vote-shares in United States elections and
the spatial correlation of turn-out rates in European elec-
tions decreases as the log of the distance between two
voting districts [22, 34]. This contrasts to correlations
of spins in many statistical mechanic spin models, which
decrease as a power law or exponentially with distance
[35], but is a prediction of some spin (or opinion) mod-
els, such as the Voter Model (VM), at an arbitrary, fixed
time [9, 10, 36].

In addition to matching these empirical patterns by
yielding spatial opinion correlations that decrease as the
log of the distance between individuals (in the case of
networks with significant spatial structure), the CCIS
model shares other important features with the well-

studied Voter Model (VM). In the VM, at each time
step, an individual chooses to adopt the opinion of one
of their randomly chosen neighbors [9, 10]. In the basic
CCIS model, opinions also change via interactions with
neighbors, but instead of interacting with one neighbor
at a time, individuals try to persuade all their neigh-
bors simultaneously, similar to the approach used in the
aforementioned Fortunato and Castellano [12] paper. In
Section V, we also consider CCIS type dynamics for the
situation in which, as in the VM, interactions at each
time step are focused on an pair of connected individuals
instead of one individual and all of their neighbors.

The CCIS model also has important similarities to
the well-studied Susceptible-Infected-Susceptible (SIS)
model from epidemics. In the SIS model, individuals
exist in only one of two states: “susceptible” and “in-
fected,” and infections propagate via contacts between
infected and susceptible individuals, with infected in-
dividuals eventually recovering to the susceptible state.
The SIS model can be applied to the study of opinion
dynamics, but, because the basic model is an explicitly
a two-state model, it can only be used to explore how
a single opinion (contagion strain) propagates through a
neutral (susceptible) population, and the SIS model must
be modified to explore the competition dynamics among
multiple opinions.

A few recent studies have modeled the coexistence of
two contagion strains on networks with SIS-like models
[37–43]. Typically, in these models, individuals can only
switch from one strain to another if they recover first
[38, 41, 42], or else two strains can cohabit a single indi-
vidual but interact on coupled networks [40]. In the CCIS
model, however, individuals can switch directly between
opinions instead of first moving to the recovered state,
and all opinions propagate on a single network. Further-
more, no individual can have more than one opinion at
any time. These are realistic assumptions for opinion dy-
namics, because individuals can directly switch between
opinions more easily than they might directly switch be-
tween diseases, and would be unlikely to hold contrasting
opinions at the same time. We note, however, that across
a wide parameter space in our model, one opinion even-
tually dominates (e.g., Eq. 4 and Figs. 7, 8, & 9), while
the contagion models described above have large param-
eter regimes where two contagions can stably coexist. In
Section V, we discuss in more detail how the CCIS model
approaches consensus.

The CCIS model is further distinguished from the
VM and SIS model by having individuals exhibit stub-
bornness [44] (similar model assumptions are made in
other works [11, 45–47]). In our definition of stubborn-
ness, individuals increasingly resist changing their opin-
ion, in contrast to other models where individuals re-
sist changes in their opinion independent of time, e.g.,
[6, 14–16, 24, 25]. In pre-trial publicity (PTP) experi-
ments [23], the correlation between the jury decision and
the PTP opinion was stronger when individuals were ex-
posed to PTP more than a week before the mock trial



3

than when the exposure happened closer to the start of
the trial. This provides some evidence that individuals
change their resistance to alternative opinions, but not
necessarily monotonically with time. Further evidence
from voter data is currently lacking and is an important
area for future study. Nonetheless, the initial evidence
from juries and the strong agreement to data we find
with our current model is suggestive that stubbornness
may play an important role in the dynamics of opinions.
We also note that stubbornness is similar to the primacy

effect, well studied in psychology [48, 49], in which the
first idea someone hears is favored regardless of its valid-
ity. That effect, however, deals only with the ordering of
choices and does not take into account the time intervals
between choices.
The CCIS model is designed to offer a more general

framework than many previous models. It allows for dif-
ferent opinions to be more or less likely to be adopted
relative to each other, for individual opinions to be more
or less likely to exhibit stubbornness, for some opinions
to be introduced at later times than others, and for indi-
viduals to exist in a neutral state. These additions give
it the flexibility to capture a variety of situations. In
this paper, for simplicity, we focus on the case of opin-
ions with equal strengths and individuals with identical
stubbornness parameters.

III. MODEL DETAILS

In this section, we describe the dynamics of the CCIS
model in detail (see Fig. 1 for a schematic). The model
operates on a network with N nodes, in which the state
of each node, i, is si ∈ {0, 1, 2, ..., Q}, where Q is the total
number of opinionated states and 0 corresponds to the
neutral state. For ease of analysis, we study the case in
which interactions between individuals occur on a fixed,
unweighted network.
At t = 0, n0 (possibly 0) nodes are in state 0, n1

(again, possibly 0) are in state 1, etc., such that n0 +
n1 + ...+nQ = N . We leave open the possibility for new
opinions to be added at arbitrary times in the simulation.
However, in this paper, we focus on the case where at
t = 0, n1 = n2 = ... = nQ (and therefore all opinions are
simultaneously introduced).
Algorithmically, we implement the model as follows:

1. Pick a random opinionated node i (i.e, a node not
in state 0)

(a) Revert i’s state to 0 with probability δ
1+δ

(b) Otherwise pick each of i’s neighbor at random:

i. Convert any neutral (state 0) neighbor to
state si with probability β

ii. Convert any contrary opinionated neigh-
bor j to state si with probability
max{β(1 − τjµ), 0}, where τj is the time
since node j adopted its current opinion.
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FIG. 1. (Color online) The schematic of our model. Arrows
indicate attempts to convince neighboring individuals, with
probabilities for success appearing next to each arrow. The
length of time the nodes have held their current opinion is
indicated by the text inside the node.

2. Count the number of opinionated individuals,
Nop = N − n0, and repeat from step 1 with time
incremented by ∆t = Nop(1 + δ)−1.

Here, for simplicity, we assume that the persuasiveness
of each individual, β, the recovery rate, δ, and the stub-
bornness, µ, do not depend on which opinion is held,
but there may be situations for which these parameters
should be differentiated according to opinion. We im-
plement stubbornness in the following way: the effective
persuadability of a node j by a neighbor with a con-
trary opinion, β(1− τjµ), decreases linearly in time until
τj = µ−1, at which point individual j’s opinion remains
fixed unless j moves to the neutral state, which occurs
at rate δ. A natural alternative to our implementation
of stubbornness is to construct an effective persuadabil-
ity that decreases exponentially, β exp(τjµ). We choose
the linear form for its simplicity, but we expect similar
dynamics for the two cases.
Table I summarizes that model’s parameters and vari-

ables.

Table I: Definitions of Symbols and Parameters

Symbol Definition

t Time
τ Time the most recent opinion has been kept
β Persuasiveness
µ Stubbornness rate
δ Recovery rate
Q Number of opinions
N Number of nodes (“voters”)
ρ(A) Opinion A density as a function of t and τ
P (A)(t)

∫∞
0 ρ(A)(t, τ ′)dτ ′

α Scale-free degree distribution coefficient
(p(k) ∼ k−α)
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FIG. 2. (Color online) A comparison of scaled vote distribu-
tions between the CCIS model (closed markers) and elections
(open markers) (data from [13, 53]), in which data is shifted
down by decades for clarity (inset shows the original data col-
lapse). Here v corresponds to the number of votes, with the
number of candidates, Q, and size of the population, N , equal
to the empirical data values. The initial fraction seeded with
a preference to a candidate is fitted to the scaled vote dis-
tribution of Poland’s 2005 elections by Maximum Likelihood
Estimation. All other parameters are fixed.

Note that at each time step, ∆t, is normalized such
that Nop node-node interactions take place, and δNop of
the opinionated nodes recover, after a time

∑

i ∆ti = 1.
Holding Nop constant for each time step, ∆t = ((1 +
δ)Nop)

−1 and the recovery probability is δ/(1 + δ). This
method is based upon a similar approached used for the
SIS model to approximate continuous time dynamics [50].
We include the recovery rate in our model to allow for

a large fraction of individuals to remain neutral over long
time scales. This is motivated in part by the empirical
observation that a significant fraction of Americans re-
main unaffiliated with any political party, and that this
fraction is stable over the timescale of years [26], yet in in-
dividual elections, these “independents” frequently vote
for candidates with party affiliations, and hence can be
thought of as having adopted the party “opinion” over
short timescales. Additional elements of realism, such as
mass media [51], party affiliation [52], and variations in
the recovery rate, have been left out of this model for
simplicity, and may be important for future study.

IV. AGREEMENT WITH DATA

In this section, we show that the CCIS model can
reproduce two empirical observations: (1) distributions
of votes received by candidates, when appropriately
rescaled, follow a nearly universal function [12, 13] and
(2) correlations between voters decrease only logarithmi-
cally as a function of distance [22, 34]. We find agree-
ment between the CCIS model and both empirical ob-
servations using spatially extended networks with heavy-
tailed degree distribution (a reasonable model for social

FIG. 3. (Color online) We plot the distribution across all
elections shown in Fig. 2, excluding Switzerland, and compare
our fit to the fit of the FC model [12].

networks [54, 55]). In agreement with Fortunato and
Castellano [12], we find that a heavy-tailed degree distri-
bution is important for matching the opinion model’s dis-
tribution to the empirical vote distribution data. We em-
phasize that the spatial component (meaning that nodes
preferentially connect to others that are spatially close)
is necessary to create spatial correlations that match em-
pirical observation. The networks are created as follows:
all nodes are embedded on an

√
N×

√
N two-dimensional

grid with periodic boundary conditions. The out-degree,
ki ≥ kmin, is chosen from from a power law degree dis-
tribution, p(k) ∼ k−α with minimum degree kmin, which
is specified so that the desired average degree, 〈k〉, is
reached. Directed links from node i to the ki nearest (in
grid-space) other nodes are then created. A fraction f
of edges are then rewired at random to add noise to the
network. A more detailed description of the network is
given in Appendix A.

A. Voter Scaling

As Fig. 2 shows, the CCIS model with appropriate
parameter choices can closely match empirical vote dis-
tributions rescaled by Q/N . We simulated each election
one time for each set of parameters to test how well our
model can typically follow the empirical data, and each
election is run on a spatially distributed scale-free graph
(as described above) with N and Q the same as empirical
data to account for finite size effects. We varied the ini-
tial fraction of individuals seeded until the model fits the
distribution from Poland’s 2005 elections (which has the
largest number of elections). All other simulation param-
eters were fixed to reasonable values: β = 0.1, 〈k〉 = 10,
µ = 1, δ = 0, and α = 2.01 (see Appendix A for de-
tails regarding the fit and the robustness of the results
to changes in the parameters).
The simulation results plotted are for networks with-

out random rewiring (i.e., f = 0), but we note that we
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FIG. 4. (Color online) A comparison of the best fits between
the CCIS model and the 2005 Poland elections with a fraction
of nodes initially seeded with an opinion (P (0)) equal to 6%
and 100% (see Table I for the definitions of parameters). The
parameters are the same except when P (0) = 6%, β = 0.1,
and when P (0) = 100%, β = 0.65.

find similarly good fits for larger values of f . In the
simulations, µ > 0 and δ = 0 in order to reach a non-
consensus equilibrium, because otherwise we would have
to stop the simulation at some arbitrary time before con-
sensus is reached. These same parameters were used to
fit all the other countries’ elections.

Overall, we find good fits between our model and voter
data as long as µ > 0, and the distribution is sufficiently
heavy tailed, i.e. the magnitude of the degree distribu-
tion exponent is small (α < 3). See Fig. 11 in Appendix
A for a detailed analysis of the robustness of the fit to
parameter variation. Our findings suggest that both in-
dividual stubbornness and heavy-tailed degree distribu-
tions in social networks [54] may be important underly-
ing drivers of the generic behaviors observed in opinion
dynamics.

The reason for the strong fit in Fig. 2 is in part because
our model appears to follow a nearly universal distribu-
tion when each vote is rescaled byQ/N , like the empirical
data from the elections it attempts to model. Of the elec-
tions modeled, we find that only Switzerland’s diverges
significantly from our model due to its unusual “double-
hump” distribution, plausibly because votes are swayed
by the local language differences (primarily French and
German).

We note that agreement between the model and em-
pirical data (Figs. 2 & 5) is also possible when the initial
fraction of individuals seeded, P (t = 0), is 100% if the
persuasiveness of each individual, β, is adjusted to 0.65.
In this case, because δ = 0, no individual ever reaches
the neutral state. Despite the fact that agreement with
data can be achieved without the inclusion of a neutral
state, we believe that such a state is important since most
voters start out with little knowledge of the candidates.

One natural way to seed opinions when explaining
the candidate vote distribution is to assume that only

FIG. 5. (Color online) The correlation as a function of dis-
tance for the CCIS model (where nodes are separated by a
unit 1 distance on a 106 node network). The CCIS model
parameters are the same as in Fig. 2. f fraction of edges are
randomly rewired on a scale-free spatially distributed graph
(f = 0 corresponds to the network in Fig. 2) showing that the
logarithmically decreasing correlations are robust. Inset: sim-
ilar correlations are seen for data from the year 2000 United
States Presidential election [34].

one individual has an initial vote preference: the can-
didate himself. This creates a poor fit for our model
(not shown), possibly suggesting that the initial spread-
ing process differs from the one that takes over after a
short time.
Our work is influenced by the Fortunato and Castel-

lano (FC) model (introduced in Section II), which was
developed to describe the same distribution data [12]. In
both the FC and CCIS model, individuals try to per-
suade neutral neighbors in the network at some rate.
Opinions do not compete in the FC model, but instead
spread within isolated networks, meaning that each of
the Q candidates convince voters to vote for him or her
by word of mouth to their friends, which then spreads to
their friends’ friends, etc. In this scenario, an individual
only decides whether or not to vote for one specific can-
didate and never decides between candidates. The CCIS
model is designed to capture a more realistic scenario in
which candidates compete for the same set of voters [31–
33]. We directly compare our model to the FC model
in Fig. 3. Both models create similar fits, based on the
log-likelihood function, with neither being significantly
better.

B. Spatial Correlation

Next, we show that the CCIS model creates correla-
tions that decrease logarithmically with distance, as seen
in empirical studies [22, 34]. This behavior is not unique
to our model because many models can create logarith-
mically decreasing correlations as they approach the VM
Universality Class [56] in some special parameter range.
We find it important, however, that our model is the first
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model we are aware of that can reproduce both the pre-
viously mentioned vote distributions, and this behavior,
especially over a wide set of parameters. In comparison,
the FC model [12] assumes non-interacting opinions on
random graphs, and the Palombi and Toti model [14]
assumes opinions interact on non-spatially distributed
cliques with edges connected randomly between them,
so votes are uncorrelated in space. Analysis of the ob-
served logarithmic correlations in the CCIS model are
discussed in the next section. Simulations, however, sug-
gest the most important property in our model to re-
produce the empirical observations is a spatial structure
in our social network, whether the network is a lattice,
small-world (random rewiring), or the current scale-free
spatial network. Therefore, this property is very general,
and should be generically seen in empirical data.
Figure 5 shows results from simulations of our model

on spatial scale-free networks with 106 nodes and the
same model parameters as in Fig. 2 (if f = 0). The figure
also shows results from simulations for which a fraction,
f , of edges were randomly rewired. The rewiring process
reduces the spatial features of the graph by creating long-
range ties that significantly reduce the mean geodesic
distance between points. Even with large f , however,
we still see strong qualitative agreement with empirical
data.
We note, however, that while empirical voting pat-

terns are consistent with the CCIS model operating on a
spatially-extended network, we cannot rule out the possi-
bility that the empirical correlation data is the result of
self-segregation, e.g., that “Republicans” move to “Re-
publican” counties. Additional data is necessary to dif-
ferentiate these two potential explanations for spatial cor-
relations in voting behavior.

V. ANALYSIS

In this section, we analyze the dynamics of our model
to better understand the behaviors it is capable of pro-
ducing. To do so, we simplify the model in three different
ways, allowing us to probe the dynamics more thoroughly
than any single approximation.
First, to probe the spatial correlation behavior dis-

cussed in the previous section we explore the limit in
which our model simplifies to a diffusion process. Sec-
ond, we explain how opinion sizes change in time with
a transport-like equation, which assumes individuals mix
homogeneously in an infinitely large network and tracks
the time evolution of the density of individuals who have
held a specified opinion for designated length of time.
Finally, we use the Fokker-Planck equation to explore,
for the case µ = δ = 0 (i.e., no stubbornness and no
recovery), how our model reaches opinion consensus for

finite systems with heterogeneity in the connectedness
of individuals. Under the Fokker-Planck approximation
(FPA), we handle heterogeneity in the number of connec-
tions but we do not capture spatial effects or incorporate
stubbornness and recovery, motivating all three separate
types of analysis.

A. Spatial Correlations

Spatial correlations between opinions in the CCIS
model decrease logarithmically over a wide parameter
space (see Fig. 5). We can demonstrate this spa-
tial correlation behavior analytically for the continuum
limit of the CCIS model seeded with two opinions (and
no neutral individuals) on a lattice grid, for the case
µ = δ = 0. Because δ = 0, nodes do not indepen-
dently change to any other state, and furthermore, be-
cause µ = 0, the probability of each node changing
their state is (number of opposing neighbors)/[(2d)2β]
at any timestep, where 2d is the degree of a d-
dimensional lattice. In comparison, the two-opinion
VM assumes that agents are convinced by a random
neighbor’s opinion at each timestep [9, 10], or equiva-
lently, the probability of any node changing their state is
(number of opposing neighbors)/(2d), therefore, in this
parameter range, the CCIS kinetics is exactly the same
as the VM, with time scaled by 2dβ.
The VM can be approximated as a diffusion process

in the continuum limit [36], meaning the correlation as a
function of time, t, can be expressed as:

C(r) ∼











1− r√
Dt

d = 1

1− log(r)

log(
√
Dt)

d = 2

r2−d d ≥ 3

, (1)

in which D = d, r is the distance between nodes, and
nodes are separated from their neighbors by unit one dis-
tance. Eq. 1 is the same for the CCIS model in this limit,
with D = (2d2β)−1 to reflect the rescaling of time. The
spatial correlation between opinions in the CCIS model
therefore decreases as log(r) for fixed time in this limit.

B. Transport-Like Approximation (TLA)

Next, we try to better understand how opinions change
in time in the CCIS model. We present a partial differ-
ential equation similar to the transport equation, to de-
scribe the dynamics of the CCIS model in the mean field.
This approximation, which we discuss in more detail in
Appendix B, holds for all β, µ > 0, and δ = 0:

(∂t + ∂τ )ρ
(A)(t, τ) = −Θ(1− τµ)(1 − τµ)βkρ(A)(t, τ)

∑

B 6=A

P (B)(t). (2)
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FIG. 6. (Color online) The difference in equilibrium opinion

densities, ∆P ≡ |P (1) − P (2)|, as a function of β between
theory (solid lines) and simulations, where δ = 0 and µ =
0.2. ∆P = 0 corresponds to a 50/50 split in opinions while
∆P = 1 corresponds to complete consensus. Simulations are
on networks N = 105 and degree k = 102.

Here, ρ(A)(t, τ) is the density of individuals at time
t that have have opinion A for a time τ . The above
equation says that ρ(A)(t, τ) → ρ(A)(t+∆t, τ +∆t), and
change to an opinion B 6= A at a rate β(1 − τµ). If
τµ > 1, the RHS is 0 due to the Heaviside step func-
tion, Θ. The boundary condition (not shown) describes
the gain in new individuals (increase in ρ(A)(t, 0)) via
conversion of individuals who were neutral or of an op-
posing opinion, allowing P (A)(t) =

∫

ρ(A)(t, τ ′)dτ ′ to re-
main constant in equilibrium. Agreement between the
equation and simulations is poor when µ = 0, because,
after being stochastically pushed out of equilibrium, the
system quickly approaches consensus. Similar results are
seen when δ > 0, after incorporating a few additional
terms. We will discuss how to analyse the dynamics when
δ > 0 in the next section. However, excellent agreement
between theory and simulations is observed in Fig. 6
when δ = 0 and µ > 0.

C. Fokker-Planck Approximation of the CCIS
Model

We can also analyze the model when µ = δ = 0, with
the Fokker-Plank Approximation (FPA). The main dif-
ference between the FPA and the TLA is that the FPA
takes into account the size of the system, and degree het-
erogeneity of a random graph, but does not incorporate
the effects of stubbornness or recovery. Under this ap-
proximation, links randomly rewire, so we have no spatial
information about the network, and cannot say anything
about spatial correlations. It is therefore a powerful the-
ory but only for specific network topologies. Our analysis
may be improved upon, by modeling bipartite networks,
networks with strong cliques, or using a more accurate

pair approximation [5, 57, 58], but our goal here is to
derive simple expressions that can describe some of the
most interesting behavior. We give the details of the FPA
in Appendix C and describe the main results here.
Consensus time, Tcons, is found to be finite and scales

in non-trivial ways with the network topology and the
persuasiveness parameter β. If ρ are the fraction of indi-
viduals with one of two opinions, we find that

ρ(1− ρ)

Neff

∂2Tcons

∂ρ2
= −1, (3)

where Neff is the effective size of the network:

Neff =











N
β2〈k2〉 Outward Process

N
β2〈k〉2 Neutral Process

N
β2〈k2〉 Inward Process

, (4)

and where 〈k〉 and 〈k2〉 are the first and second moments,
respectively, of the network degree distribution. Solving
Eq. 3, we find that Tcons ∼ Neff (see Appendix C for
derivation).
In Eq. 4, the outward process is where an opinion

spreads from an individual to its neighbors (which is as-
sumed in the basic CCIS model). More generally, there
are two other ways the opinion could spread: (1) the
neutral process is where an opinion spreads between two
individuals on a random link, and (2) the inward process
is where opinions spread from neighbors to an individual.
We now discuss comparisons between simulations and

theory for the outward process (in Appendix C, we com-
pare Tcons in simulations to an equivalent Tcons theory
for the neutral and inward processes).
When δ = 0, µ = 0, and βk = 1, the CCIS model is

similar to the invasion process (IP) [5], in which a neigh-
bor is randomly chosen to have the same opinion as the
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FIG. 7. (Color online) Mean consensus time versus N for a
complete graph with β = 10−2. Theory is the dashed gray
line Tcons ∼ (2β)−1for small N , and the black line Tcons ∼
(Nβ2)−1 for large N . This figure contrasts significantly with
the IP model, which predicts that Tcons ∼ N .

root node [5]. In the true IP, Tcons ∼ N〈k−1〉〈k〉, but in
the CCIS model, Tcons ∼ N

〈k2〉 for large N . The discrep-

ancy is due to a fixed fraction of neighbors, 1/〈k〉, being
changed in the CCIS model, instead of exactly one in
the IP. Interestingly, this implies that Tcons ∼ (Nβ2)−1

in a complete graph, which we observe in Fig. 7, while
in the IP, Tcons ∼ N even for N ≈ 10 (not shown). In
the CCIS model, we find that, for small N , the consen-
sus time is roughly (2β)−1, the mean time for consensus
to be reached between two nodes. The crossover to the
asymptotic limit is when Tcons = (2β)−1 = (Nβ2)−1 or
N = 2/β. In conclusion, although some of the scaling
behavior resembles previous work on the VM, we make
predictions that are completely distinct from previous
VM-like models. This discrepancy has the potential to
be tested in a social experiment by observing the time to
consensus in small groups, because the difference is ap-
parent even for small N . We leave this for future work.

VI. CONSENSUS TIMES FOR δ > 0

Finally, we numerically study Tcons for δ > 0, where
the previous analysis breaks down, in two ways. Figure 8
illustrates how the consensus time depends on the recov-
ery rate δ when µ = 0. Figure 9 shows how the consensus
time depends on the stubbornness rate µ for different val-
ues of δ. Note that “consensus” here refers to the state in
which at most one opinion remains. Thus the consensus
state may contain a mixture of opinionated and neutral
individuals, as long as all opinionated individuals hold
the same opinion.
Fig. 8 shows that the consensus time decreases with

δ.Because the expected number of opinionated individu-
als at any given time decreases as δ increases, the time
it takes for the opinionated individuals to reach con-
sensus is also shorter. For this reason, we hypothesize

FIG. 8. (Color online) The consensus time versus δ with
µ = 0, and β = 0.05, on a 〈k〉 = 10 Erdos-Renyi Network.
The arrow indicates the critical point (calculated using SIS
model analysis [59]) of the CCIS model, above which all in-
dividuals quickly approach the neutral state. We note that
the consensus time appears to decrease monotonically with δ.
The initial condition is a 50/50 mixture of opinions 1 and 2.
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FIG. 9. (Color online) Mean consensus time for varying µ

and δ on 〈k〉 = 10, N = 104 Poisson networks with β = 0.5.
A minimum in the consensus time is observed for µ ≈ 0.1,
while analysis of model behavior for µ > 0.1 reveals that
Tcons ∼ log(N)δ−1.

that Tcons ∼ Neff

∑

A P (A), with Neff as defined pre-
viously. In other words, we generalize Eq. 4 and claim
Neff

∑

A P (A) is the new effective size of the network.
In Fig. 9, we plot Tcons versus µ for various val-

ues of δ to understand how our model more generally
reaches consensus for finite networks. First, we find that
Tcons ∼ log(N)δ−1 for small δ and µ > 0.1, which, in
this limit, is in agreement with previous analysis [44].
The behavior of Tcons versus µ demonstrates interesting
parallels to other models [11, 44, 45] (Fig. 9), whereby
at a non-trivial value of µ = µc(δ), the consensus time
reaches a minimum, and at larger values of µ the con-
sensus time increases significantly. This may generically
imply that large groups reach consensus relatively quickly
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if individuals are moderately resistant to changing their
opinion.

VII. CONCLUSION

In conclusion, we have introduced a model of opinion
dynamics that agrees with current empirical data and ex-
hibits interaction dynamics based upon real human be-
havior.
In addition, because our model makes few assump-

tions, it may plausibly explain a range of behaviors,
which future empirical investigations may be able to cor-
roborate. For example, the model can be used to explore
the “viral” spread of competing products, in which stub-
bornness is mapped to increasing brand loyalty[60, 61].
In this case, the brand-share distribution might be simi-
lar to Fig. 2.
Future work is necessary, however, to model opin-

ions with greater realism. As mentioned previously, this
model might benefit from additional realistic assump-
tions. For example, mass media could be added, be-
cause it can be more influential than individual per-
sons. Similarly, we could add party affiliation, which may
bias which candidate(s) individuals initially prefer, or are
likely to support in the future [52]. Additionally, the re-
covery rate could be tied to an individual’s stubbornness,
instead of constant as we assume here for simplicity.
In addition, one could model heterogeneous stubborn-

ness, either at the opinion level (as our model assumes) or
individual level, because some individuals appear to stub-
bornly hold on to an idea, while others may shift their
stance more readily. This is known to add greater realism
to opinion dynamics because the most stubborn individ-
uals possible, known as “zealots” in previous literature,
can help push the political preference in a two party sys-
tem near the 50/50 mark, alike to what we observe in the
CCIS model [6, 15, 16]. Expanding on previous work, we
expect that adding heterogeneous stubbornness to our
model can further slow down or stop consensus and po-
tentially create better agreement with data. In addition,
we assume agents linearly increase their resistance to al-
ternative opinions in time. This is not necessarily true
because PTP (pre-trial publicity) a day before a trial
produced a negative correlation between the biased news
and the juror decision, while PTP exactly a week before
a trial is not statistically significant [23]. A non-linear
or non-monotonic stubbornness may significantly change
the dynamics.
Finally, this paper assumes that all opinions are

equally strong and spread at the same time, but this is
not necessarily true in reality, which we discuss briefly in
Section III. MySpace started before Facebook, for exam-
ple, and therefore more people initially preferred MyS-
pace [37]. Facebook was later seen as a preferred opin-
ion, however, and eventually dominated social media at
the expense of MySpace and similar platforms. Future
work should therefore allow for a first-mover advantage

i

FIG. 10. (Color online) A schematic of the network chosen
to fit our models to empirical data. All nodes have a scale-
free out-degree distribution whereby a node i with degree ki
(in this example, ki = 9) is then connected to its nearest
neighbors.

[62] and opinions that are stronger or weaker than others
to better capture reality.
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Appendix A: Fitting the CCIS Model to Data

In this section we describe in more detail how the CCIS
model is fit to empirical vote distribution data and cor-
relation data

1. Network Model

To match the model to data, we use a spatially dis-
tributed network, which creates a non-zero spatial corre-
lation, and we find that we need a scale-free distribution
to best match scaled vote distribution data. Adding both
of these properties to a single network, however, is not
just convenient, but realistic. For example, we could try
to run a model on the most natural spatial network: a
grid. In a grid, individuals only interact if they are spa-
tially close, but previous work on the “six degrees of sepa-
ration” between two randomly chosen individuals [63, 64]
and “weak ties” between socially disparate individuals
[65], suggests that ties can exist between individuals who
are spatially separated by large distances. Furthermore,
unlike grids, the degree distribution of many social net-
works is a power law [54].
Combining all these properties, we can create spatial

scale-free networks, such as the one in Fig. 10. Nodes
have an out-degree k chosen from a scale-free distribu-
tion, and are placed on a grid with unit distance. Each
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FIG. 11. (Color online) The log-likelihood function versus (a)
µ, (b) the fraction of individuals seeded, P (0), (c) 〈k〉, and
(d) α. Not shown in (d) is the log-likelihood of a 10-regular
spatial graph (−10771), which is far below the current y-axis
scale. Arrows indicate the chosen values for our fit. L varying
by less than 100 does not look appear visually different from
our fit.

node is then connected to their nearest neighbors, al-
though to test the robustness of our results, a fraction f
of are randomly rewired. As f increases, the model makes
similar fits to the vote distribution data but the spatial
correlation decreases. To keep 〈k〉 constant for fixed de-
gree distribution p(k > kmin), we change the proportion
of nodes with degree kmin until we have the appropri-
ate 〈k〉. The directed nature of the network reduces the
chance of multi-edges or self loops, and it seems to be a
reasonable assumption that people with a lot of connec-
tions broadcast their opinion to a wide audience without
as much attention paid to the ideas of those same indi-
viduals.

2. Fitting Model Parameters

Next we discuss how our model is fit to data. The
Poland 2005 data set is chosen due to the large number
of elections (593, versus ∼ 200−400 for other countries).
In our simulations, seeded individuals are equally split
among the various candidates, but variations in seeding
should create similar results. Maximum Likelihood Esti-
mation (MLE) is used to determine the appropriate seed-
ing fraction.

The model has no readily apparent closed-form so-
lution, and a Kernel Density Estimator for the model
greatly over-estimates the probability for small xi, there-
fore we approximate the probabilities with log-binned
histograms (the widths, however, do not seem to change
the best fit parameter significantly).

3. Parameter Values

In the FC model, only the candidate has an initial
preference of whom to vote for, while in our model, we
assume a set percentage of individuals have an initial
preference to some candidate. The CCIS model creates
a poorer fit when Q individuals are seeded (not shown),
but seeding a fixed percentage seems to be an equally
realistic assumption if we imagine that a small percentage
of voters are initial strong supporters of the candidates.

We can also let the fraction seeded be 100%. Holding
µ = 1, the best fit β value is 0.65, with a fit similar to
Fig. 2. We choose to seed less than the total population,
because it seems reasonable that at some starting point,
not everyone is aware of the candidates.

To fit our model to the distributions, we set β to 0.1, µ
to 1, and 〈k〉 to 10, but variations in these values do not
significantly affect our results (see Fig. 11 in Appendix A,
where we hold all parameters fixed, except for the given
parameter plotted). We also fix δ = 0 in order for the
distribution to remain fixed in equilibrium. The MLE for
alpha, however, varies depending on the type of network
chosen. For example, while α = 2.01 creates a good fit
with our current model network (spatially-extend scale-
free), α = 2.5 creates a good fit on an undirected scale-
free network with no spatial structure. Whatever the
optimal α, however, we find that a wide distribution (e.g.,
α < 3) works best, when fitting to data. A Poisson or
k-regular graph, for example, never appears to fit well
with data, regardless of the other parameter choices.

We have more freedom to vary all parameters if our
only goal is to create vote correlations similar to empirical
data (Fig. 5). The roughly logarithmically decreasing
correlation with distance is observed for many values of
δ ≥ 0, µ ≥ 0, β > 0, P (0) > 0 and α > 2. Just one
example are the parameters chosen in Fig. 5.

4. Determining The Spatial Correlation

We finally mention how the correlations in Fig. 5 are
calculated. To be consistent with previous work [22, 34]
and Fig. 5a, we define the normalized correlation in our
figures as:

C(r) =
〈P (1)

i P
(1)
j |dij ≈ r〉 − 〈P (1)

i 〉2
σ2
P (1)

, (A1)

in which P
(1)
i is the fraction of voters for candidate 1

within a small region (which we choose to be 5× 5 node
squares), 〈P (1)〉 is the average fraction of voters for can-
didate 1, and σ2

P (1) is the variance in vote distribution

across all regions. 〈P (1)
i P

(1)
j |dij ≈ r〉 is the 2-point corre-

lation function between regions whose centroid is a dis-
tance r ± 1/2 from each other.



11

Appendix B: Derivation of the Transport-Like
Approximation

In this appendix, we use the TLA to understand the
initial jump in the opinion densities (see Figs. 6 & 12).
Our model can be described by the following equation

in the mean field:

(∂t + ∂τ )ρ
(A)(t, τ) = −δρ(A)(t, τ)−Θ(1− τµ)(1 − τµ)βkρ(A)(t, τ)

∑

B 6=A

P (B)(t), (B1)

with the boundary conditions:

1. ρ(A)(t,∞) = 0,

2. ρ(A)(t, 0) = δ(0+)[βkP (A)(t)P̃ (t)+βkP (A)(t)
∑

B 6=A

∫ µ−1

0 (1− τ ′µ)ρ(B)(t, τ ′)dτ ′],

3. and ρ(A)(0, τ) = f(τ)m

(see Fig. 12 for a visual representation) where t is time, τ
is the time an individual has had their most recent opin-
ion, P (X) is the fraction of individuals with opinion X
at time t, ρ(X) is the density of individuals with opinion
X at time t who have kept their opinion for a time τ
(variables and parameters are also defined in Table I).

Finally, P̃ (t) = 1 −∑

X P (X)(t). The RHS of the equa-
tion describes the ability of individuals to recover (light
grey or red term) as well as the ability to change opinions
(dark gray or blue term). We can interpret the boundary
conditions as:

1. Normalizability

2. An increase in the infection density due to neutral
neighbors (light gray or red term) and opinionated

neighbors (dark gray or blue term).

3. Initial conditions

We focus on the simpler case of δ = 0 for our anal-
ysis because adding δ to the equation numerically does
not seem to affect consensus, while, in simulations, con-
sensus happens quickly. Future analysis of perturbations
around equilibrium, however, may give us better insight
into what happens in simulations. We do know, how-
ever, that when δ ≪ 1, the equation can be simplified to
the one seen in [44], were they find, to use our notation,
Tcons ∼ δ−1, in agreement with our own simulations (not
shown).

The simplified equation is:

(∂t + ∂τ )ρ
(A)(t, τ) = −Θ(1− τµ)(1 − τµ)βkρ(A)(t, τ)

∑

B 6=A

P (B)(t), (2)

with the same boundary conditions.

We first try to understand the transient “jump” in
the fraction of individuals following a given opinion on
a timescale that is in many cases much smaller than the
time to reach consensus. We wish to understand the the
equilibrium fraction of individuals with a given opinion,
and the time to reach equilibrium.

For the former, we find close agreement between the
theory and simulations (Fig. 6), especially when 〈k〉 ≥
102. For fixed networks with 〈k〉 < 102, the equilibrium
values are on average below theoretical values, plausibly
because individuals are less connected to their neighbors,
and thus less influenced by them, than the mean field

theory assumes. To find agreement with simulations, we
numerically determined equilibrium values by stepping
forward the equation using the forward Euler method.

This method is inherently sensitive to the timestep
width, ∆t, especially when ∆Peq ≈ 0.5, therefore we find
the equilibrium value can be more accurately determined
by varying the timestep width and, via linear regression,
determining the asymptotic limit for the equilibrium as
∆t → 0 (Fig. 13). This seems to reduce our statistical
error to less than 0.5% compared to as much as 1− 6%,
and is in excellent agreement with the simulations.

Next, we determine the time to reach equilibrium. We
discretize τ , following [44], to derive a set of equations
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FIG. 12. (Color online) Schematic of the scalar variable in Eq.
B1 as a function of time, t, and time since opinion adoption,
τ .
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FIG. 13. (Color online) Details regarding the theory curve of
Figure 6. (Inset) For each value of β, we vary the timestep
width for Eq. 2 (∆t), and find the resulting equilibrium value.
∆Peq(∆t → 0) is estimated via linear regression. (Main fig-
ure) Plotting ∆Peq(∆t → 0) and slope for ∆P (0) = 0.05, we
find the slope, seen in the inset, is greatest when ∆Peq ≈ 0.6,
implying the error from using a single value of ∆t would have
been largest in this range.

that we linearize around a fixed point to determine the
scaling of the transient time (Eq. B9 & B10). Our ap-
proximations are only accurate for µ ≪ 1, but seem to
be qualitatively similar to numerical data for µ ∼ O(1).
We define the following macroscopic variables:

P (1)(t) =
∑

τ ′

ρ(1)(t, τ ′), and P (2)(t) =
∑

τ ′

ρ(2)(t, τ ′),

(B2)
in which

∑

τ ′ is shorthand for
∑∞

τ ′=0. If we let Ω[|] be
the conditional probability function, and ẋ ≡ d

dtx, then
Eq. 2 becomes (for τ > 0):

ρ̇(1)(t, τ)

= Ω[ρ(1)(t, τ)|ρ(1)(t, τ − 1)]ρ(1)(t, τ − 1)− ρ(1)(t, τ)

(B3)

Expanding these variables out, we find that:

ρ̇(1)(t, τ) = (1 + βk{[P (1)(t) + µ(τ − 1)]P (2)(t)− 1})ρ(1)(t, τ − 1)− ρ(1)(t, τ), (B4)

and for τ = 0:

ρ̇(1)(t, 0) = βkP (1)(t)[P (2)(t)− I(2)(t)]− ρ(1)(t, 0). (B5)

With an equivalent set of equations for ρ(2)(t, τ) and

I(1)(t) =
∑

τ ′

µτ ′ρ(1)(t, τ ′), I(2)(t) =
∑

τ ′

µτ ′ρ(2)(t, τ ′).

(B6)

From the above results we can sum ρ(1)(t, τ) to find the
equations for the macroscopic variables:

Ṗ (1)(t) = βk[I(1)(t)P (2)(t)− I(2)(t)P (1)(t)]. (B7)

To lowest order in µ, we also find that:

İ(1)(t) ≈ µ(1 − βk)P (1)(t)

+βk[µP (1)(t)2 + I(1)(t)P (1)(t)− I(1)(t)].
(B8)
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FIG. 14. (Color online) Teq versus N for various µ and βk

(simulations on k-regular random graphs,with k = 10). Inset
shows collapse when Teq is rescaled by λ1, with the best fit
slope equal to ν in Eq. B10.

These equations are solvable by expanding around the
solution P (1) = P (2) = 1/2 and I(1) = I(2) = µ[1/(βk)−
1/2] to first order. The resulting largest eigenvalue is

λ1 ≈
−βk − 4µ+ 2βkµ+

√

16βkµ+ (βk + 4µ− 2βkµ)2)

4
.

(B9)

The time to reach equilibrium, Teq, is:

Teq = ν
log(N)

λ1
, (B10)

where ν is a fitting parameter found to be 1.26 ± 0.04
from simulations. When βk = 1, this eigenvalue should
agree exactly with the value cited previously [44], but we
find disagreement by an overall prefactor of 1/4 which,
at least to our knowledge, may have been missed in the
previous work. Figure 14 shows how simulations agree
with theory. We notice disagreement is most significant
when µ approaches 1, and β is small (e.g., β = 0.1).

Appendix C: Scaling of effective network size

In this appendix we derive Eq. 4 using a FPA, which
is distinct from the TLA in Appendix B. Our derivation
is heavily based on the derivation of consensus times for
the VM and Invasive Process by Sood, Antal, and Redner
[5].

1. Derivation

We use the same conventions as in that paper, ex-
cept the transition probability scaling factor, S, the de-
gree distribution, p(k), and associated moments, 〈km〉 =
∑

k p(k)k
m. Note that we assume for now that β < 1/〈k〉

for the inward spreading method (opinions spread inward
toward an individual).

Let η(x) be the state of a node x on a network with
adjacency matrix Axy and order N . Assuming 2 opin-
ions and that µ and δ → 0, we have a two-state system.
Using the conventions of Sood, Antal, and Redner [5] the
opinions of the two-state system are “0” or “1” instead of
“1” or “2”. We stress that the 0 state is an opinionated
state. Lastly ηx is the state of the system after changing
a node x:

ηx(y) =

{

η(y), y 6= x

1− η(x), y = x
. (C1)

The transition probability at node x is therefore:

P(η → ηx) =
∑

y

Axy

NS
[Φ(x, y) + Φ(y, x)], (C2)

in which:

S = β−1, (C3)

and

Φ(x, y) = η(x)[1 − η(y)]. (C4)

We further assume a mean field solution, in which the
adjacency matrix becomes the average adjacency matrix:

Axy → 〈Axy〉 =
kxky
〈k〉N . (C5)

Instead of individual states η(x), we can instead focus on
ρk, the density of states with degree k:

ρk =
1

N

∑

x′

η(x′). (C6)

Here, x′ is the sum of all nodes with degree k. To clarify
the below equations, we also define a variable ω:

ω =
1

N〈k〉
∑

x

kxη(x) =
1

〈k〉
∑

k

kp(k)ρk. (C7)

Next, we define our raising and lowering operators for
ρk, which defines the probability of increasing or decreas-
ing ρk by a small increment:

ρk → ρ±k ≡ ρk ± δρk, (C8)

in which

δρk =











N〈k2〉
S〈k〉p(k) Outward Process
N〈k〉
Sp(k) Neutral Process
Nk

Sp(k) Inward Process

(C9)

The change in ρk is the average density change from a
neighbor (with average degree 〈k2〉/〈k〉), 〈k〉 links, or the
degree of a given node for the outward, neutral, and in-
ward processes respectively.
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from a neighbor with average degree 〈knn〉 = 〈k2〉
〈k〉 . The

raising operator is defined as:

Rk = P(ρk → ρ+k ) =
∑

x′

∑

y

kx′ky
S〈k〉N2

Φ(y, x). (C10)

With simplification, this yields

Rk =
ω

S
p(k)k(1 − ρk). (C11)

Similarly, for the lowering operator:

Lk = P(ρk → ρ−k ) =
ρk
S
p(k)k(1 − ω). (C12)

The exit probability, ξ1, defined as the probability for all
nodes to reach state one in equilibrium, is the same for
all cases

ξ1 = 〈ρ〉 ≡
∑

k

ρkp(k), (C13)

and similarly, that 〈ρ〉 (or magnetization, if this were
a spin system) is a conserved quantity. The reason is
because

〈∆η(x)〉 = [1− 2η(x)]P(η → ηx)

= [1− 2η(x)]
∑

y

Axy

NS
[Φ(x, y) + Φ(y, x)],

(C14)

∆〈ρ〉 =
∑

x

〈η(x)〉 =∼
∑

x,y

[η(x) − η(y)], (C15)

which is trivially 0. We note that this argument is exact
(not a mean field approximation) and is independent of
the method in which opinions spread (at least, again,
assuming β < 1/〈k〉 for the inward dynamics). The time
to consensus is

Tcons({ρk}) =
∑

k

∆tk

+[Rk({ρk})Tcons(ρ
+
k ) + Lk({ρk})Tcons(ρ

−
k )]

+[1−
∑

k

Rk({ρk}) + Lk({ρk})]Tcons({ρk})
.

(C16)

The average number of interactions per timestep is:

∆tk =











p(k) 〈k2〉
〈k〉SN Outward Process

p(k) 〈k〉
SN Neutral Process

k
SN Inward Process

. (C17)

We expand to second order in ∆ρk and find that

∑

k

vk
∂Tcons

∂ρk
+Dk

∂2Tcons

∂ρ2k
= −1, (C18)
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FIG. 15. (Color online) Mean consensus time, Tcons, for scale-
free networks with β = 0.5, δ = 0, and µ = 0. Inset is one
example of consensus with P (1)(t) and P (2)(t). Using the
FPA, the expected fit (solid lines) is Eq. 4. Simulations are
averaged over 10 networks (30 networks for 3 × 104 ≤ N <

105, and 20 networks for N = 1.2 × 105) with 100 trials per
network.

in which

vk ≡ ∆ρk
〈∆t〉 (Rk − Lk) → 0. (C19)

As is shown in in the original voting model paper [5],
this value reaches 0 for time Tcons ∼ O(1) which is much
smaller than the next term:

Dk ≡ (∆ρk)
2

〈∆t〉
(Rk + Lk)

2
. (C20)

A change of variables implies that:

∂Tcons

∂ρk
=

∂Tcons

∂ρ

∂ρ

∂ρk
= p(k)

∂Tcons

∂ρ
, (C21)

therefore

∑

k

M

2〈k〉NS2
(ω + ρk − 2ωρk)p(k)

∂2T

∂ρ2
= −1. (C22)

in which

M =











〈k2〉 Outward Process

〈k〉2 Neutral Process

k2 Inward Process

. (C23)

This can be made into a more compact form, noting that
ρ is conserved and vk → 0, ω → ρ. :

ρ(1− ρ)

Neff

∂2Tcons

∂ρ2
= −1. (3)

where Neff is as follows:

Neff =
NS2

〈M〉 =











N
β2〈k2〉 Outward Process

N
β2〈k〉2 Neutral Dynamics

N
β2〈k2〉 Inward Dynamics

. (4)
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We find that this equation simplifies down to (24) in [5],
noting the boundary condition, Tcons(0) = Tcons(1) = 0
in which:

Tcons(ρ) = Neff

[

(1− ρ)ln
1

1− ρ
+ ρln

1

ρ

]

, (C24)

implying that Tcons ∼ Neff .
As we discuss shortly, if β > 1/〈k〉 in the inward-

spreading case, we have VM dynamics, and the mean
field consensus time replaces β with 1/〈k〉. Furthermore,
this approximation breaks down for small 〈k〉 and small
β, in which we show in Section V that the consensus time
scales as β−1. Future work could improve the accuracy
of the current results with a pair approximation theory
[57, 58].
This paper mainly focuses on the outward process, but

we have also compared theory and simulation for the
other processes by varying β and 〈k2〉, in Poisson and
scale-free networks, while setting δ and µ to 0. First, we
observe the dependence on 〈k2〉 by simulating the models
on scale-free networks.
In a scale-free network, 〈k2〉 diverges with network or-

der, N :

〈k2〉 ∼











N3−α α < 3

log(N) α = 3

O(1) α > 3

. (C25)

Therefore, for outward and inward dynamics:

Tcons ∼



























O(1) α < 2

log(N)2 α = 2

N2(α−2)/(α−1) 2 < α < 3

N/log(N) α = 3

N α > 3

. (C26)

2. Agreement With Simulations

Fig. 15 compares outward process simulations to the
FPA (inward processes simulations are similar, due to
the equilvalent scaling). Although a finite size transient
impedes this scaling behavior for N ≤ 104, we still see
agreement for large enough networks. For Poisson net-
works, we see Tcons ∼ 〈k2〉−1 = (〈k〉2 − 〈k〉)−1 in the
inset of Fig. 16.
The inward-spreading dynamics closely parallel the

outward spreading dynamics when β2〈k2〉 < 1. On the
other hand, when β is large enough, each node is, on
average, infected by multiple nodes at each timestep, al-
though, by the end of the timestep, only one opinion
is chosen. This maps exactly onto the VM, and there-
fore so does the consensus time (Fig. 17). Setting the
model’s mean field consensus time equal to the VM con-
sensus time implies that βc = 〈k〉−1 is the critical value
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FIG. 16. (Color online) Mean consensus time for varying β

(δ and µ = 0) on 1000 node Poisson networks with different
average degree, 〈k〉. Inset: consensus time versus average de-
gree for β = 0.99. Simulations are averaged over 30 networks.
The theory are the dashed lines (Tcons ∼ β−2 when β and 〈k〉
large, and Tcons ∼ β−1 in the opposite limit) and solid line in
the inset (Tcons ∼ 〈k2〉−1).
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FIG. 17. (Color online) Mean consensus time versus β for
Poisson graphs in which we use the inward infection method.
Theory is the black line Tcons ∼ β−1 and arrows indicate
when β〈k〉 = 1, whereby we transition to true VM dynamics,
which is independent of β.

between CCIS and VM dynamics [66]. Neutral spread-
ing (not shown), on the other hand, break with the other
spreading methods by only depending on the first degree
moment, and is therefore mostly independent of the net-
work’s degree distribution in the mean field. We check
whether Tcons ∼ β−2 (Fig. 16).

Agreement with theory is closest when β ∼ O(1) and
〈k〉 ∼ 10 − 20. When 〈k〉 approaches 1 or β ≪ 1 we see
that Tcons ∼ β−1. The reason is as follows: the number
of nodes convinced at each timestep in this limit is very
low (i.e., 2 with probability β2 ≈ 0, 1 with probability β,
and 0 with probability 1− β), therefore, the time until a
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given node is convinced is a geometric process:

p(t) = β(1− β)t−1, (C27)

which would imply the average time until a node is con-
vinced is β−1. The consensus time would scale similarly.
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