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Redundant coupled dynamical systems exhibit superlinearly scalable noise robustness
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We illustrate through theory and numerical simulations that redundant coupled dynamical sys-
tems can be extremely robust against local noise in comparison to uncoupled dynamical systems
evolving in the same noisy environment. Previous studies have shown that the noise robustness of
redundant coupled dynamical systems is linearly scalable and deviations due to noise can be mini-
mized by increasing the number of coupled units. Here, we demonstrate that the noise robustness
can actually be scaled superlinearly if some conditions are met and very high noise robustness can
be realized with very few coupled units. We discuss these conditions and show that this super-
linear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon
is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability
not only provides us an opportunity to exploit the nonlinearity of physical systems without be-
ing bogged down by noise but may also help us in understanding the functional role of coupled
redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise
suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

I. INTRODUCTION

Dynamical systems are used as prototypical models for
many natural systems and have inspired a large num-
ber of engineering applications [1–11]. Over the last few
decades, the shrinking of devices and signals in engineer-
ing applications has meant that the effects of nonlinear-
ities and the intrinsic noise of systems can no longer be
neglected. Similarly, studies on biological systems indi-
cate that they are inherently nonlinear and operate in
noisy environments. Nonlinear dynamical systems are
very sensitive to small changes, and their interaction with
noise has been extensively studied [12–16]. Still, the in-
teraction of biological systems with intrinsic and extrinsic
noise is yet to be fully understood. The individual dy-
namical units in these systems do not function in isolation
and are generally coupled with each other through one or
more variables. Theoretical and experimental studies on
such coupled nonlinear dynamical systems have uncov-
ered interesting phenomena like synchronization [17, 18].
The role of coupled dynamics as a noise reduction

mechanism has been studied recently [8, 19–24]. Cou-
pling between redundant nonlinear dynamical systems
can enhance the noise robustness and has been shown to
play an important part in neural learning and decision
making [21]. It was pointed out that if the dynamical
systems are nonlinear then using redundancy and lin-
ear averaging may not yield a meaningful signal [20, 25].
In such cases, coupling of dynamical units can result in
linearly scalable reduction of deviations caused by local
noise [22, 23]. It was shown that globally coupled maps
(GCM) initialized to same initial condition and evolv-
ing in presence of local noise suffer lower deviations from
noise free evolution as compared to isolated maps evolv-
ing in the same environment. Thus such redundant cou-
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pled systems act as averaging filters and this phenomenon
can be utilized to enhance the noise robustness of dy-
namical systems without use of any additional averaging
hardware. A practical application of this method was
demonstrated in chaos computing [8, 10, 26] where the
coupled units had lower error rates as compared to indi-
vidual units for a given noise floor [23, 27].
In this paper, we show that superlinearly scalable noise

robustness can be realized in redundant coupled dynam-
ical systems. Such high noise robustness is observed near
the “super-stable” points where the first derivative of the
function describing the evolution rule vanishes. Super-
stability has been previously studied in periodic orbits
[28–31] and limit cycles [32, 33] and been found useful in
applications [34, 35]. The previous studies focused on the
role of bifurcation parameters and the existence of super
stable orbits for specific bifurcation parameters. The su-
per stable orbits also exist for bifurcation parameters at
which the system is chaotic, and thus high noise robust-
ness can be obtained even in chaotic systems. Motivated
by this, we study the role of initial conditions and iter-
ation number or evolution time in super stability. We
find that the effects of noise are not only lower for these
combinations of initial conditions and evolution time but
the use of coupled redundancy results in superlinear re-
duction of the effects of the noise, which makes these
configurations ideally suited for applications.
In the next section, we describe the general principle of

this mechanism and illustrate it with explicit numerical
simulations in coupled map lattices. In the penultimate
section, we discuss the mechanism in flows modeled by
coupled differential equations and summarize the results
in the last section.

II. MAPS

For simplicity and easier quantification, we first de-
scribe the working principle in case of one dimensional
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maps. Let us consider a prototypical dynamical system
given by

xi+1 = f(xi), (1)

where x is the state variable, i the iteration number and
f(x) is the function describing the evolution rule. We
assume that this map evolves in presence of local additive
noise with variance σ2

δ such that the initial condition of
the map is modified as x0 → x0 + δ0 and a noise term δi
is added at every subsequent iteration i. We denote the
deviation after iteration i of maps evolving in presence
of noise from a noiseless map by

∆i = f(...f(f(x0+δ0)+δ1)...+δi−1)−f(...f(f(x0))). (2)

The Taylor series expansion of f(x) about x0 after first
iteration gives

f(x0 + δ0) = f(x0) +

{

λ1
x0
δ0

1!
+ ...+

λn
x0
δn0

n!
+ ...

}

, (3)

where λn
x0

is nth derivative of f(x) evaluated at x0. The
second term in Eq. 3 represents the deviation due to noise
at first iteration, ∆1, of a map evolving in a noisy envi-
ronment from a map evolving in a noiseless environment.
The second and higher order terms can be neglected if
noise is low. For linear dynamical systems f(x) is a first
order polynomial, and consequently λ1

x0
is constant and

λn
x0

= 0 for n ≥ 2 and so ∆ depends only on δ0. In
contrast, the Taylor series expansion of f(x) is a higher
order polynomial in nonlinear systems and λ1

x0
has terms

containing x0. Thus, ∆ depends not only on δ0, but also
on x0. ∆ is minimum when |λx| is minimum where |λx| is
the absolute value of λ evaluated at x. So the deviations
from the noise free behavior depend on the specific initial
condition of the system and some initial conditions are
more robust against noise as compared to others.
Now we consider a generalized globally coupled map

lattice (CML) [36] of N maps coupled through mean field
coupling. The CML can be written as

xn
i+1 = (1 − c)f(xn

i ) +
c

(N − 1)

N
∑

l,l 6=n

f(xl
i), (4)

where xn
i is the state of the nth node at the ith iteration

and c is the coupling strength. It was shown in [22] that
maximum noise robustness is obtained when c = (N −
1)/N . We will use this value of coupling strength for
the rest of the discussion. Under this assumption Eq. 4
becomes

xn
i+1 =

1

N
f(xn

i )+
1

N





N
∑

l,l 6=n

f(xn
i )



 =
1

N

N
∑

l=1

f(xl
i). (5)

We evolve the CML in presence of a statistically inde-
pendent but identically distributed Gaussian white noise

with zero mean and standard deviation σδ. Further, all
the nodes of the CML are initialized with the same initial
condition such that xn

0 = x0. This allows us to study the
role of redundancy in reducing the effects of noise. The
presence of noise modifies the initial conditions of indi-
vidual nodes of the CML as given by Eq. 6. As the noise
is local, identically distributed and statistically indepen-
dent, the instantaneous noise at each node is different,
such that

x0
n → xn

0 + δn0 = x0 + δn0 . (6)

The state of the nth node at first iteration is given by

xn
1 = f(x0 + δn0 ) +

1

N

∑

l 6=n

f(x0 + δl0). (7)

Using the Taylor expansion of the above equation around
x0 as described in Eq. 3 and neglecting the second and
higher order terms, we obtain

xn
1 = f(x0) +

λ1
x0

1!

(

1

N

N
∑

l

δl0

)

. (8)

The first term in Eq. 8 is the evolution of a noise free
map and the effects of noise are contained in the sec-
ond term. We call this deviation in the map’s state af-
ter first iteration ∆CML

1 . For statistical significance, we
calculate ∆CML

1 for many different realizations of noise
terms and then calculate the variance of these deviations,
σ2
∆CML

1

. The instantaneous noise values are independent

and identically distributed and so the total variance of
these terms will be equal to 1/N times the variances of
individual terms,

σ2
∆CML

1

= σ2
δ

(λ1
x0
)2

N
. (9)

We repeat the same process for an isolated map evolv-
ing in the same noisy environment. We neglect second
and higher order terms in Eq. 3 and calculate the vari-
ance of deviations after first iteration which is given by

σ2
∆1

= σ2
δ (λ

1
x0
)2. (10)

To compare the deviations due to noise in a CML and an
isolated map, we define noise robustness as the ratio of
variances of deviations in the CML and single map [22],
namely

R =
σ2
∆

σ2
∆CML

. (11)

From Eqs. 9, 10 and 11, the noise robustness at first
iteration, R1 = N . So a CML consisting of N dynamical
units lowers the variance of deviations due to noise by a
factor of N after one iteration. At subsequent iterations,
the deviations of maps will depend on the noise at (i−1)th

iteration as well as ∆n
i−1, that is, the deviation caused by

noise in the preceding iterations.
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In case of chaotic systems, the deviations increase
rapidly with iterations and the deviation due to noise at
previous iterations quickly overshadows the noise term
at the current iteration. Soon, the deviations are com-
parable to the size of the attractor and saturate after-
wards. The number of iterations after which the devia-
tions saturate depends on the noise level and the initial
condition as different initial conditions have different sen-
sitivity to noise. As a matter of fact, some of the initial
conditions are superstable points, xs, characterized by
λ1
xs

= 0. Noise has little effect at xs and the variance
of deviations due to noise increases nonlinearly moving
away from xs. If any initial condition is mapped on to the
super stable point xs at (i − 1)th iteration in the noise-
less environment then it will be mapped to xs ± ∆i−1

in the noisy environment. As λ1
i−1 = 0, the first order

linearization will not be sufficient and higher order terms
will have to be taken into consideration. Thus the differ-
ence ∆i−1 will evolve nonlinearly at the ith iteration and
∆i will depend on the nonlinearity of the map near the
unstable fixed point. Similarly the CML will be mapped
to xs +∆CML

i−1 such that σ2
∆i−1

=Nσ2
∆CML

i−1

. Again ∆CML
i−1

will evolve nonlinearly and thus the noise robustness at
ith iteration depends on the the nonlinearity of the map
near the super stable point. Thus if λ1

i−1 ∼ 0 for an
initial condition x0, the deviations due to noise will be
minimum after ith iteration and the noise robustness will
increase superlinearly with increase in number of cou-
pled units. We call these configurations as super robust

configurations as coupling a number of these redundant
systems results in superlinear reduction of the effects of
noise. For higher dimensional systems, manifold folia-
tions can be complicated and one can identify the covari-
ant Lyapunov vectors for an intrinsic decomposition of
the tangent space [37, 38].
We examine the above arguments in a simple one di-

mensional quadratic map which is given by

xi+1 = 1− a (xi)
2
. (12)

This map is chaotic in the interval xi ∈ [−1, 1] for a = 2.
We simulate the map’s evolution in a noiseless environ-
ment as well as in presence of white noise with variance
σ2
δ . We iterate the map in noisy and noiseless environ-

ments for a fixed number of iterations and calculate the
deviation of the state variable of the map evolving in
the noisy environment from the value of the state vari-
able of the map in a noiseless environment and call this
deviation as ∆ as given by Eq. 2. We repeat this proce-
dure, each time starting with the same initial condition,
to obtain a large ensemble of deviations corresponding
to different realizations of noise. Then we calculate the
variance of these deviations, σ2

∆, for that particular ini-
tial condition. We again repeat the above procedure for
various initial conditions and σ2

∆ for different initial con-
ditions as is shown in Fig. 1. We observe that different
initial conditions have different sensitivities to noise. For
the quadratic map, df(x)/dx = λ1 = −2ax which implies
that x = 0 is a super stable point. Consequently, σ2

∆ is
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FIG. 1. (Color online) The variance of deviations (logscale)
of 104 simulations due to noise of variance σ2

δ = 10−6 in a
quadratic map for different initial conditions. Different colors
show the variance for different iteration numbers.

minimum for x = 0 after first iteration. Similarly, for
second iteration, we observe a minima at x0 = ±1/

√
2.

At first iteration both ±1/
√
2 will be mapped to 0 which

is a super stable point. The minimum variance points
for further iterations can be computed similarly. We ob-
serve that the overall deviations increase with the itera-
tion number and the variance of deviations differs by four
to six orders of magnitude for different initial conditions.
Further, the number of initial conditions that have low
deviations due to noise increases with the number of it-
erations. These initial conditions are not equally robust
and the deviation, ∆i, at an iteration i is dependent on
the deviation due to noise at previous iterations, ∆i−1.

We repeat the same procedure for a CML of quadratic
maps with N = 3 and coupled in accordance with Eq. 5.
Then we calculate noise robustness R for each initial con-
dition by calculating the ratio of variance of the devia-
tions in a single noisy map and noisy CML as shown in
Fig. 2. We observe spikes in noise robustness around the
specific superstable initial conditions identified above. As
mentioned earlier, the deviations ∆ depend on the noise
strength σδ. We also examined how the robustness varies
when the noise strength changes. The noise robustness
around the superstable point x0 = 0.243 is plotted in
Fig. 3. We observe that higher noise robustness is ob-
tained over a wider window around x0 for higher noise
variance. When noise variance is higher, x + δ has a
wider spread and thus number of initial conditions which
can be mapped to the super robust value increases and
consequently their noise robustness increases. Similarly,
the initial conditions which would have been mapped to
super robust value in the noise free case, may be mapped
to nearby values and thus the maximum noise robustness
value at the super robust value decreases as the noise
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FIG. 2. (Color online) Noise robustness for 104 simulations
due to noise of variance σ2

δ = 10−6 and N = 3 in a quadratic
map for different initial conditions. Note that the super stable
initial conditions result in spikes in noise robustness
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FIG. 3. (Color online) Noise robustness R versus initial condi-
tion x0 of a globally coupled CML of chaotic quadratic maps
in presence of noise with varying variance σ2

δ after iteration
number i = 6 near x0 = 0.243. Higher noise robustness is
obtained over a wider window around x0 for higher noise vari-
ance.

strength increases.

To study the scalability of noise robustness, we in-
creased the number of nodes in the CML and observed
how R varies with N . We found that typically R ∼ N
but for super robust initial conditions R increases super-
linearly with N . Noise robustness for the quadratic map
scaled with the number of node is plotted in Fig. 4.

To understand the scaling of R near the super robust
points, we measured R for varying N at the selected su-
per robust points as shown in Fig. 5. We found that R
for the quadratic map scales as N2. To verify the gen-
erality of our observations about the superlinear scaling
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FIG. 4. (Color online) Scaled noise robustness R/N versus
initial condition x0 of a globally coupled CML of chaotic
quadratic maps in presence of noise with variance σ2

δ = 10−6

after iteration number i = 3. Noise robustness R is much
larger than number of coupled units N for initial conditions
near the superstable points. Increase in the number of nodes
results in superlinear increase in R for super robust initial
conditions and a linear increase for others.

of noise robustness for some specific initial conditions,
we calculated the scaling for logistic as well as tent map.
The logistic map has quadratic nonlinearity given by

xi+1 = rxi(1 − xi), (13)

and the tent map is a piecewise linear map given by

xi+1 = fµ(xi) =











µxi for xi <
1
2

µ(1− xi) for 1
2
≤ xi.

(14)

Logistic map and tent map are in chaotic region for r = 4
and µ = 2 respectively. For these values of parameters,
we found that R for logistic map scales as N2 whereas
scaling exponent for the tent map is lower. These obser-
vations suggest that R also depends on the nonlinearity
of the map. Quadratic and logistic maps have quadratic
nonlinearities whereas tent map is piecewise linear and
so the scaling exponent for logistic and quadratic maps
is higher than that of the tent map.

The above observations suggest that the super noise
robustness of superstable initial conditions is a generic
phenomenon that can be observed in wide variety of dy-
namical systems. The number of such initial conditions
increases with increase in iteration number and after few
iterations one can find a fairly large number of super ro-
bust initial conditions. The upper limit on the number
of iterations for which high noise robustness can be ob-
tained is limited to the point where the deviations due
to noise become comparable to the size of the attractor
of the map.
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FIG. 5. (Color online) Noise robustness R versus lattice size
N of a globally coupled CML in presence of noise with vari-
ance σ2

δ = 10−6 for quadratic map for x0 = 0.243 at i = 6,
logistic map for x0 = 0.6913 at i = 3 and tent map for
x0 = 0.3725 a i = 3.

III. FLOWS

Let us consider a coupled system consisting of N nodes
where the nodes can be described by coupled ordinary
differential equations in the form of a m-dimensional vec-
tor xj where j (1 ≤ j ≤ N) is the index of the node. In
the coupled system, these nodes are coupled through one
or more state variables with coupling strength c and cou-
pling function H. The dynamics of the uncoupled node is
given by ẋj = F(xj) and coupling topology is contained
in the connectivity matrix G such that for the diffusive
coupling

∑

k Gjk = 0. The coupled dynamics can now
be written as

ẋ = F(x) + cG⊗H(x), (15)

where ⊗ denotes the direct product. Initially all nodes
are initialized to same initial condition on the attractor
and they evolve in presence of local additive white noise
with noise variance σ2

δ . The noise terms can then be
considered as the perturbations of the synchronized state.
The variational equation of Eq. 15 can then be written
in terms of Jacobian functions DF and DH as

ξ̇ = [1N⊗DF+ cG⊗DH]ξ, (16)

where ξj are the variations of the jth node. Eq. 16 can
be rewritten in the black diagonalized form as [39]

ξ̇l = [DF+ cγlDH]ξl, (17)

where γl are eigenvalues ofG. One can evaluate the max-
imum Floquet or Lyapunov exponents and the covariant
Lyapunov vectors of these equations for different γl which
provide information about the evolution of the coupled

system. Under optimal coupling, the perturbations due
to noise can be averaged out in the coupled system and
thus the overall deviations in coupled system will be less
than that of a single system. As the variational equa-
tion is nonlinear, the deviations due to perturbations will
evolve nonlinearly and consequently the noise robustness
varies superlinearly. Depending on the coupling topol-
ogy, the deviations in some nodes may be affected more
compared than others. Thus all nodes may be equally
robust to noise or the noise robustness may vary among
the nodes depending on their neighborhood [24].
Here, we consider the simple case of globally coupled

oscillators such that noise robustness will be maximum
and similar for all the nodes and one can select any node
to measure the output. For this one must ensure that
the coupling strength and topology are such that the
synchronized state is stable and the nodes do not desyn-
chronize due to noise. For diffusively coupled systems,
γ0 = 0 and thus l = 0 gives the variational equation
for the synchronization manifold and other l′s give the
variational equations for the transverse modes. The con-
ditions for the stability of synchronization can be easily
identified using the master stability function approach
[39]. Additionally, the basin stability should also be high
as otherwise the noise in the system can destabilize it
[40, 41]. Under these conditions, the perturbations along
the transverse modes will die out and the effect of pertur-
bations along the synchronized state will depend on the
Lyapunov exponent. If the synchronized state is chaotic,
the Lyapunov exponent is positive and the deviations due
to perturbations along the synchronization manifold will
be magnified nonlinearly. For the coupled system, the
average deviation of the synchronized state is less than
the deviation of a single node. These deviations evolve
nonlinearly along the synchronization manifold resulting
in superlinear scaling of noise robustness of the coupled
system.
We demonstrate the validity of the above arguments

using numerical simulations of the mean field x-coupled
Rössler oscillators [42] given by

ẋj = −yj − zj − c

N
∑

k=1

(xk − xj), (18)

ẏj = xj + a1yj , (19)

żj = a2 + zj(xj − a3). (20)

This oscillator is chaotic for the parameter values a1 =
a2 = 0.2, and a3 = 7.0. We initialize the nodes with
an initial condition on the synchronized manifold and
evolve the coupled as well as the uncoupled oscillators
in noisy environment and measure their deviations from
the noise free evolution. The noise terms are added to all
three state variables xj , yj , zj. The deviation is defined
as the Euclidean norm of the difference in the state vector
of noise free evolution and any one of the nodes of the
coupled system. The noise robustness R and the variance
of deviations σ2

∆ of the isolated system for x state variable
are shown in Fig. 6.
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FIG. 6. (Color online) Noise robustness R with time T
of globally coupled Rössler oscillators in presence of noise
σ2

δ = .0004, N = 10 and c = 0.2. The scale on right side
corresponds to variance of deviations, σ2

∆ of the isolated map.

We observe that σ2
∆ increases with time non-

monotously and saturates as the deviations approach the
size of the attractor. The deviations do not increase
monotonically but instead exhibit maxima and minima
on the timescale of the attractor. Further, the devia-
tions increase slowly in the coupled system as evident
from the rapid increase in the noise robustness, R, till
it approaches N . Occasionally, there are bumps in noise
robustness which are similar to the case of maps and cor-
respond to the time when the σ2

∆ is at a minima or the
system is near a point in the trajectory where one of the
elements of F (x) is close to zero. When the deviations
due to noise are large enough, the nonlinear effects be-
come dominant and we observe very high values of noise
robustness (see Fig. 6 near T ∼ 120). Soon afterwards,
noise robustness drops to 1 as deviations in both coupled
and isolated systems are of the order of the size of the
attractor.
In Fig. 7, we scale the noise robustness with the num-

ber of coupled units in the coupled system. We ob-
served that the superlinear increase in R for σδ = 0.01
is achieved at approximately same time (T ∼ 130) for
all N = 5, 10, 20. This is expected as the deviations
start increasing nonlinearly in the isolated system near
this time whereas such increase is suppressed in the cou-
pled system. We plot the scaled R for another noise
strength to verify this finding. We further verified that
the phenomenon can be observed for a large window of
coupling strengths. The upper limit of coupling strength
c to which high noise robustness R can be obtained de-
creases with increase in the number of coupled nodes,
N .
We studied the behavior for other initial conditions dis-

tributed over the synchronized attractor and the results
are shown in Fig. 8. We observed that for a fixed evo-
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FIG. 7. (Color online) Scaled noise robustness with time T
of globally coupled Rössler oscillators in presence of noise of
strength σ2

δ = 10−4 for different number of coupled units.
Also shown is the evolution of scaled R for different noise
strengths.

lution time, there are narrow bands of initial conditions
for which very high R can be obtained.
To verify our arguments about the dependence of devi-

ations on the Lyapunov exponents, we studied the noise
robustness in limit cycle oscillators also. For a3 = 2.5 in
Eq. 20, the coupled Rössler system exhibits synchronized
limit cycle dynamics. Noise robustness and variance of
deviations in an uncoupled system are shown in Fig. 9.
No sharp peaks were observed in noise robustness for
this dynamics. This is in accordance with our previous
arguments as the Lyapunov exponent for perturbations
along the transverse modes is negative and zero along the
synchronized manifold. Any perturbations are strongly
damped in limit cycle oscillators and the overall devia-
tions remain very low unless the parameter values are
close to critical value corresponding to supersensitive cy-
cles [16]. In Fig. 9, we observe that variance of deviations
is less than 0.01 even after long evolution time and high
noise strength. Thus the nonlinear effects are difficult to
observe in limit cycle oscillators. Qualitatively similar
behavior was observed for noise strengths varying from
10−6 to 10. Nonetheless, there are significant differences
among the deviations in the initial conditions selected
from the attractor. The variance of deviations after time
T = 50 for different initial conditions over the attrac-
tor is shown in Fig. 10. This difference in sensitivity of
initial conditions shows that we can tune the initial con-
ditions based on the evolution time to select the ones
which are more stable against deviations. In the lower
panel of Fig. 10, we plot the value of the Jacobian over
the limit cycle which explains the different sensitivity of
initial conditions to noise. The deviations are minimum
when the Jacobian approaches zero.
We also studied the noise robustness of x-coupled
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oscillators in presence of noise of strength σδ = 1, coupling
strength c = 0.2 and N = 10. We observe that in some win-
dows of initial conditions R ≫ 10. For better visualization,
we have used a threshold for R so that R = 15 for all R > 15.
Color scale in (b), (c), (d) show ẋ, ẏ, ż at T = 60 for a system
starting at an initial condition given by x, y, z value. To high-
light the region where ẋ, ẏ, ż = 0 we have used a threshold of
±0.2.
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FIG. 9. (Color online) Noise robustness R after time T = 50
of globally coupled Rössler oscillators in presence of noise
σ2

δ = .0004, N = 10 and c = 0.2. The scale on right side
corresponds to variance of deviations, σ2

∆ of the isolated os-
cillator.

Lorenz oscillators given by

ẋj = γ(yj − xj)− c

N
∑

k=1

(xk − xj), (21)

ẏj = xj(ρ− zj)− yj , (22)

żj = xjyj − βzj , (23)

where x, y and z are state variables and the system is
chaotic for γ = 10, β = 8/3 and ρ = 28. The evolu-
tion of a typical trajectory is shown in Fig. 11. Similar
to Rössler oscillator, we observe sharp peaks in noise ro-
bustness. The peaks correspond to the points on the
attractor where the effects of noise are minimum. The
increase in R from T ∼ (15 − 18) results from the non-
linear amplification of deviations. As the deviations in
CML are less than that of an isolated map, we get a sig-
nificant increase in R. The noise robustness for various
initial conditions selected from the Lorenz attractor af-
ter an evolution time T = 14 is shown in Fig. 12. We
observe that there are many initial conditions for which
high noise robustness is obtained.

IV. CONCLUSION

We have shown that coupling among redundant dy-
namical systems can enable them to function robustly
in presence of noise and the noise robustness of a cou-
pled system can scale superlinearly with the number of
coupled units. Different initial conditions have different
sensitivity to noise which further depends on the itera-
tion number or the evolution time and noise strength.
In case of maps, selection of an appropriate combination
of the iteration number and the initial condition in op-
timally coupled maps can ensure very high robustness
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FIG. 10. (Color online) Top panel shows the variance of devia-
tions due to noise, σ2

∆, for globally coupled Rössler oscillators
exhibiting a limit cycle in presence of noise of strength σ2

δ = 4,
coupling strength c = 1.0, N = 10 and T = 50. The bottom
panel shows the value of Jacobian evaluated on the attractor.

with few coupled units. The number of such super ro-
bust initial conditions increases with each iteration and
the window of high noise robustness widens as the noise
levels increase. Similarly, higher noise robustness can be
achieved in continuous time systems when the deviations
due to noise are large. These large deviations can be
a result of large noise intensity or long evolution time.
The superlinear scaling of noise robustness can be easily
observed in chaotic systems where the deviations due to
noise are quickly magnified and thus redundant coupled
systems can perform much better than a single system.
The high robustness can be achieved only when the de-
viations due to noise are smaller than the size of the
attractor of the dynamical system. This sets the limits
on the iteration number or evolution time after which
the system needs to be reset. For practical applications,
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FIG. 11. Noise robustness R for globally coupled chaotic
Lorenz oscillators in presence of noise with σδ = 0.1, cou-
pling strength c = 0.1 and N = 10.
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FIG. 12. (Color online) Noise robustness R for different initial
conditions at T = 14 for globally coupled Lorenz oscillators
in presence of noise with σ2

δ = 10−4, N = 10 and c = 0.2. For
better appearance, R is thresholded at 32 such that if R > 32,
we set R = 32.

one can choose evolution time or the initial condition to
achieve superlinear scalability of noise robustness. Such
super robust configurations provide an opportunity to
exploit the nonlinearity of physical systems without be-
ing bogged down by noise. Engineers may exploit su-
perlinear noise suppression by starting a coupled system
near (not necessarily at) the appropriate initial condi-
tion. This combination of initial condition and iteration
number will provide three distinct advantages: (i) super
stability results in low deviations due to noise, (ii) su-
per noise robustness enables superlinear scaling with the
number of coupled units, (iii) the state variables are at
local maxima or minima resulting in easier reading of the
state variable. Recently Blakely et. al [43] showed that
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zero derivative events are regularly timed in a topologi-
cally diverse class of chaotic oscillators. A combination of
superlinear noise suppression and regular timing will en-
able many practical technological applications of robust
coupled dynamical systems.
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