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We consider the transient behavior of globally coupled systems of identical pulse coupled os-
cillators. Synchrony develops through an aggregation phenomenon, with clusters of synchronized
oscillators forming and growing larger in time. Previous work derived expressions for these time
dependent clusters, when each oscillator obeyed a linear charging curve. We generalize these results
to cases where the charging curves have nonlinearities.

I. INTRODUCTION

During each heartbeat, thousands of pacemaker cells
discharge in concert. This collective firing causes the
contraction of cardiac muscles, which pump blood around
the body. Should these firing fall out of step, heartbeats
can become erratic, which inhibits blood flow. In order
to maintain healthy heart function, the pacemaker cells
must maintain their synchronous firing.

In 1975, Peskin gave the first mathematical analysis
of the pacemaker as a self-synchronizing system [1]. He
modeled the pacemaker cells as leaky ’integrate-and-fire’
oscillators that communicate with each other by firing
sudden impulses. He then conjectured that a popula-
tion of identical leaky oscillators with all-to-all pulsatile
coupling would self-organize into synchrony for all N ≥ 2
and for almost all initial conditions. Mirollo and Strogatz
[2] later proved this conjecture.

Since then, pulse-coupled oscillators have been used
as models in many other contexts, for example, sensor
networks [3], low-powered radio transmission [4], firing
neurons [5, 6], earthquakes [7], and economic booms and
busts [8]. For greater realism, the associated theoret-
ical work relaxes Peskin’s original assumptions, by al-
lowing for example local coupling in lattices [9–11] or
networks [12–15]. These effects lead to new phenomena,
such as traveling waves, self-organized criticality, partial
synchrony, and coexistence. The inclusion of interactions
with delays and different sign [16–18] have also been con-
sidered, which give rise to multi-stable clustering, tran-
sient clustering, phase-lagged synchronization.

Yet even within the simplified context of Peskin’s
all-to-all model, unanswered theoretical questions re-
main. In particular, little is known about transient
dynamics: in a self-synchronizing system, what does
the buildup to synchrony look like? A first step in this
direction was presented in [19]. It was shown that syn-
chrony developed through clustering; oscillators start to
synchronize in small groups, which grow steadily larger
over time. Using tools from aggregation theory [20], this
clustering was described quantitatively. In the analysis,
it was assumed that each oscillator had a linear charging
curve. This idealization is appropriate for electronic
oscillators such as those in sensor networks, but not for
biological oscillators, like the aforementioned cardiac
pacemaker cells or firing neurons. We here extend the

analysis in [19] to explore the manner in which these
more complicated oscillators achieve synchrony.

II. THE MODEL

We consider N � 1 identical oscillators coupled all-
to-all. Each oscillator is characterized by a voltage-like
state variable xi, which increases from a baseline value
of 0 to a threshold set to 1, according to

ẋi = S0 − γxi. (1)

When an oscillator reaches threshold it does two things:
(i) It fires a pulse of size 1/N . This pulse is received by all
other oscillators instantaneously, causing them to discon-
tinuously raise their voltage from xj to min(xj +1/N, 1).
This way, oscillators never exceed the threshold value of
1. To avoid complications with chain reactions of firing
oscillators, we assume any oscillators which reach thresh-
old by receiving a pulse, do not themselves fire until the
next time they reach threshold. (ii) The firing oscillator
then resets its voltage to 0, along with any secondary
oscillators that were brought to threshold. These oscilla-
tors then begin their next cycle synchronized.

If j > 1 oscillators reach threshold together, each
one fires, so that the pulse has total size j/N (although
we later consider other types of pulse).

We note that there is some parameter redundancy,
since by rescaling time we could set S0 = 1 without loss
of generality. For reasons that will become clear later, a
different choice of S0 is more convenient, so we leave it
as a free parameter for now. We remark however that S0

must be chosen so that ẋi > 0 for 0 ≤ xi ≤ 1.

III. RESULTS

Assume the initial voltages of the oscillators are
drawn uniformly at random. How will the dynamics un-
fold? At the beginning, the oscillators simply increase
their voltage according to ẋi = S0 − γxi. Then the first
oscillator reaches threshold, fires a pulse, and perhaps
brings some other oscillators to threshold. As described,
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these oscillators begin their next cycle in step. The pri-
mary, firing oscillator, and the secondary oscillators it
incited to threshold, form a synchronous cluster.

As time goes on, other oscillators start firing pulses
and start absorbing oscillators which are close enough
to threshold. More clusters of synchronized oscillators
emerge. In turn, these clusters start reaching thresh-
old and absorbing other clusters, growing progressively
larger. We note that clusters can only ever increase in
size. They can never break apart because (a) the oscil-
lators are identical, and therefore sync’d oscillators have
the same speed, and (b) all oscillators receive the same
number of pulses (thanks to the global coupling).

The picture is now clear; the system synchronizes
through an aggregation phenomenon. Clusters of sync’d
oscillators form and get steadily bigger by coalescing with
each other. At any time t therefore, there are clusters of
various sizes. Let Nj(t) denote the number of clusters of
size j at time t: N1 is the number of singletons, N2 is the
numbers doublets, and so on. These Nj are correlated
random quantities. They are correlated because oscilla-
tors belonging to clusters of one size are unavailable to
clusters of another size, and they are random because of
the initial conditions.

To analyze the system’s dynamics, we imagine Nj �
1 so that fluctuations from different realizations of the
system are small. Of course, this condition cannot be
satisfied for every j, at all t. For example, at the final
stages of the process, there will be a small number of very
large clusters. We therefore restrict our attention to the
portion of the process where Nj � 1 is approximately
true – the opening and middle game, as opposed to the
end game.

But how does the end game play out? That is, how
does the process terminate? Strogatz and Mirollo [2]
showed that for γ > 0 and pulse size > 1/N , then full
sync is guaranteed for all IC except for a set of measure
zero; the clustering continues until there is one giant clus-
ter of size N . For other values of γ and other pulse sizes,
full sync is possible, but not certain to occur.

In this work, we focus only on the transient dynam-
ics, the evolution to synchrony. So from now on we im-
plicitly assume we in the early and middle stages of the
process, where Nj � 1 is a valid approximation. We
then use ensemble averages to define the individual clus-
ter densities,

cj := 〈Nj〉/N. (2)

We then make the following strong assumptions: (i)
fluctuations about the ensemble averages are small,
N−1Nj = cj + O(N−1/2), and that (ii) different cluster
densities are asymptotically uncorrelated, N−2NiNj =

cicj +O(N−1/2).

We can use these cj to define a disorder parameter
for our system. This is the total cluster density,

c =

N∑
j=1

cj (3)

where the index runs over all cluster sizes, which range
from 1 to N . This density is a measure of the total frag-
mentation of the system, which we interpret as a kind
of disorder. To see this, consider that at t = 0, there
are N singletons, so c1 = 1, and cj = 0, ∀j 6= 1. This
means that c(0) = 1, correctly identifying that the sys-
tem begins maximally disordered. At the other extreme
as t → ∞, we know there is one giant cluster of size N ,
so c = 1/N ≈ 0 for large N . Hence c decreases from 1
to 0 as the system evolves from complete disorder to full
synchrony.

A. Total Cluster Density

We first analyse c. It obeys the following rate equa-
tion, where Ri is the rate at which clusters of size i fire,
and Li is the number of clusters absorbed during such a
firing, for i = 1, . . . , N (i.e. over all cluster sizes):

ċ = −
∑
i

Ri(t)Li(t) (4)

To find Li(t), we first define the ’voltage-density’
ρj(x, t)dx to be the number of j-clusters with voltage
between x and x + dx at time t. This has the normal-
ization condition

∫ 1

0
ρj(x, t)dx = Nj . Now, when an i-

cluster fires, all clusters on the interval [1 − i/N, 1) will
be absorbed. This means,

Li(t) =
∑
j

∫ 1

1−i/N
ρj(x, t)dx. (5)

We digress briefly to comment on difficulties imposed by
voltage density ρj(x, t). The nonlinearities in the oscilla-
tors’ charging curves make ρj(x, t) behave non-trivially.
It is this key fact which makes nonlinear charging curves
much harder to analyze than linear ones. In the linear
case, (i.e. when γ = 0), as considered in [19], ρj(x, t)
is well approximated by a uniform density. This sub-
stantially simplified the calculation of Li and Ri, and
in turn the remainder of the analysis. For instance, (5)
reduces to simply Li =

∑
j(i/N)Nj = ic. But when

γ 6= 0, ρj(x, t) is an unknown quantity which obeys a
complicated PDE. Approximately solving this PDE is a
key result of the paper.

We now return to our calculation of Li. To proceed,
we make an approximation. As stated earlier, we are only
interested in transient time scales – the opening and mid-
dle game. In this regime, most clusters will be small rela-
tive to the system size: j � N . This lets us approximate
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the integral above,
∫ 1

1−i/N ρj(x, t)dx ≈ (i/N)ρj(x = 1, t).

Of course, this approximation will get worse as time goes
on. We discuss this further in Section IV. Our expression
for Li is then

Li(t) =
i

N

∑
j

ρj(x = 1, t). (6)

To continue the analysis, we need to find ρj(x, t). As
mentioned, its behavior is complicated so we defer its
calculation, and instead find the firing rate Ri. Naively,
one might think that this is simply the flux of i-clusters
at threshold: N−1(ρiv)|x=1 (where N−1 is required, since
Ri measures the rate of firing of ci, not Ni). However
not every cluster that reaches threshold gets the chance
to fire, since some will be absorbed. To account for this
effect, we decompose the rate into

Ri = R0
i −Rai . (7)

The term R0
i is a ’background’ firing rate, where we pre-

tend all oscillators get to fire even if they are absorbed.
Rai is the rate at which i-clusters are being absorbed by
other clusters of various sizes, and hence deprived of their
chance to fire.

We start with R0
i . To be clear, by background firing

rate, we mean the rate i-clusters would fire at, if every
oscillator fired a pulse when it reached threshold. That
is, imagine relaxing our imposition that any secondary
oscillators that reach threshold by virtue of a pulse do
not fire. In that case,

R0
i = N−1(ρiv)

∣∣
x=1

. (8)

The speed v of each cluster is non-trivial. This is because
in addition to its natural speed v0 = ẋ = S0 − γx, each
oscillator receives a steady stream of pulses from firing
clusters which increase its voltage:

v(x, t) = v0(x) + vpulse(t). (9)

This ”pulse velocity” due to the firing of just j-clusters
will be (absolute number of pulses per sec) × (distance
per pulse). Since Rj is the firing rate of cj , RjN is the
absolute number of pulses, while the distance per pulse
is j/N . To find the total pulse speed we then sum over
all j-clusters:

∑
j(NRj)(j/N), giving

vpulse(t) =
∑
j

jRj(t). (10)

Our next target is the absorption rate Rai . The
calculation is similar to finding Li, and is given by

Rai =
∑
j Rj

∫ 1

1−j/N ρi(x, t)dx, which after approximat-

ing the integral as before gives,

Rai =
∑
j

Rj(j/N)ρi(x = 1, t). (11)

Substituting R0
i and Rai into (7) finally gives

Ri =
S0 − γ
N

ρi(x = 1, t). (12)

We now analyze ρj(x, t). In principle, it satisfies the
the continuity equation with appropriate terms for the
absorption of j-clusters at threshold, and the formation
of j-clusters from smaller clusters:

ρ̇j + ∂x(vρj) +Absorption+Gain = 0 (13)

∂x(vρj)|x=0 = ∂x(vρj)|x=1 (14)

Solving this PDE is the hardest part of the analysis. The
absorption and gain terms are the main problem, because
they couple the voltage densities; through them, ρj(x, t)
depends all the other ρk(x, t). This is because a j-cluster
can be created or absorbed by the action of various com-
binations of other clusters. Enumerating these combina-
tions is by itself difficult, not to mention understanding
how they affect the PDE. On top of all that, there is also
the non-smoothness of the oscillators’ velocity at thresh-
old (which discontinuously jumps from ẋ = S0 − γ at
x = 1, to ẋ = S0 at x = 0 ) to deal with.

We can however make progress by observing that
the evolution of the system naturally divides into periods
{Tn}. We define a period to be the time take for the
full population of oscillators to complete a voltage cycle.
More carefully, Tn is earliest time when every oscillator
has completed n cycles.

We then solve the continuity equation during a given
period, not worrying about what happens before or af-
ter. This lets us avoid the complication of the aforemen-
tioned non-smoothness of the oscillators’ behavior at the
boundaries. We also neglect the absorption term. As
previously discussed, when an i-cluster fires, only oscilla-
tors on (1− i/N, 1] get absorbed. This is a small interval
for the ’opening’ and ’middle’ game we are considering.
Hence the absorption term is 0 on most of [0, 1] and so
we omit it.

But we still have to compute the gain term. As
previously discussed, this is combinatorially intensive (we
explicitly compute this term later, when calculating the
individual cluster densities). However, we can neglect
this cumbersome term entirely, by making the following
key observation.

Looking at equations (6), (12), we see our desired
quantities Rj and Lj depend only on the density of clus-
ters at threshold: ρj(x = 1, t). Therefore, during each
period, Ri and Li are only affected by j-clusters which ex-
isted at the start of that period, which we call ’original’ j-
clusters. This is because any ’new’ j-clusters won’t reach
threshold until the next period. By ’new’, we mean (a)
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j-clusters that fired during a period, didn’t absorb any
other clusters, and so returned to threshold, and (b) any
j-clusters that were created by the firing and absorption
of other smaller clusters.

So for the purposes of calculating ρj(x = 1, t) dur-
ing a given period, there is a ’lightcone’ between original
and new j-clusters. We therefore need to solve the conti-
nuity equation for the original j-clusters only, for which
the gain term is zero. The problem is then given by
(15) below, where v(x, t) is given by (9), f0(x) is the ini-

tial distribution of ρoriginalj , and the Heaviside functions

H(x), H(1 − x) are included to confine the I.C. to the
interval [0, 1].

ρ̇j
original + ∂x(vρoriginalj ) = 0

ρoriginalj (x, 0) = f0(x)H(x)H(1− x) (15)

We don’t yet know the speed v(x, t). However its struc-
ture, v(x, t) = v0(x)+vpulse(t), lets us derive an approxi-

mate solution for ρoriginalj (x, t) given by (16) below. The

derivation of this key result and the definition of Γ(x, t)
are shown in the Appendix.

ρoriginalj (x, t) = eγtf0

(
Γ(x, t)

)
H
(

Γ(x, t)
)
H
(

1−Γ(x, t)
)
.

(16)

What all this means is, if we known ρoriginalj (x, t) at the
start of a period, then we know how it will evolve until
that period ends. For later convenience, we introduce the
following notation. Let x̃ denote that during a period,
x is held fixed at its value at the start of that period:
x̃ = x(t = Tn) for Tn < t < Tn+1.

We next make the strong assumption that clusters
of all sizes are distributed uniformly in voltage on [0, 1)

at the start of each period: ρj(x, t = Tn) = Ñj . Then in

(16), f0(x) = Ñj . We discuss the legitimacy of making
this assumption in Section IV.

The Heaviside functions make (16) look complicated.

But really, they only enforce that the ρoriginalj is zero be-

hind the final j-cluster (cluster with smallest voltage),
and ahead of the first j-cluster (cluster with largest volt-
age). We remark that as it stands, the solution (16)
propagates into the unphysical x ≥ 1 regime. But we of
course restrict our attention to just x ∈ [0, 1].

The behavior of ρoriginalj (x, t) during each period is
therefore simple. The density at each point x simply
grows at rate eγt until it drops discontinuously to 0, as
the final ’original’ j-cluster passes by. This behavior is
shown in Figure 1.

Now that we have an expression for ρj(x = 1, t),

which we have argued is ρoriginalj (x = 1, t), we can com-

plete our expressions for Li and Ri given by (6) and (12).
We then plug the results into (4) to obtain our sought af-
ter rate equation for the disorder parameter c(t),

FIG. 1: Evolution of voltage density of original
j-clusters during a period, with initial condition

ρoriginalj (x, 0) = 1.

ċ = −(S0 − γ)e2γtc̃. (17)

which has solution,

c(t) =
c̃

2γ

(
S0 + γ + e2γt(γ − S0)

)
. (18)

We restate that equations (17) and (18) are only valid
during a given period. We can however use (18) to find
c(t) for all t, by stitching solutions during successive pe-
riods together.

But we still don’t know the periods {Tn} themselves.
To find them, we need the speed v as per (9). Recalling
v0 = S0−γx, and substituting Ri from (12), gives

v(x, t) = (S0 − γx) + (S0 − γ)eγt. (19)

We see that v is the same during each period (i.e. there
are no ’tilde’ quantities, we denote different values dur-
ing different periods.). This means that the length of
each period is the same: Tn = nT0. We can find T0
from T0(S0, γ) =

∫ 1

0
v(x)dx. To compare the effects of

different amounts of concavity on equal footing, we want
T0 = 1 for every γ. We can achieve this by selecting an
appropriate value for S0, which we have strategically left
as a free parameter until now. Doing the integral, this
value for S0 is

S0 =

(
e2γ + 2eγ − 1

)
γ

(eγ − 1) (eγ + 3)
. (20)

We must be careful when using (20). This is because for
sufficiently negative γ, S0 can become negative. While
this choice of S0 ensures the total speed v = v0 + vpulse
is positive, the natural speed v0 = ẋ = S0 − γx can be-
come negative if S0 is too negative. This means that the
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oscillators decrease in voltage in the absence of coupling.
We avoid this unphysical regime by requiring v0 > 0 for
0 ≤ x ≤ 1, which leads to γmin ≈ −0.881.

Figure 2 shows the agreement between theory and
simulation for c(t) when γ < 0 and γ > 0. For compari-
son, we also show when γ = 0, which corresponds to the
linear charging curve studied in [19]. In the linear case,
c(t) is a series of line segments whose slope decreases by
a factor of 2 from period to period. But when γ 6= 0,
c(t) has more complicated behavior; it no longer decays
linearly during each period.

As can be seen, c(t) declines faster and slower when
γ > 0 and γ < 0 respectively. This makes physical sense.
When γ > 0, oscillators slow down as they increase in
voltage, which makes them clump closer together near
x = 1. When γ < 0, the opposite happens; clusters
spread further apart closer to threshold. Now suppose
a j-cluster fires. When γ > 0 the interval [1 − j/N, 1)
is more likely to contain oscillators than when γ < 0,
thanks to the ’clumping’ and ’spreading out’, which in
turn makes an absorption more likely. The case of zero
concavity then interpolates between these two regimes,
as evidenced by Figure 2.

FIG. 2: (Color online) Theoretical and simulated c(t)
for γ = 2, γ = 0, and γ = −0.8 . Solid lines show

theoretical prediction (18), while data points show
simulated results for N = 5× 104 oscillators.

We can use (18) for c to estimate the timescale of
the transient dynamics. We say transience ends when a
cluster of size ∼ N has formed, so that c ∼ 1/N . Our
assumptions will likely break down before this, so this is
best interpreted as an upper bound. Looking at (18), we
see that after one period, c decreases by a factor of,

B :=
1

2γ

(
S0 + γ + e2γ(γ − S0)

)
=

2

eγ + 3
. (21)

After n periods, it decreases by Bn. After some algebra,
and rounding Ttrans to the nearest period, we get,

Ttrans ∼ logN/ logB−1 (22)

B. Individual Cluster Densities

How do the individual densities ci evolve? We begin
with the 1-clusters, whose density is c1. They are the
easiest density to analyze, since they can only decrease.
There are two ways this can happen: (i) the loss of a
firing singleton, when it absorbs other clusters of any
size, and (ii) the loss of absorbed singletons, due to the
firing of another cluster:

ċ1 = Lfiring1 + Labsorbed1 . (23)

We begin with Lfiring1 . From (12) we know singletons
fire at rate R1 = (S0 − γ)eγtc̃1. During such a fir-
ing, an absorption will take place if there is at least
one cluster on [1 − 1/N, 1). This interval contains on
average Nc × 1/N = c(t) = c̃eγt clusters. Further,
the probability that it contains n clusters is given by

the Poisson distribution: Πn = (c̃eγt)n

n! e−c̃e
γt

. This is
the mathematical statement that the clusters are dis-
tributed randomly without correlations. The probabil-
ity that [1 − 1/N, 1) is occupied by at least one cluster

is therefore 1 − e−c̃eγt . If an absorption takes place, N1

decreases by 1, since we’re only considering the loss of
the firing oscillator here. The expected loss rate is then

(S0−γ)eγtc̃1[1×(1−e−c̃eγt)+0×e−c̃eγt ], leading to,

Lfiring1 = (S0 − γ)eγtc̃1(1− e−c̃e
γt

). (24)

To calculate Labsorbed1 , imagine a j-cluster fires and ab-
sorbs all the singletons on the interval [1 − j/N, 1). As
before, this interval will have on average Nc1(t)× j/N =
jc̃1e

γt such singletons. Multiplying this by Rj and sum-
ming over j then gives

∑
j(1 − γ)c̃je

γt × jc̃1eγt, which
leads to

Labsorbed1 = (1− γ)e2γtc̃i (25)

Substituting Lfiring1 and Labsorbed1 into (23) gives,

ċ1 = −(S0 − γ)c̃1

[
(1 + eγt)− e−c̃e

γt
]
. (26)

This looks intimidating, but since the quantities c̃i are
held constant over each period, the R.H.S. is a function
of only t. It therefore has an analytic solution, which we
show plotted in Figure 3.

Will larger clusters behave similarly? They differ
from the singletons in that they can be created as well as
absorbed, which makes them harder to calculate. Their
absorption rate is easily generalized from that of the sin-
gletons:

Lfiringi +Labsorbedi = (S0−γt)c̃i
[
(1+eγt)−e−ic̃e

γt
]
. (27)



6

Their gain rate is calculated as follows. An i-cluster is
created when a cluster of size k < i fires, and absorbs
the right combination of other clusters. Suppose there
are a1 1-clusters, a2 2-clusters, . . . , on the interval [1 −
k/N, 1). If a1 + 2a2 + · · · + k = i, then an i-cluster will
be created. Such a combination occurs with probability
(kc1)1

a
1

a1!
e−kc1 × (kc2)1

a
2

a2!
e−kc2 × . . . . Summing first over all

such combinations, and then over all k, gives an expected
rate gain of

i−1∑
k=1

(S0 − γ)c̃ke
γte−kc̃e

γt ∑
a1+2a2+···=i−k

∏
p≥1

(kc̃pe
γt)ap

ap!


(28)

After combining the loss and gain terms, and some al-
gebraic manipulation, we finally obtain the desired rate
equation for i-clusters,

ċi = −(S0 − γ)eγt(1 + eγt)c̃i+

i∑
k=1

(S0 − γ)c̃ke
γte−kc̃e

γt ∑
∑
pap=i−k

∏
p≥1

(kc̃pe
γt)ap

ap!


(29)

This is a set of recursive equations, and so we can
solve them successively. As with c1, the R.H.S. is a pure
function of t, so analytic solutions are findable. Figure 3
shows theoretical predictions versus simulation results for
c1 through c4 when γ = 0.9. We remark that the effect of
a nonlinear versus linear charging curve on the ci is the
same as that for the disorder parameter c: it causes them
to no longer decay/grow linearly during each period (note
we do not show ci for the linear charging curve, γ = 0,
for illustrative purpose. See Fig. 6 in the supplemental
materials of [19])

FIG. 3: (Color online) Theoretical and simulated
cluster densities c1 though c4 for γ = 0.9. Solid black
lines show analytic solutions to (29). Red data points

show simulation results for 5× 104 oscillators.

C. Alternate Coupling Rules

We thus far assumed an i-cluster fired a pulse of size
i/N . We now consider two alternatives. The first is sim-
ply the original pulse strength with a tunable strength K:
(Ki)/N . The second is a fixed pulse strength of K/N re-
gardless of the size of the firing cluster. These alterations
only modestly change the analysis, so we simply list the
results for Li, Ri, vpulse and c in the table below, where
S0 is given by (20). For illustrative purposes we do not
include a formula for ci, but its calculation is straightfor-
ward.

Variable Pulse: Kj/N Fixed Pulse: K/N

Li Kic̃eγt Kc̃eγt

Ri (S0 − γ)c̃ie
γt (S0 − γ)c̃ie

γt

vpulse K(S0 − γ)eγt K(S0 − γ)eγtc̃

ċ −K(S0 − γ)e2γtc̃ −K(S0 − γ)e2γtc̃2

c(t)
c̃

(
K(γ−S0)(e2γt−1)+2γ

)
2γ

c̃

(
c̃K(γ−S0)(e2γt−1)+2γ

)
2γ

As can be seen, there are mostly only minor differ-
ences between the two cases. The first thing to note is
that c(t) decays more slowly with a fixed pulse strength
K/N . Intuitively, this is because large and small clus-
ters now fire with the same strength, which means they
absorb all clusters on the fixed interval [1−K/N, 1). In
contrast, for a pulse strength Kj/N , bigger clusters fire
bigger pulses, and therefore absorb clusters on an interval
proportional to their size: [1−Kj/N, 1). This is mathe-

matically manifested as Lvariable pulsei being bigger than

Lfixed pulsei by a factor of i, which leads to ċvariable pulse

being bigger than ċfixed pulse by a factor of c̃−1 (remem-
ber, 0 ≤ c ≤ 1). In turn, this means c(t)fixed pulse decays
more slowly than c(t)variable pulse

Also note that vpulse depends on c̃ for the fixed pulse
case. The mechanism discussed above is also at play here:
since there are fewer clusters in successive periods, and
the pulse per cluster is constant, the total ’current’ per
period will get smaller. This is in contrast to the pulse
= Kj/N case, where there are fewer clusters per period
also, but larger clusters fire larger pulses, keeping the
total ’current’ per period constant. A consequence of this
decrease in vpulse is that the periods won’t be constant
for pulse = K/N , as there are for Kj/N . They will get
longer as vpulse decreases from period to period.

IV. BREAKDOWN OF APPROXIMATIONS

A. Uniformity Assumption

We now discuss the approximations and assumptions
we made in our analysis. The first of these was that each
cluster density was distributed uniformly in voltage at
the start of each period, ρj(x, t) = Ñj . From this, we
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derived equations (6) and (12) for Li and Ri, which in
turn led us to our disorder parameter c.

This uniformity assumption clearly cannot be satis-
fied for each i, at every t. For instance, consider the end
of the first period. Perhaps mostly clusters of size < 5
were formed, with only a few larger clusters of size > 10.
Then, ρj<5(x, t = 1) will be approximately uniform, but
ρj(x, t = 1) will be more sharply peaked. So the unifor-
mity assumption is inaccurate for large clusters, which
are few in number. This explains why (18) approximates
c(t) well. Since c(t) =

∑
j cj , we see that the sum will

be dominated by those ci which are large, for which the
uniformity assumption is accurate.

The fact that the uniformity assumption worsens for
larger clusters also means that our results for ci should
get worse for larger i. Figure 4 below shows that this is
indeed the case.

FIG. 4: (Color online) Theoretical and simulated
cluster densities c5 though c8 for γ = 0.9. Solid black
lines show analytic solutions to (29). Red data points
show simulations results for 5× 104 oscillators. As can

be seen, theory and simulation start to disagree

B. Final stages of process

Throughout our analysis, we assumed Nj � 1.
As discussed, this cannot be true ∀j, at every t. This
assumption is most blatantly incorrect at the end of the
process, where there are a small number of macroscopic
clusters. Our results should thus substantially disagree
with simulation for large t, as is evidenced by Figure 5.

V. CONCLUSION

We have studied the transient dynamics of pulse cou-
pled oscillators with nonlinear charging curves. We de-
rived approximations for the total cluster density c(t) and
individual cluster densities ci(t). These approximations

FIG. 5: (Color online) Theoretical and simulated total
cluster density c(t) for γ = 0.9 and t > 3. Solid black

lines show analytic solution (2). Red data points show
simulation results for N = 104 oscillators. There is a

significant disagreement between theory and simulation
for later times, when the approximations we made in

the analysis breakdown.

were good up to the final stages of the process, where the
assumptions made in the analysis breakdown.

Our work could be used to understand clustering in
other systems of pulse-coupled oscillators. For instance,
Ernst et al [17] reported multi-stable clusters for all-to-
all, inhibitory coupling with delays. They found the av-
erage number Nc of clusters obeyed Nc ∼ τ−1, where τ is
the delay. Perhaps adjustments to our analysis could an-
alytically recover this result; the pulse velocity (10) could
be made negative to account for the inhibitory coupling,
and ’delayed’ versions of equations (5), (7) for the firing
and loss rates Ri, Li could be derived.

Furthermore, Mauroya and Sepulcher [15] studied
the long term behavior of the system (1) with γ > 0: the
complement to our ’opening’ and ’middle’ game. They
analytically determined the final number of synchronized
clusters formed (we remind the reader that when γ > 0,
full synchrony is not guaranteed to occur, and so multi-
ple, stable clusters are possible). Perhaps our transient
analysis could be united with their steady state results to
characterize the full evolution of the Peskin model.

Another possible application of our results is in net-
work detection. Gomez-Gardenes et al [21] showed that
transient clustering in the Kuramoto model can be used
to approximate the underlying network structure. Could
our results could be used to the same effect in networks of
pulse-coupled oscillators? Local coupling would however
mean that clusters could break apart as well as coalesce.
One could account for this by including additional loss
terms in our rate equations for c and ci, (4), (29).

Our model has several idealizations that could be
relaxed in future work. For example, local coupling,
delayed coupling, and heterogeneity in oscillator speeds
and pulse size could be studied. Another modification
would be to allow chain reactions, by permitting any
clusters that are brought to threshold by another firing
cluster, to fire themselves.
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VII. APPENDIX

We here approximate the density ρoriginalj (x, t). For
convenience, we drop the superscript ’original’. As shown
in the main body of the text, the density solves equation
(30) below,

ρ̇j + ∂x(vρj) = 0

ρj(x, 0) = f0(x)H(x)H(1− x) (30)

where, f0(x) = Ñj (since we are assuming a initial uni-
form distribution), and

v(x, t) = v0(x) + vpulse(t). (31)

While we know v0(x) = S0 − γx, we don’t yet have
a complete expression for vpulse(t). In the main text,
we derived vpulse =

∑
j jRj , which using (12) for Ri

gives

vpulse(t) =
∑
j

S0 − γ
N

j ρj(x = 1, t) (32)

This is the source of our difficulty. Our PDE for ρj(x, t)
depends on vpulse, which in turn depends on the voltage
density for every other cluster size ρk(x, t). To overcome
this difficulty, we use a technique similar to the ’leap-frog’
or ’split’ method used in certain numerical schemes. This
involves making a series of recursive approximations for
vpulse and ρj :

vpulse =
(
v
(0)
pulse, v

(1)
pulse, v

(2)
pulse, . . .

)
(33)

ρj =
(
ρ
(0)
j , ρ

(1)
j , ρ

(2)
j , . . .

)
(34)

Graphically, our scheme is given by the following, where
we have placed the labels of equations used to make the
approximations over the arrows.

v
(0)
pulse

(30)−−→ ρ
(0)
j

(32)−−→ v
(1)
pulse

(30)−−→ ρ
(1)
j

(32)−−→ + . . . (35)
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We begin by setting v
(0)
pulse = 0. The speed is then,

v(x, t)(0) = v0(x) + 0 = S0 − γx. (36)

We plug this into (30) and solve for resulting PDE for

ρ
(0)
j (x, t). This has solution,

ρ
(0)
j (x, t) = eγtÑjH

(
Γ0(x, t)

)
H
(

1− Γ0(x, t)
)
. (37)

with Γ0(x, t) = γ−1[S0− (S0− γx)eγt]. We then use ρ
(0)
j

to find v
(1)
pulse using (32), which gives

v
(1)
pulse = (S0 − γ)eγtc̃. (38)

This completes the first step of our scheme. We then

repeat the process to find ρ
(1)
j and v

(2)
pulse. We use v

(1)
pulse

to update the speed,

v(x, t)(1) = v0(x) + v
(1)
pulse

= (S0 − γx) + (S0 − γ)eγtc̃.
(39)

and then plug this into (30) to obtain a PDE for ρ
(1)
j ,

which we solve to get,

ρ
(1)
j (x, t) = eγtÑjH

(
Γ1(x, t)

)
H
(

1− Γ1(x, t)
)

(40)

where Γ1(x, t) =
[
3S0−γ

2γ + eγt

2γ (2γx− 2S0) + e2γt

2γ (γ − S0)
]
.

Looking at (37) and (40), we see that ρ
(0)
j and ρ

(1)
j

have the same functional form. They only differ in the
arguments of the Heaviside function: Γ0(x, t) 6= Γ1(x, t).

This remarkable similarity between ρ
(0)
j and ρ

(1)
j has an

important consequence: it ’closes’ our approximation

scheme. We see this by substituting ρ
(1)
j into (32) to

find,

v
(2)
pulse = (S0 − γ)eγtc̃ = v

(1)
pulse, (41)

which implies that ρ
(2)
j = ρ

(1)
j , which in turn implies our

scheme terminates at (vpulse, ρj) = (v
(2)
pulse, ρ

(1)
j ). Our fi-

nal approximations for vpulse and ρj(x, t) are then,

vpulse(t) ≈ (S0 − γ)eγtc̃ (42)

ρj(x, t) ≈ eγtÑjH
(

Γ(x, t)
)
H
(

1− Γ(x, t)
)

(43)

with Γ(x, t) =
[
3S0−γ

2γ + eγt

2γ (2γx− 2S0) + e2γt

2γ (γ − S0)
]
.

This concludes our analysis. We state bluntly that
our approach is not rigorously justified. Its legitimacy is
supported only by the agreement between our analytic
results and numerical simulation. We hope future work
will elucidate the cause of its efficacy.


