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Simple growth mechanisms have been proposed to explain the emergence of seemingly universal
network structures. The widely-studied model of preferential attachment assumes that new nodes
are more likely to connect to highly connected nodes. Preferential attachment explains the emer-
gence of scale-free degree distributions within complex networks. Yet, it is incompatible with many
network systems, particularly bipartite systems in which two distinct types of agents interact. For
example, the addition of new links in a host-parasite system corresponds to the infection of hosts by
parasites. Increasing connectivity is beneficial to a parasite and detrimental to a host. Therefore,
the overall network connectivity is subject to conflicting pressures. Here, we propose a stochas-
tic network growth model of conflicting attachment, inspired by a particular kind of parasite-host
interaction: that of viruses interacting with microbial hosts. The mechanism of network growth in-
cludes conflicting preferences to network density as well as costs involved in modifying the network
connectivity according to these preferences. We find that the resulting networks exhibit realistic
patterns commonly observed in empirical data, including the emergence of nestedness, modularity,
and nested-modular structures that exhibit both properties. We study the role of conflicting inter-
ests in shaping network structure and assess opportunities to incorporate greater realism in linking
growth process to pattern in systems governed by antagonistic and mutualistic interactions.

PACS numbers: 89.75.Hc, 89.75.Fb, 87.23.Cc, 87.23.Kg

I. INTRODUCTION

Dynamic network models connect microscopic mecha-
nisms of growth to the emergence of macroscopic struc-
ture and function. In iterative growth models, nodes
are sequentially added to an initial small network, and
the connectivity of each newly added node is determined
based on the existing network and a set of predefined
rules. For example, the widely-studied model of prefer-
ential attachment (PA) proposed by Herbert Simon in
the 1950s [1], extended by Derek de Solla Price in the
1970s [2] and generalized further by Albert Barabási and
Reka Albert more recently [3, 4], assumes that the prob-
ability that a newly added node connects to an exist-
ing node is proportional to the total number of connec-
tions (or degree) of the existing node. The PA model
reproduces power-law degree distributions observed in a
number of complex scale-free networks such as the World
Wide Web (WWW) [5], brain functional networks [6] and
networks that describe the spatio-temporal distribution
of earthquakes [7]. The preferential attachment mech-
anism has been verified in systems ranging from scien-
tific collaboration networks [8, 9] to protein interaction
networks of yeast [10]. Over the past ten years, the PA
model has been generalized to account for other emergent
features, including clustering and community structure,
beyond that expected given a power-law degree distribu-
tion [11–13].
Pioneering studies in this area have focused on uni-

partite networks with only one kind of node. Recently,
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increased attention has been given to bipartite networks
in which there are links exclusively between two different
types of nodes. Examples of bipartite networks include
scientific collaboration networks in which authors are as-
sociated with papers they publish [14, 15] and ecological
networks of species interactions ranging from mutualistic
plant-pollinator networks [16] to antagonistic parasite-
host networks [17]. A number of studies have generalized
the PA model to bipartite networks. While PA models of
bipartite networks can generate power-law degree distri-
butions in certain situations [18], such models also lead
to other forms of degree distribution such as an U-shaped
distribution with many nodes with few and many nodes
with many links [19] and a shifted power-law distribution
[20].

Ecological networks exhibit complex network proper-
ties that are not readily explained by standard PA models
or recent generalizations to bipartite networks. A recur-
rent pattern is that of nestedness, where species with a
small number of links (specialists) have a subset of the
links of species with a greater number of links (general-
ists) [21]. In other words, specialists interact with gener-
alists while generalists interact with both specialists and
generalists. In the limit of perfect nestedness, the de-
gree distribution is uniform rather than scale-free. In
addition, ecological networks can also exhibit modular-
ity where the species are separated into groups or mod-
ules with species interacting strongly within a module
but not between different modules [22]. These network
properties play an important role in the function and
stability of ecosystems. For example, it has been sug-
gested that nestedness enhances stability in mutualistic
networks [23, 24] while modularity promotes stability in
food-webs [24, 25]. However, other studies reveal that
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nestedness and modularity are not always mutually ex-
clusive [26], and the relationship between the structure of
ecological networks and ecosystem stability depends on
ecological parameters such as growth rates of the species
[27].

For competitive ecosystems, there exists another type
of incompatibility with respect to the PA mechanism as
there is a conflict of interest between the two types of
nodes (e.g. parasite and host) in terms of the preferred
level of connectivity. Other examples of conflict of inter-
est in networks include server-hacker networks [28] and
surveillance-rogue networks [29, 30]. Such conflict can
manifest itself in terms of distinct preferences, i.e., nodes
of one type “prefer” to have more links and nodes of the
other type “prefer” to have fewer links. The interaction
between viruses and their microbial hosts is an increas-
ingly well-studied example of competitive ecosystems. In
virus-microbe communities it is beneficial for viruses to
infect microbes in order to reproduce, while the micro-
bial hosts benefit by avoiding infection and subsequent
lysis; complications can arise in the case of long-term in-
fections of microbes by viruses [31]. Observations of the
selective benefit of increased resistance and infectivity,
for microbes and viruses respectively, date back to sem-
inal work by Salvador Luria and Max Delbrück in the
1940s [32, 33]. Empirical studies of infection networks
between bacteria and phage, or a type of virus that ex-
clusively infects bacteria, have revealed complex patterns
of cross-infection (see the review in Weitz et al. [34]) in-
cluding nestedness [35] and modularity [36]. Further, in
the marine example, the identified modules also had an
internal nested structure, i.e., they had a multi-scale in-
teraction network pattern [36].

In this manuscript, we propose a conflicting attach-
ment model for the growth of bipartite networks in-
spired by the competitive ecological interactions between
viruses and their microbial hosts. The governing mech-
anism of the conflicting attachment model is the du-
plication of nodes, akin to a mutation event, with link
rewiring that favors removal and addition of links for the
two types of nodes respectively. We assume that link
rewiring comes at a cost, with two parameters governing
the relative costs of rewiring for the two types of nodes re-
spectively. As we show, changing the strengths of trade-
offs leads to qualitative changes in network structures
consistent with empirical observations, including regimes
characterized by elevated nestedness, modularity, multi-
scale nested-modular structure, and a superimposition of
nested and modular patterns. We also explore how the
current model may be used to probe the relationship be-
tween microscopic mechanisms and macroscopic patterns
in the growth of bipartite networks more generally - in-
cluding both antagonistic and mutualistic systems.

II. MODEL

We propose a stochastic model of bipartite network
growth that incorporates a conflict of interest in its gen-
erative mechanism. The state of the system is described
in terms of a graph G ≡ {H,V,E} where H are the host
nodes, V are the virus nodes and E are the links between
viruses and hosts. The graph G can be represented by an
m×n incidence matrix B where m and n are the number
of host nodes and virus nodes respectively, and Bij = 1
if host i is infected by virus j, otherwise Bij = 0.

Each network growth step consists of two parts, the
first is the duplication and rewiring of a particular host
and the second is the duplication and rewiring of a par-
ticular virus. In the first part of each model step, the
host Hr with the smallest degree kr =

∑

j Brj is selected
for duplication and a new host is generated that inherits
all the links of Hr. If more than one host has the smallest
degree, then one of them is selected at random. The new
node is denoted as H ′, e.g., node 2 - the most resistant
host - would be selected for duplication in the example
network in Fig. 1. The rewiring of H ′ involves, first, the
removal of all links - equivalent to evolving resistance to
all viruses that infect Hr. Then, new links are added
with probability PH to each virus unconnected to its an-
cestor Hr. This loss of resistance can be understood as
the trade-off of developing new resistance.
In the second part of each model step, the virus Vg

with the largest degree dg =
∑

i Big is selected for dupli-
cation and a new virus is generated that inherits all the
links of Vg. If more than one of them have the largest
degree, then one of the viruses with the largest degree is
selected at random. The new virus is denoted as V ′, e.g.,
node C - the most generalist virus - would be selected
for duplication in the example network in Fig. 1. The
rewiring of V ′ involves, first, the addition of links to all
hosts previously inaccessible to its ancestor Vg. Then, ex-
isting links of Vr are removed with probability PV . This
loss of connectivity can be understood as the trade-off of
exploiting new types of hosts. Under this rewiring pro-
cess, the average link creation rate of a virus decreases
with node degree. While that may seem counterintuitive
at first, this would be the case if each host employs in-
dependent resistance mechanism and the virus has the
same probability of countering each of them. Here, the
rate of link creation is proportional to the number of non-
existent links, i.e., the number of potential targets for the
virus to develop infectivity against.

The conflict of interest is embedded in both the node
duplication and the link rewiring processes. Duplication
of the most resistant host and most generalist virus pre-
sumes that fitness is correlated with the scope of resis-
tance and infectivity, respectively. Similarly, the newly
evolved host gains resistance while the newly evolved
virus develops new infectivity - leading to decreases and
increases in network connectivity. The cost of such gains
are parameterized by PH and PV . When these parame-
ters approach zero, then there is little cost in developing
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FIG. 1. Schematics showing selection of nodes for duplication and rewiring where host 2 and virus C would be selected (left).
The duplication and stochastic rewiring of links are also shown for the new host (middle) and virus (right). Solid lines are
connections and dashed lines are potential links associated with a rewiring probability that corresponds to an addition and
deletion of link for host and virus, respectively.

new resistance or infecting new host types. In contrast,
when these probabilities approach one, then developing
resistance or gaining access to new hosts involves the loss
of resistance or the loss of existing infectivity, for hosts
and viruses respectively.
The bipartite growth process is intentionally set to be

unbounded, similar to that of the original PA model.
Such unbounded growth can be interpreted as akin to
the accumulation of strain types in coevolution experi-
ment of phage and bacteria, for which cross-infectivity
can then be assessed within and across time-points (e.g.,
[37–41]).

III. QUANTIFYING BIPARTITE NETWORK

STRUCTURE

We are interested in the modularity and nestedness of
the networks generated and employ standard metrics to
quantitatively measure these structural properties. The
modularity of a network is defined as the ratio of links
within each module subtracted by the ratio expected to
result from randomness [42], and for a bipartite network
it is given by [43]

Q ≡
1

E

∑

i,j

(Bij −
kidj
E

)δ(gi, gj) (1)

where E is the total number of links in the network, ki ≡
∑

j Bij is the degree of node Hi and dj ≡
∑

i Bij is the
degree of Vj .
The nestedness of a network can be quantified by the

nestedness metric based on overlap and decreasing fill
(NODF) [44]. This metric is based on two observations.

First, in a perfectly nested network, the nodes range from
generalist to specialist such that their degrees are never
identical. Second, in such a network the interactions of
a specialist always form a subset of the interactions of
a generalist. The NODF metric therefore measures the
nestedness among the rows (hosts H) of the incidence
matrix by defining a matrix MH

ij for each pair of rows
such that

MH
ij ≡

{

0 if ki = kj
∑

k BikBjk/min(ki, kj) if ki 6= kj
(2)

where ki and kj are the degrees of hosts i and j respec-
tively. Suppose ki > kj , MH

ij is equal to 1 when the
links of host j form a subset of the links of host i, is
less than 1 but greater than 0 if only some of the links
of host j overlap with links of host i, and is equal to 0
if there is no overlap. MH

ij is therefore maximized when
the host connections satisfy the criteria of a perfectly
nested network. A matrixMV

ij is defined similarly for the
nestedness across the columns (viruses), and the overall
nestedness of the network is given by

NNODF ≡

∑

i<j(M
H
ij +MV

ij )

m(m− 1)/2 + n(n− 1)/2
. (3)

The NODF metric of nestedness is independent of the
ordering of the nodes and gives a single value for each
network. On the other hand, the calculation of modular-
ity depends on how the network is partitioned. To iden-
tify the partition that maximizes modularity, we use the
Bipartite Recursively Induced (BRIM) method [42, 43].
This algorithm detects modules by maximizing Q iter-
atively, with the nodes assigned to sets that recursively
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draw each other into modular structures. The partition
of nodes thus identified is a local maximum of Q. Com-
putations of the modularity and nestedness, and visual-
ization of the bipartite networks are carried out using the
BiMat package [45].
For each set of parameters, the modularity and nested-

ness are calculated in an ensemble of networks, and the
average value of the modularity and nestedness are then
determined. The statistical significance of the modularity
and nestedness values is determined by comparing them
to the distribution of values generated via a null model.

IV. RESULTS

A. Emergent network structure given conflicting

growth mechanisms

The dynamics of network growth given conflicting at-
tachment can be quantified in terms of emergent net-
work structures. Fig. 2 shows variation in the measured
nestedness, NNODF and modularity Q of ensembles of
networks as a function of the two governing cost pa-
rameters: PH and PV . In these simulations, nestedness
is measured using the NODF metric (see Methods and
[44]) and modularity is measured using Barber’s bipar-
tite modularity metric (see Methods and [42, 43]). As an
illustrative example, we generate networks with 50 hosts
and 50 viruses. Across the entire parameter range, mod-
ularity tends to increase with PV while nestedness tends
to decrease with PV . One exception to this trend occurs
when PH = 0 and PV = 1, which corresponds to a regime
of high modularity and intermediate nestedness.
The different asymptotic cases illustrate the variation

in emergent network structures. When PH = PV = 0
there is no cost to developing resistance or acquiring an
expanded host range. In that limit, the growth process
generates a perfectly nested network with NNODF = 1
where the hosts and viruses can be ranked in a hierarchy
of strictly increasing node degree and the interactions
of the specialists are always a subset of the generalists
(Fig. 3(a)). When PH = PV = 1, the costs are maxi-
mal for acquiring resistance and infectivity. In turn, the
emergent networks are perfectly modular with two mod-
ules wherein all hosts and viruses within a module are
fully connected, and there are no links across different
modules (Fig. 3(b)). When PH = 0 and PV = 1, the
costs are asymmetric, such that hosts have no cost to ac-
quire resistance and viruses have maximal costs. In this
case, the emergent networks have a multi-scale nested-
modular structure where the nodes can be separated into
two modules with each of the module being a perfectly
nested network (Fig. 3(c)). Interestingly, this type of
multi-scale nested-modular pattern has been reported in
analysis of empirical data of phage-bacteria infection net-
works [35].
For the opposite case of PH = 1 and PV = 0 in which

host resistance has maximal costs while virus infectiv-
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FIG. 2. (Color online) Heat map showing the dependence of
(a) modularity Q and (b) nestedness NNODF on the param-
eters PH and PV . The network size is n = 50 and values are
averaged over 20 networks.

ity incurs none, the network shows a superimposed pat-
tern of modularity and nestedness. In such a superim-
posed nested-modular network, the hosts and viruses can
be separated into two modules, with hosts and viruses
within the same module fully-connected and the interac-
tions across different modules exhibiting a nested pattern
(Fig. 3(d)).

For all of the asymptotic cases with elevated nested-
ness, including the perfectly nested (PH = PV = 0),
multi-scale nested-modular (PH = 0, PV = 1), and su-
perimposed nested-modular (PH = 1, PV = 0) case, the
degree distributions of the hosts and viruses are uni-
form with a range defined by the most specialist and
the most generalist nodes. The skewness of the distri-
butions are therefore zero. For the perfectly modular
case (PH = PV = 1) the degree distribution is bimodal
with each peak corresponding to the number of hosts
(or viruses) in a module. The symmetry of the distribu-
tion also ensures a low skewness. The low skewness indi-
cates that the distributions are not described by power
law as expected from preferential attachment. In the
next section, we explain the processes by which variation
in microscopic mechanisms of rewiring generates distinct
classes of network structures.
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(a) (b)

(c) (d)

FIG. 3. (Color online) Examples of networks with asymptotic
values of PH and PV : (a) PH = PV = 0 (nested) with the orig-
inal network (upper panel) and a sorted version (lower panel)
of the network in the standard nested form with rows and
columns in descending node degree, (b) PH = PV = 1 (mod-
ular) with the original network (upper panel) and a sorted ver-
sion (lower panel) highlighting the modularity of the network
(c) PH = 0, PV = 1 (multi-scale nested-modular) with origi-
nal network (upper panel) and the modularity sorted version
(lower panel), and (d) PH = 1, PV = 0 (superimposed nested-
modular) with original network (upper panel) and modularity
sort (lower panel).

B. Mechanisms for the emergence of modularity

and nestedness given conflicting attachment

The initial steps of the network growth process for the
four asymptotic cases are depicted in Fig. 4. When
PH = PV = 0, there is no cost for the hosts and viruses to
evolve new resistance and infectivity, respectively. Hosts
and viruses initiate an arms race as shown in Fig. 4(a),
wherein the newly evolved hosts and viruses are increas-

ingly resistant and generalist respectively, and form a
nested network structure. Figure 4(b) shows the mecha-
nisms of growth in the case of PH = PV = 1. In this limit,
the new host H ′ is resistant to all viruses that exploited
its ancestor but loses resistance to viruses unable to infect
the ancestral host. As a consequence, the virus that can
exploit H ′ are not from the module associated with the
ancestor. Over the long-term, the newly evolved hosts
and viruses switch between modules, and the growth pro-
cess reinforces the perfectly modular structure with low
nestedness. When PH = 0 and PV = 1 (Fig. 4(c)),
hosts develop resistance with no costs, but viruses ex-
ploit new host types at maximal costs. This asymme-
try implies that a newly evolved virus switches between
modules, while there is no such restriction for the host.
As such, hosts gain increasing resistance, leading to a
nested pattern within each module. Finally, for PH = 1
and PV = 0 (Fig. 4(d)) the opposite process takes place
and newly mutated hosts switch modules while viruses
continue to evolve a wider host range without bound. As
a result, a host can only evade infection from a subset
of viruses belonging to a different module. Each evolved
host specializes in resistance against viruses in one of
the modules with varying resistance range following a
nested pattern. This process generates a fully-connected
interaction pattern within each module and a nested pat-
tern across different modules and yield the superimposed
nested-modular structure. The networks generated in the
asymptotic limits of the parameter space are informative
with respect to the bulk of parameter space. In Ap-
pendix A we use a perturbative approach to examine the
expected level of nestedness in the limit PH → 0 and
PV → 0 in addition to the expected level of modularity
in the limit PH → 1 and PV → 1. We find that nest-
edness decreases smoothly from NNODF = 1 and that
modularity decreases smoothly from Q = Qmax near the
limiting cases. We conclude that the generative mech-
anisms for nested and modular networks apply to both
the asymptotic and bulk regimes.

C. Scaling of modularity and nestedness with

network size

The bipartite network growth process continues un-
bounded. As such, a full characterization of the emer-
gent network structure requires an analysis of the scaling
of modularity and nestedness as a function of network
size. Fig. 5 shows the size-dependence of modularity
Q and nestedness NNODF for a subset of regions in pa-
rameter space. In Fig. 5(a) for PH = PV = 0.2 near
the perfectly nested asymptotic case, we see that our
model gives a statistically significant nestedness through-
out the range of network sizes compared to a null model
of Erdős-Rényi (ER) random network with the same con-
nectance. This confirms that our model can generate and
maintain significant nestedness when the network grows
not only for the asymptotic case but also in the bulk of
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FIG. 4. (Color online) Schematics of a realization of the network growth model for each asymptotic case. All networks started
out as a single pair of interacting virus and host, and snapshots of the networks at n = 3, 4 and 5 are shown. The parameters
used are (a) PH = PV = 0 (perfectly nested network), (b) PH = PV = 1 (modular network), (c) PH = 0, PV = 1 (multi-
scale nested-modular network), and (d) PH = 1, PV = 0 (superimposed nested-modular network). The solid arrows show
the network evolution and dashed arrows denote duplications and go from ancestor to descendant. For (b) and (c) reordered
network matrices are also shown to highlight the modularity.

the parameter space. Figure 5(b) shows that our model
gives statistically significant modularity for a set of pa-
rameters PH = PV = 0.8 near the perfectly modular
case when the network is sufficiently large. Although the
modularity decreases with network size by a power law
with exponent around 0.25, the enhancement in modu-
larity with respect to the null expectation increases for
larger networks. For the parameter space region near the
multi-scale nested-modular case, Fig. 5(c) presents the
modularity and nestedness for the parameters PH = 0.2
and PV = 0.8. The results indicate elevated levels of both
modularity and nestedness remain statistically significant
after the network reaches a sufficiently large size. Figure
5(d) confirms that for PH = 0.8 and PV = 0.2 near the
superimposed nested-modular case, the modularity and
nestedness are also significant. However, there is a larger
number of cross-module links than the multi-scale case as
the interactions are not exclusively within modules even
for the asymptotic case.

D. Sensitivity of network structures to initial

conditions

We have so far focused on networks grown initially
from a single pair of interacting host and virus strain as
it is the typical way to initialize a coevolutionary exper-
iment (see the review in Brockhurst et al. [40]). How-
ever, to investigate the robustness of the network struc-
tural patterns generated from our model, it is necessary
to study also the sensitivity of these patterns to initial

conditions. Figure 6 shows networks at the asymptotic
cases of our model grown from alternative initial net-
works. In Fig. 6(a), a perfectly modular initial net-
work with NNODF = 0 gives rise to a network with
high nestedness (NNODF = 0.995) for the nested asymp-
totic case (PH = PV = 0). Similarly, Fig. 6(b) shows
that a perfectly nested initial network with low mod-
ularity (Q = 0.190) yields a network with high mod-
ularity (Q = 0.314) for the modular asymptotic case
(PH = PV = 1), albeit with more significant deviations
from the perfectly modular network. In Figs. 6(c) and
(d) for the multi-scale and superimposed nested-modular
case respectively, we choose an initial network that min-
imizes the sum of modularity and nestedness at a fixed
connectance of 0.5 obtained by a brute-force search. The
minimized network (NNODF = 0, Q = 0.313) ensures
that elevated levels of modularity and nestedness would
be a result of the rules in generating the network instead
of the initial conditions. In Figs. 6(c) and (d), the multi-
scale nested-modular (PH = 0, PV = 1) and superim-
posed nested-modular (PH = 1, PV = 0) networks are re-
produced to good approximation with NNODF = 0.488,
Q = 0.497 for the multi-scale case and NNODF = 0.844,
Q = 0.167 for the superimposed case.

To ascertain the robustness of network structural prop-
erties in the bulk of the parameter space, we reproduce
the heat maps of modularity and nestedness with ini-
tial networks given by a modified form of ER random
networks. We fix the diagonal elements of the network
matrix to be 1 and assign off-diagonal elements to be 0
or 1 randomly such that the overall average connectance
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FIG. 5. (Color online) Structural features of emergent networks as a function of network size. Network size dependence of (a)
nestedness NNODF of our model with PH = PV = 0.2 (black circles) and Erdős-Rényi (ER) random networks with the same
connectance (red diamonds), and (b) modularity Q of our model with PH = PV = 0.8 (black circles) and the ER model (red
diamonds). Q (main panel) and NNODF (inset) of our model with (c) PH = 0.2, PV = 0.8 and (d) PH = 0.8, PV = 0.2 (black
circles) and their ER model counterparts (red diamonds). One realization of the network matrix with n = 50 is shown on the
right of each subfigure for the corresponding set of parameters. Solid lines are power laws with the exponent 0.25 and error
bars have a width of 2 standard deviations. Values of the modularity and nestedness for each data point are averaged over
106/n2 (rounded to the nearest integer) number of networks.

(a) (b) (c) (d)

FIG. 6. (Color online) Networks with asymptotic values of PH and PV generated from different initial network configurations:
(a) PH = PV = 0 (nested) generated from a perfectly modular initial network, (b) PH = PV = 1 (modular) generated from a
perfectly nested initial network, (c) PH = 0, PV = 1 (multi-scale nested-modular) from an initial network that minimizes the
sum of modularity and nestedness at a fixed connectance of 0.5, and (d) PH = 1, PV = 0 (superimposed nested-modular) from
the same minimized network.

is fixed. This is done to avoid unconnected nodes in the
initial network as an unconnected virus would not be able
to infect any host present. The results as shown in Figs.
7 (a) and (b) confirm that the general trend of the depen-
dence of modularity and nestedness remains unchanged.
Figures 7 (c) and (d) show the differences in modularity
and nestedness between the random network initializa-
tion and the 1× 1 network initialization. The two types

of initialization produce networks with very similar mod-
ularity and nestedness. Significant differences only ap-
pear near the modular asymptotic case of PH = PV = 1
where random initialization leads to networks that are
more nested and less modular, which is consistent with
the observation in Fig. 6 that the non-nested modular
network is less robust to change in initial conditions. The
overall low sensitivity of the network patterns to initial
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FIG. 7. (Color online) Heat map showing the dependence of (a) modularity Q and (b) nestedness NNODF on the parameters
PH and PV with initial networks generated from a modified form of ER random networks of average connectance 0.5. The size
of the initial networks is 4× 4 and that of the final networks is 50× 50. Values are averaged over 20 independent realizations.
Differences in (c) modularity and (d) nestedness between the random network initialization and the 1×1 network initialization
as used in Fig. 2. Shades of green denote positive values (higher for random initialization) and shades of red indicate negative
values.

conditions indicates that they arise as a result of the node
selection and duplication rules independently of the ini-
tial conditions with the exception of a narrow region near
the modular asymptotic case.

V. DISCUSSION

We have developed a simple model of conflicting at-
tachment for bipartite network growth inspired by virus-
host interactions, thereby extending seminal models of
preferential attachment [1–3]. The model shows different
regimes of network structures including modular, nested,
multi-scale nested-modular and a superimposed form of
nested-modular structure. We show that these network
structures are robust to network size and initial condi-
tions. The mechanisms for the emergence of these struc-
tures can be understood by examining the costs to elim-
inating links and gaining links, by hosts and viruses re-
spectively. When there are no costs for increasing re-
sistance and infectivity, the hosts and viruses enter an
arms race with increasingly resistant hosts and general-
ist viruses. This route to nestedness in an antagonis-

tic system has parallels to the emergence of nestedness
in mutualistic systems, e.g. plant-pollinator networks.
However, here nestedness emerges via conflict, i.e., the
generalist virus infecting the most defended host, rather
than mutualism, i.e., with both partners expanding their
host ranges in tandem. When there are maximal costs for
increasing resistance and range, newly added virus and
hosts switch modules; this process reinforces the perfectly
modular structure. When there are no costs for increas-
ing resistance but maximal costs for developing new in-
fectivity, the asymmetry leads to a case in which viruses
switch modules while the hosts develop increasing resis-
tance so that each module will have a maximally nested
interaction structure. Lastly, when there are maximal
costs for resistance and none for infectivity, the hosts
switch modules while the viruses develop ever increasing
host range, resulting in host strains that are infected by
every virus within its module and develop varying levels
of resistance to viruses from a different module.

Empirical studies of phage-bacteria systems have re-
vealed nested and multi-scale structures which are repro-
duced in the current model [35]. In contrast to a prefer-
ential attachment mechanism that produces power-law
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degree distributions, the current model generates uni-
form degree distributions for the asymptotic cases show-
ing elevated nestedness as expected for highly nested net-
works. Network growth in these systems is a result of the
coevolution between the phage and bacteria where new
strains of phage and bacteria evolve under changing se-
lective pressures due to the ever changing composition of
phage and bacteria populations. Laboratory-based co-
evolution experiments have provided evidence that it is
possible for phage to lose its ability to infect the ancestral
host when gaining infectivity for contemporary bacterial
strains [38], as we have assumed in our model. In general,
the comparative benefit of having a wide host range de-
pends on the details of the trade-off between host range
and replication rate, and it is possible for generalist and
specialist viruses to coexist given certain conditions of
trade-off [46]. However, it has been observed in coevolu-
tionary experiments that phage strains tend to become
more generalist over time [38]. It is therefore reasonable
to assume that an increased host range confers an ad-
vantage in these systems, at least in the time scale (∼ 20
days) that has been studied. Nonetheless, generalizing
the current approach to include other selection rules for
network rewiring is essential.

In this manuscript we have focused on the statisti-
cal properties of an evolving network. Despite the ad-
vantage of this approach being readily generalizable, it
carries a distinct set of limitations and opportunities to
incorporate increased realism. First, due to the choice
to model the dynamics of the network, the model can-
not also quantify concurrent population dynamics. The
model also raises the question: to what extent can net-
work connectivity be used as a proxy for relative fitness?
Prior ecological models show that when certain trade-
offs are met, then having more links for hosts and fewer
links for viruses may also correlate with ecological and
even evolutionary success [46, 47]. Yet, the evidence
for the universality of such trade-offs, e.g., between re-
sistance and growth rate, remains equivocal. Another
limitation is that nodes are continuously added to the
network in the current conflicting attachment model - as
is the case for the preferential attachment model. Such
unbounded growth also has a direct biological analogue.
Coevolutionary experiments of viruses and microbes col-
lect strains at different time points - the number of strains
grows in the course of the experiment - and then assess
the cross-infection of strains within and between time
points [37–39, 41]. However, the number of strains of
organisms that can be supported at a given time in a
given environment is constrained by ecological interac-
tions and exogenous factors such as resource input rates.
Such constraints should be incorporated into future anal-
yses of conflicting attachment if the emergent network is
to be interpreted in terms of a dynamic, current state of
the system.

In moving forward, we consider it important to ad-
dress both theoretical and empirical issues arising from
this study. From a theoretical perspective, it will be im-

portant to consider changes to the current rewiring pro-
cedure such that probabilities of adding or removing links
can depend on the degree of nodes. For example, in the
kill-the-winner model of phage-bacteria population dy-
namics, newly evolved phages are more likely to infect
a successful bacterial population that has a high enough
population to support phage growth [48, 49]. Similarly,
the selection criteria for duplication of virus and hosts
can be extended to incorporate stochasticity and/or a
degree-dependence on duplication. In a previously in-
troduced model of virus-host coevolution [50], strains of
bacteria and phage are selected randomly with uniform
probability for duplication. This random selection model
and our conflicting attachment model are two limiting
cases of a spectrum of selection mechanisms, in which
speciation events are determined by pure randomness in
the former case and by the node degree deterministically
in the latter case. A more realistic selection scheme would
fall within that spectrum where randomness plays a role
but the node degree would influence the probability for
a node to be duplicated. Furthermore, it is necessary
to extend the model to weighted bipartite networks in
order to study the effects of trade-offs, such as that be-
tween host range and infection rate studied in ecological
models of phage-bacteria interactions.
The conflicting attachment model presented here high-

lights the need to collect information on the time-course
of changes in infectivity and resistance. Current design
of coevolutionary experiments do not necessarily provide
information on the community context under which hosts
and viruses coevolve. There are technical barriers to col-
lecting such data, nonetheless, doing so would be an im-
portant step to addressing the question of the connection
between the structure of infection networks and the fit-
ness of coevolving populations.

Appendix: change in modularity and nestedness in

the near-asymptotic cases

In the main text, we demonstrated that the conflict-
ing attachment model gives a perfectly modular network
when PH = PV = 1 and a perfectly nested network
when PH = PV = 0. Here we demonstrate that near the
asymptotic cases, the modularity and nestedness changes
continuously. This means that there is a crossover of the
network properties instead of a discontinuous transition
when the parameters move away from the asymptotic
cases. This crossover behavior is illustrated for the two
asymptotic cases with the following two examples.
Consider a perfectly modular network with two mod-

ules, C1 and C2, meaning that all hosts and viruses within
a module are connected, but they do not interact across
different modules. Such a configuration would maximize
the modularity given the module sizes. For simplicity,
further assume that each module has the same number
of hosts and viruses given by n1 and n2 respectively for
each module.
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Now we apply the growth process of the conflicting
attachment model to this network with the parameters
PH = 1 − ǫ and PV = 1 − ǫ′ where ǫ and ǫ′ describe
infinitesimal deviations from the asymptotic case. For
ǫ = ǫ′ = 0, the network created after a network growth
step would still be perfectly modular. The expected value
of modularity after one network growth step is formally
given by

〈Q〉 =
∑

i

Pi(ǫ, ǫ
′)Qi (A.1)

where Pi(ǫ, ǫ
′) is the probability for the resulting network

to have a modularity value of Qi. Without loss of gen-
erality, let Q0 be the maximum possible modularity of
the resulting network, which corresponds to a perfectly
modular network.

The perfectly modular structure can be broken either
through the addition of a new host or a new virus in the
network growth step. After a new host H ′ is added by
duplicating from an existing one in one of the modules,
for example C1, it severs all the links with viruses in C1

and there is a probability PH = 1− ǫ for it to be linked
to each virus in C2. If H ′ links to all viruses in C2,
the perfectly modular structure is preserved. Otherwise,
the nodes in C2 will no longer be fully connected as H ′ is
unconnected to some viruses in C2. As ǫ is infinitesimally
small, we consider that H ′ is unconnected to at most one
virus in C2. The overall result is a network with a missing
link in C2 of the otherwise perfectly modular structure
and has modularity Q1 < Q0. The probability of this
happening is P1(ǫ) = n2ǫ(1− ǫ)n2−1 ≈ n2ǫ.

On the other hand, the addition of a new virus V ′

has a different effect. Suppose V ′ is duplicated from an
existing virus in C1, it will gain ability to exploit all the
hosts in C2. At the same time there is a chance of ǫ′

that it will link to each host in C1. Again using the
perturbative argument, this results in a network with one
cross-link between two modules and a modularity value
of Q2 < Q0 occurring with probability P2(ǫ

′) = n1ǫ
′(1−

ǫ′)n1−1 ≈ n1ǫ
′. We further approximate the probability

for the perfectly modular structure to be preserved as
P0(ǫ, ǫ

′) ≈ (1−P1−P2) ≈ 1−n2ǫ−n1ǫ
′. Therefore from

Eq. (A.1), we have

〈Q〉 = [1− P1(ǫ)− P2(ǫ
′)]Q0 + P1(ǫ)Q1 + P2(ǫ

′)Q2

≈ Q0 − n2ǫ(Q0 −Q1)− n1ǫ
′(Q0 −Q2) (A.2)

Since Q0 > Q1 and Q2, the expected value of modu-
larity after one network growth step is decreased from
the perfectly modular value of Q0 and the differences are
proportional to ǫ and ǫ′. In particular, when ǫ and ǫ′

both approach zero, 〈Q〉 increases continuously and ap-
proaches Q0.
Next we consider another near-asymptotic case with

PH = ǫ and PV = ǫ′. It reduces to the perfectly nested
case when ǫ = ǫ′ = 0. Starting with an n × n perfectly
nested network, again we consider the effect of a single
network growth step. Similar to Eq. (A.1), the expected
value of the nestedness after the growth is given by

〈N〉 =
∑

i

Pi(ǫ, ǫ
′)Ni (A.3)

where Pi(ǫ, ǫ
′) is the probability of the resultant network

having a nestedness of Ni.
First consider the effect of the addition of a host to

the network structure. The selection criteria for duplica-
tion of the model means that the most resistant host Hr

(lowest degree) would be chosen for duplication. Given
that the network is nested, a newly added host H ′ would
develop resistance to the most generalist virus Vg (high-
est degree) but have a probability ǫ to reconnect to any
other existing virus. Again assuming ǫ to be infinites-
imally small, the process either preserves the perfectly
nested structure with N0 = 1 or creates an extra link be-
tween H ′ and a virus Vq (q 6= g) in an otherwise perfectly
nested structure with a probability of ǫ. The nestedness
of the latter structure depends on q and is denoted by
N1(q) < 1.
The addition of a new virus V ′ is a duplication of the

most generalist virus Vg. V
′ then connects to H ′ and has

a probability 1− ǫ′ to continue to exploit any other host.
Due to the small value of ǫ′, this results in either the
nested structure being preserved or a single missing link
between V ′ and a host Hq ′ (q ′ 6= N) with probability
ǫ′ and a nestedness of N2(q

′) < 1. Thus we obtain an
estimate for the expected value of nestedness

〈N〉 ≈ [1− (n− 1)ǫ− (n− 1)ǫ′]N0 + ǫ
∑

q 6=g

N1(q) + ǫ′
∑

q ′ 6=N

N2(q
′)

= N0 − ǫ
∑

q 6=g

[N0 −N1(q)]− ǫ′
∑

q ′ 6=N

[N0 −N2(q
′)]. (A.4)

As the perfectly nested network has the maximum pos-
sible nestedness value of N0 = 1, N0 − N1(q) > 0 and
N0 − N2(q

′) > 0. Hence, the expected value of nest-
edness decreases continuously as one deviates from the

asymptotic case.
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[13] K. Zuev, M. Boguná, G. Bianconi, and D. Krioukov,

arXiv preprint arXiv:1501.06835 (2015).
[14] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
[15] M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
[16] J. M. Olesen, J. Bascompte, Y. L. Dupont, and P. Jor-

dano, J. Theor. Biol. 240, 270 (2006).
[17] R. Poulin, Trends Parasitol. 26, 492 (2010).
[18] D. Zhang, M. Dai, L. Li, and C. Zhang, Physica A: Sta-

tistical Mechanics and its Applications 428, 340 (2015).
[19] F. Peruani, M. Choudhury, A. Mukherjee, and N. Gan-

guly, EPL (Europhysics Letters) 79, 28001 (2007).
[20] C.-X. Zhang, Z.-K. Zhang, and C. Liu, Physica A: Sta-

tistical Mechanics and its Applications 392, 6100 (2013).
[21] J. Bascompte, P. Jordano, C. J. Melián, and J. M. Ole-

sen, Proc. Natl. Acad. Sci. U.S.A. 100, 9383 (2003).
[22] J. M. Olesen, J. Bascompte, Y. L. Dupont, and P. Jor-

dano, Proc. Natl. Acad. Sci. U.S.A. 104, 19891 (2007),
http://www.pnas.org/content/104/50/19891.full.pdf.

[23] M. A. Fortuna and J. Bascompte, Ecol. Lett. 9, 281
(2006).
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