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We study an evolutionary game model based on a transition matrix approach, in which the
total change in the proportion of a population playing a given strategy is summed directly over
contributions from all other strategies. This general approach combines aspects of the traditional
replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which
allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under
certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies.
In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper
game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to
hold for this model.
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I. INTRODUCTION

The central idea of evolutionary game theory is to
specify mathematically a process by which strategies de-
velop temporally, in response to some quantitative mea-
sure of the interaction of those strategies in playing the
game. Depending upon the way the equations are posed,
and their interpretation, this can be used to describe a
player’s decision-making process, or the evolution of rel-
ative species populations, traits, or genetic materials. A
standard approach to the continuous time evolution of
game strategies, represented by the vector x for a given
payoff matrix A, is the replicator equation

dxi

dt
= xi

(

eTi Ax− xTAx
)

= xi(fi − f̄) (1)

for the ith strategy, where ei is a standard basis vec-
tor; this equation is proportional to xi, and thus has the
character of a modified birth-rate or growth kinetics. The
replicator is also linear in the difference between the ex-
pected payoff for the ith strategy, eTi Ax = (Ax)i, and
the average payoff over all strategies, xTAx. To put
this in a biological context one identifies the fitness of
the ith strategy as fi = eTi Ax, and the average fitness
as f̄ =

∑

xifi, see Eq. (1). The replicator equation was
originally proposed by Taylor and Jonker in 1978 [1], and
has been studied extensively [2–6]. Variations, including
imitation dynamics [3, 5] and others (discussed in detail
below), have also been studied [2, 4, 7, 8]. These dy-
namics lead to largely the same class of behaviors as the
replicator [5].
Because of the important role that random mutations

can play in evolution, the replicator equation is often
supplemented by the addition of noise, or other terms
that allow for the emergence of new strategies; a brief
review is included below. The model we present here

originates from a more unified approach, not based on a
superposition of birth or growth kinetics with mutation
terms; our evolutionary game model is governed instead
by a transition matrix between strategies, in which both
aspects depend on a single analytic function. The re-
sulting dynamics are shown to admit a Hopf Bifurcation
and thus a limit cycle for generalized rock-scissors-paper
game, rather than a simple center. Thus convergence to
a stationary population mixture is not the only possible
outcome, as also is seen for models with mutation [9, 10]
(see [11] for comparison). Additionally, we show, as ex-
pected, that a majority of the Folk Theorem of evolution-
ary game theory [12] hold in these dynamics with a few
modifications. We illustrate that for certain assumptions
on the function governing the transition matrix, the spon-
taneous emergence of dominated strategies is possible.
We also find that that strictly dominating pure strategy
equilibria (e.g., defect in prisoner’s dilemma) need not be
fixed points of the system. Instead, our model enables a
form of continuous mutation that allows the dominated
population to maintain a finite representation.

II. PRIOR ALTERNATIVES TO THE

REPLICATOR EQUATION

We first give a brief review of some of the alternatives
to the replicator, Eq. (1); more thorough presentations
reviewing the varieties and dynamics of these models
have been provided by Sandholm [6], and more recently
by Cressman & Tao [13]. A unifying approach based on
the covariance between traits and fitness was given by
Page & Nowak [14], while the inclusion of non-mean field
effects was studied by Roca, Cuesta, & Sánchez [15]. The
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replicator has often been generalized in the form

dxi

dt
= H(x)xi (2)

as studied in [2–5, 7, 8], where the primary consideration
is H(x) being convex and monotone. Because dxi/dt is
proportional to xi in this equation, the “extinct” solution
xi = 0 is always a fixed point. Thus the replicator dy-
namic does not admit spontaneous generation of species,
which is not surprising as it was constructed as a repro-
ductive model; as Taylor and Jonker state, “the simplest
hypothesis is that of exponential growth or decay” [1].
Several authors have distinguished between two dif-

ferent classes of such equations: imitative dynamics vs
pairwise comparison dynamics [6, 13, 22]. To clarify our
classification of the various strategy evolution equations,
we distinguish between two types, along similar lines to
Sandholm’s classification of revision protocols [6]:

1. reproductive or birth process models, for which
ẋi = 0 whenever xi = 0, and

2. innovation process models, for which ẋi > 0 is pos-
sible when xi = 0 (due possibly to mutation).

What we call birth process models are almost identical
to the class imitative dynamics, while innovation process
models are approximately the same as pairwise compari-
son models. The model we propose here is easily adjusted
to follow either a birth or innovation process, depending
on the properties of the transition function discussed be-
low; however it does follow the rule that a flux can only
originate from a state that is populated - thus it is a pair-
wise comparison model [6, 13]. It also shares common
aspects with several other models, as we discuss next.

A very general approach to the evolution of multi-
species communities was posed by May in his 1973 model
of interacting populations near equilibrium [20]. He pro-
posed the following first order equation

dxi

dt
=

∑

j

aij xj , (3)

where the xi are perturbations around the time-
independent populations for each species, and the aij are
elements of an interaction matrix which determine the
evolutionary dynamics. More recently, a modified ver-
sion of this model was used by Sneppen and coworkers

dxi

dt
=

∑

j

Γijxixj −
∑

j

Γjixixj (4)

where the Γij are constants [21].
The classical imitation dynamic is similarly based on a

matrix element fij(x) which represents the rate at which
players of type i adopt the strategy of players of type j
[3], discussed in general terms by Hofbauer and Sigmund

(cf. Eq 46 in [5], and Ch. 8 in [19]). They start with the
“input-output model”

dxi

dt
= xi

∑

j

xj(fij(x)− fji(x)), (5)

which describes the “flow” between pure strategies,
such that the flow between i and j is proportional to
xixjfij(x). For a given payoff matrix A, they assume
that

fij = f(eTi Ax, eTj Ax)

where we use our notation instead of theirs to empha-
size similarities. They refer to f as the “imitation rule”
(universal to all players), and further define two cases:
1) Imitate the better, where f(u, v) = 0 for u < v, and
f(u, v) = 1 for u > v, and 2) Switching depends on payoff
difference, where f(u, v) = F (u − v). With a few more
assumptions including linearity F , this leads to the repli-
cator equation. Note that (4) and (5) are birth process
models, whereas (3) is an innovation process model.
The generation of new strategies has often been added

to a birth process model by the inclusion of mutation
terms, which account for the probability of randomly
switching from one strategy to another. Nowak presents
the quasispecies equation, which he credits to Eigen and
Schuster [23], for replication of a genome “with mistakes”

dxi

dt
=

N
∑

j=1

xjfjQji − φxi (6)

Here Qji is the probability that the process of replicating
sequence j also generates sequence i, fj is the replica-
tion rate (i = j is possible), and φ is the removal rate
of sequence i which keeps the total population size con-
stant; errors are represented by off-diagonal elements of
Q. Nowak also presents another equation of the same
form, which he calls the replicator-mutator equation [23].
In this case fi is the fitness for species i (or grammar, in
his model for language learning), and φ =

∑

xifi is the
average fitness. This equation appears elsewhere, for in-
stance in a study of mixing times in evolutionary games
with mutation [11]. By adding a mutation term to a
pairwise comparison dynamic, these models allow for the
intrinsic seeding of an unrepresented strategy indepen-
dent of the population of other strategies.
Another pairwise comparison approach is known as

Best Reply dynamics, which in a continuous approxima-
tion is known as Logit Dynamics [22]. The structure of
this model is

dxi

dt
=

exp[β(Ax)i]
∑

j exp[β(Ax)j ]
− xi

where β controls the sharpness of the switching transi-
tion. In addition to bearing several similarities to our
model, Logit dynamics was recently shown to produce a
Hopf bifurcation in rock-scissors-paper games [22].
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In a different applied context, the mathematical mod-
eling of opinion dynamics and the convergence towards
consensus among individuals [16, 17], as well as other
related social dynamics [18, 23], share certain aspects
with evolutionary games - opinions are represented by
continuous variable, and are updated as the result of
social interactions [27, 28]. For instance, the DeGroot
model [16] assigns evolving belief (trust) scores to inter-
acting agents through a process governed by an (ergodic)
Markov chain.

III. FORMULATION OF THE TRANSITION

MATRIX MODEL AND RESULTS

In this section we present our derivation of the model,
and then derive several analytic results, before illustrat-
ing its behavior numerically in the next section.

We first recall a few definitions and preliminary results
used in the proofs of subsequent theorems. Let x ∈ ∆n be
the vector containing the proportions of the population
playing each strategy, where ∆n is the simplex defined
as

∆n = {x ∈ R
n : x1 + · · ·+ xn = 1, x1, . . . , xn ≥ 0} (7)

Let A ∈ R
n×n be a game matrix in a symmetric bima-

trix game (A,B) with B = AT . Assume that A has a
symmetric Nash equilibrium x∗ ∈ ∆n, being a Nash equi-
librium for both row and column player, is any strategy
satisfying the condition

(x∗)
T
Ax∗ ≥ (y)

T
Ax∗ ∀y ∈ ∆n (8)

We next review several important properties of x∗ and its
elements xi = eTi x, where ei is a standard basis vector.

Lemma 1. If x is a Nash equilibrium and xi,xj > 0,
then eTi Ax = eTj Ax

Corollary 2. If x is a Nash equilibrium, then eTi Ax =
xTAx for any xi 6= 0.

In other words, the expected payoffs for all the non-zero
strategies are equal, and they are also equal to the aver-
age payoff.

Lemma 3. Suppose x ∈ ∆ and let S ⊆ {1, . . . , n} be the
set of indices so that xi 6= 0 if and only if i ∈ S. Denote
the complement of S in {1, . . . , n} by S. If eTi Ax =
eTj Ax for all pairs i, j in S, and if for every k ∈ S and i ∈
S, we have eTi Ax ≥ eTkAx, then x is a Nash equilibrium.

Corollary 4. If x is not a Nash equilibrium, then there
is at least one pair of indices i, j ∈ {1, . . . , n} such that
eTi Ax− eTj Ax > 0.

A. Transition Matrix Approach

Our model is based on three basic assumptions. In
common with the other models described above, we are
concerned with the change in time of the distribution of
strategies x. Our first assumption is that any increase in
population (frequency) of a given strategy i is due to a
net inflow from all other strategies (what Sandholm calls
a mean dynamics [6]). We write this inflow for the ith
strategy as

Ii(x) =
∑

j

Gji xj , (9)

where the sum is over all other strategies. In analogy
with similar concepts in quantum mechanics and optical
processes (see e.g. [26]), we identify the strength of the
coupling with a matrix element for the transition between
two strategies (two energy eigenstates); the coefficients
Gji are the elements of this transition matrix, to be de-
fined later. We similarly define the total outflow from
Strategy i to the other strategies as

Oi(x) =
∑

j

Gij xi (10)

Combining these, we write the rate equations (first order
in time) for the total change of the number of players for
a given strategy:

dxi

dt
= Ii(x)−Oi(x) =

∑

j

Gji(x)xj−
∑

j

Gij(x)xi (11)

The form of these equations is similar to “migration dy-
namics” [13], or the Smith dynamic [6].
Secondly, we assume that the expected payoffs for the

strategies, written as (Ax)i = eTi Ax, define the dynam-
ics. The difference in payoff levels between strategies i
and j (between two states) is used to determine the flux
between populations playing those strategies. Thus if

eTj Ax− eTi Ax ≥ 0

there is non-negative outflow from strategy i to strategy
j, since the expected payoff to (pure) strategy j against
the population is at least as great as the expected payoff
to (pure) strategy i against the population. By the same
argument, if eTj Ax − eTi Ax ≤ 0, then there should be a
zero or nearly zero outflow from Strategy i to Strategy j.
The third aspect of our model is the function g(z),

which universally characterizes the dependence of the
transition matrix elements Gij on the expected payoffs:

Gij = g
(

eTj Ax− eTi Ax
)

(12)

Here g : R → R is a non-negative monotone increasing
transition function, defining quantitatively the charac-
ter of switching between strategies. In its simplest form,
g(z) > 0 for z > 0 (the switch is ON) and g(z) = 0 for
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z < 0 (the switch is OFF). The value of g(0) represents
the equilibrium when the inflow and outflow are equal.
It is natural to expect fluctuation-type phenomena to be
represented by this value, and we think of the smooth-
ness of a less sharp transition around z = 0 to repre-
sent a “higher temperature”. When g is a sigmoid, then
the population drifts toward better performing strategies.
Several forms of g are natural:

g(z) = max(tanh(βz), 0) TANH

g(z) = 1/(1 + exp(−βz)) LOGIST

g(z) = exp(βz) EXP

The first one is zero when z ≤ 0 and has a discontinu-
ous derivative at 0. Both TANH and LOGIST approach
the Heaviside step function as β → ∞. Both EXP and
LOGIST allow for the possibility transitions even when
z ≤ 0 (see below). EXP is like a Boltzmann function
with β playing the role of inverse temperature.
We study the same equilibrium shaping and control

questions in these dynamics as for the ordinary replicator.
In some sense, these dynamics are simpler because they
do not exhibit exponential growth of successful strategies.
On the other hand, the dynamics admit more complex
behaviors in our archetypal example (RSP), as shown
below.
In summary, the transition matrix model is defined by

the following equations

dxi

dt
=

∑

j

xj g
(

eTi Ax− eTj Ax
)

−
∑

j

xi g
(

eTj Ax− eTi Ax
)

(13)
along with the definition of the transition function g(·).
As we shall see, the salient features of this model include
its inclusion of the mutation and innovation (non-birth)
process property in a general way, since xi = 0 is not
necessarily a fixed point for g(0) 6= 0. We also allow for
general and possibly nonlinear forms of g. Interestingly,
there does not appear to be a choice of g(·) which would
lead directly to the replicator equation, which points out
an important difference with the input-output model [5,
19] shown in Eq. (5); there is no overall proportionality
to xi in (13). This also indicates that the presence of g in
both sums in our model is a strongly imposed symmetry
on the inflows and outflows between strategies.
Note that a recent social dynamics model takes a map-

ping approach with some similarity to our model, in
which the updating of continuous opinion variables is
proportional to pairwise differences with other opinions
[27].

B. Nash Equilibria and Fixed Points

We now state some analytic results for the transition
matrix model, the so-called Folk Theorems of evolution-
ary game theory [12]. Note that these results tend to dis-
tinguish between “interior” (mixed) strategies and “ex-
terior” (pure) ones.

Proposition 5. Suppose that g(0) = 0 and x is an in-
terior point Nash equilibrium (i.e., x > 0). Then x is a
fixed point for System 13.

Proof. From Lemma 1, we know there is a c ∈ R such that
c = eTi Ax for all i ∈ {1, . . . , n}. Then Gij(x) = g(0) for
all (i, j) pairs. Consequently, Eq. 13 becomes:







dxi

dt
= g(0)





∑

j

(xj − xi)



 (14)

The proposition follows immediately from the preceding
expression.

Corollary 6. Suppose g(0) > 0 and x is an interior
Nash equilibrium. If x1 = x2 = · · · = xn, then x is a
fixed point for System 13.

This special result for “equally distributed” mixed
strategy Nash equilibria follows directly from Eq. (14); a
classic example would be the Rock-Scissors-Paper game,
which has a Nash equilibrium at (13 ,

1
3 ,

1
3 ). This example

is discussed in detail in Section IV.

Proposition 7. If g(0) = 0 and x∗ ∈ ∂∆n is a pure
strategy (exterior) Nash equilibrium, then x∗ is a fixed
point of System 13.

Proof. First note that only one element of x∗ is nonzero.
Suppose that xi = 0. Then Eq. 13 reduces to

dxi

dt
=

∑

j

g(eTi Ax∗ − eTj Ax∗)xj (15)

If xj > 0, then eTj Ax∗ ≥ eTi Ax∗ and thus g(eTi Ax∗ −
eTj Ax∗) = 0; for all other terms k 6= j, xk = 0. Thus
the right-hand-side of Eq. 15 is zero, and we have a fixed
point.
Now suppose that xi > 0. In this case, the first sum

in Eq. 13 has only the j = i term, for which g(0) = 0. In
the second sum, if j 6= i then xj = 0, and

g(eTj Ax∗ − eTi Ax∗)xi = 0 (16)

because eTj Ax∗ − eTi Ax∗ < 0. And also for the ith term
in this sum we have g(0) = 0. Thus all terms on the
right-hand-side of Eq. 13 are zero, and again x∗ is a fixed
point.

Interestingly, the previous proposition, that a Nash
equilibrium is also a fixed point of the dynamics, does not
hold if g is continuous and g(0) > 0, which corresponds
to allowing some flux to continue even to less favorable
strategies. An example of this is presented in Section V.

C. Nash Equilibria and Stability

Proposition 8. Suppose that g(z) = 0 for z < 0 and
g(z) ≥ 0 for z ≥ 0, and g is continuous on its domain
except possibly at 0. If x ∈ ∆n is Lyapunov stable for
System 13, then x is a Nash equilibrium.
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Proof. Suppose that x is Lyapunov stable and not a Nash
equilibrium. Then for at least one i, j pair, we know that
eTi Ax − eTj Ax > 0 by Corollary 4. Moreover, we can

order the values eTkAx for k = 1, . . . , n and see that
there is some set K = {k1, . . . , km} (m < n) so that
if k ∈ K, then eTk Ax ≥ eTj Ax for all j ∈ {1, . . . , n}.
Assume that i ∈ K; if not, select i ∈ K. By our choice of
g, Gij = 0 for all j 6∈ K. If k ∈ K, then Gik(x) = g(0).
Thus, Oi(x) = mg(0). On the other hand, for j 6∈ K,
Gji(x) > 0, since eTi Ax − eTj Ax > 0. Let K be those
indices in {1, . . . , n} not in K. Define

r := min
j∈K

{eTi Ax− eTj Ax} (17)

Then Gji(x) > g(r) for all j ∈ K. If k ∈ K, then
Gki(x) = g(0). Thus Ii(x) > (n − m)r + mg(0). It
follows that:

ẋi(x) > (n−m)g(r) (18)

By continuity of g(·) there is a neighborhood U of x for
which if y ∈ U , then there is some δ > 0 so that ẋi(y) >
δ. If ϕi(t,x

(0)) is a solution flow for strategy i, with
initial point x(0) ∈ U ∩∆n, we see that ϕi(t,x) > δt so
long as ϕi(t,x) ∈ U ∩∆n. But this implies that x is not
Lyapunov stable.

The proof of the following proposition is almost iden-
tical to the proof of Proposition 8.

Proposition 9. Suppose that g(z) = 0 for z < 0 and
g(z) ≥ 0 for z ≥ 0, and g is continuous on its domain,
except possibly at 0. If x ∈ ∆n is the limit of an interior
orbit of System 13, then x is a Nash equilibrium.

Proof. Suppose that x is the limit of an interior orbit, but
x is not a Nash equilibrium. By a similar argument to the
proof of Proposition 8, we know that ẋi(x) > (n −m)r
for some r > 0 and m < n. Denote the right-hand-side
of System 13 by f(x), so that:







dxi

dt
=

∑

j

Gji xj −
∑

j

Gij xi = fi(x) (19)

We know that fi(x) is continuous almost everywhere by
our assumption on g. Let ϕ(t,x(0)) be a solution flow
for strategy i. As t approaches infinity, we know that
ϕ(t,x(0)) approaches x. Thus for some time s ∈ R so
that for all t > s, we know that fi(x) > (n−m)r/2. We
can say this only for index i precisely because of our con-
tinuity assumptions on g. But then ϕi(t,x

(0)) approaches
infinity for t > s, which contradicts our assumption that
ϕ(t,x(0)) approaches x.

IV. ROCK-SCISSORS-PAPER DYNAMICS IN

THE TRANSITION MATRIX MODEL

Consider the generalized Rock-Scissors-Paper (RSP)
game, a cyclic dominance game defined by the matrix

A :=







0 1 + a −1

−1 0 1 + a

1 + a −1 0






. (20)

Here a is the shift parameter away from zero-sum; when
a = 0, this is the standard zero-sum RSP game, with row
and column player strategies in that order. Recall that
for any value of a, this game has a symmetric interior
Nash equilibrium strategy x1 = x2 = x3 = 1

3 . Under the

replicator dynamics, when a > 0, then x∗ = (13 ,
1
3 ,

1
3 ) is

stable; for a < 0, x∗ is unstable, and when a = 0, x∗

is a nonlinear center [31]. Zeeman further classifies all
3-strategy replicator phase portraits [31], and shows that
there can be no isolated periodic orbits and hence no limit
cycles (see also [5], p. 5). We use this to show that the dy-
namics we study cannot be diffeomorphically mapped to
the replicator dynamics, by analyzing the RSP dynamics.
We then study this model in a simple stochastic simula-
tion, which allows us to explore the attraction properties
of the different states.

A. Analytic Results

For the remainder of this section, we relax our assump-
tion that g(z) = 0 for z < 0, and assume only that g(z) is
positive, monotonic and differentiable (and hence contin-
uous). From Corollary 6, any Nash equilibrium is a fixed
point of the transition matrix model given in (13) for
any non-negative monotonic increasing g(z). The fixed
point in this case represents a balance in transition ma-
trix fluxes. What can we say about the dynamics of RSP
in the transition matrix model? For the remainder of this
section, we substitute x3 = 1 − x1 − x2, for simplicity,
and analyze the resulting two-dimensional system, with
x = x1 and y = x2.

Proposition 10. Assume g(z) is differentiable, g′(0) >
0 and g(0) ≥ 0. Define

acrit = −3g(0)

g′(0)
(21)

Then:

1. When a > acrit, the fixed point is stable;
2. When a < acrit, the fixed point is unstable;

Proof. We evaluate the Jacobian of the two-dimensional
dynamical system and then analyze its eigenvalues at the
fixed point. The eigenvalues are:

[

−g′(0)a− 3g(0) +
√

−3g′(0)2(a+ 2)2

−g′(0)a− 3g(0)−
√

−3g′(0)2(a+ 2)2

]

(22)
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The stability of the point is entirely decided by the real
part of the eigenvalues. Applying Theorem 3.2 of [29]
and inspection yields the result.

A specific function that satisfies these assumptions is

g(z;α) =
1

2
(tanh(αz) + 1) (23)

For this function, acrit = −3/α. When a = acrit, the
dynamics are entirely contained on the center manifold,
and numerical simulations show that a nonlinear center
emerges. This behavior is qualitatively similar to the
behavior observed in the ordinary replicator dynamics
in generalized Rock-Scissors-Paper and other imitation
dynamics (as α → ∞) (see relevant sections in [5] and
[3] and their references). In Figure 1 we show numerical
evidence for a Hopf bifurcation, by plotting the stable
limit cycle for α = 10 and a = −1 (for acrit = −0.3).

Proposition 11. Assume g(x) ≥ 0 and monotonically
increasing for x ∈ R. Further assume g(x) is differ-
entiable and that g(x) > 0 for x > 0. Suppose that
x = y = 1

3 is the unique unstable fixed point in Ω =
{(x, y) : x + y ≤ 1, x, y ≥ 0}, 3g(0)/g′(0) < 2 and
−2 < a < −3g(0)/g′(0). Finally, assume that for:

1

a+ 3
< λ < 1, (24)

we have:

g(aλ− a− 1)λ− (1− λ)[g(−aλ+ a+ 1)
+g(aλ+ 3λ− 1)] < 0.

(25)

Then System 13 admits a limit cycle.

Proof. The fixed point x = 1
3 , y = 1

3 is unstable by
Proposition 10, and thus there is a ball of radius ǫ > 0
about this point from which all flow leaves. This proof re-
lies on there being only one unstable interior fixed point;
we then show that the flow dynamics at the boundary of
Ω is inward.
Consider now the flow in the y-direction, along the line

segment x = λ, for λ ∈ [0, 1]. The magnitude of this flow
in the positive y direction is given by:

g(−2λ+ (1− λ)(1 + a) + 1)λ
+g(−λ+ (1 − λ)(1 + a)− λ (1 + a))(1− λ),

(26)

which is non-negative given our assumptions on g. If
g(x) > 0 for all x, then there is always flow into the
interior of Ω = {(x, y) : x + y ≤ 1, x, y ≥ 0} along the
given line segment. If g(x) = 0, then x ≤ 0. It suffices
to show that for some value of λ the flow in question is
positive in the y direction. This occurs when either:

−2λ+ (1− λ) (1 + a) + 1 > 0 or

−λ+ (1− λ) (1 + a)− λ (1 + a) > 0,

FIG. 1: Phase portrait for the two-dimensional varia-
tion of the Generalized RSP dynamics in with g(x;α) =
1

2
(tanh(αx) + 1), α = 10 and a = −1 in Eq. 20.

which occurs when:


































{

2+a
a+3 < λ

}

,
{

1+a
3+2 a

< λ
}

a < −3

{2/3 < λ} a = −3
{

λ < 2+a
a+3

}

,
{

1+a
3+2 a

< λ
}

a < −3/2

{λ < 1/3} a = −3/2
{

λ < 2+a
a+3

}

,
{

λ < 1+a
3+2 a

}

−3/2 < a

(27)

In each case, there is a subset of [0, 1] such that when λ
is in this subset all flow must be directed into Ω.
We show that a similar statement holds on the other

two line-segments on ∂Ω. From the fact that there are
no stability points other than x = y = 1

3 , it follows that
flow must leave the boundary and enter Ω.
The flow in the positive x direction on the line segment

y = λ, λ ∈ [0, 1] is given by:

g(λ (1 + a)− 1 + λ− (1 − λ)(1 + a))λ
+g(λ (1 + a)− 1 + 2λ)(1 − λ),

(28)

which also is non-negative for λ ∈ [0, 1]. By a similar ar-
gument to the one above, we can show that for any choice
of a there is at least some subset of this line segment on
which the flow enters Ω.
Finally, the flow in the y direction on the line segment

x+ y = 1 is given by:

λg(aλ− a− 1)
−(1− λ){g(−aλ+ a+ 1) + g(aλ+ 3λ− 1)} (29)

for any point x = λ and y = 1−λ. Our final assumptions
on g tell us that when Inequality 24 holds, the flow in
the y direction is negative. Thus, our assumption ensures
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that there is a subset of the line segment from which flow
leaves and enters Ω. It then follows from the Poincaré-
Bendixson Theorem that there must be a limit cycle.

The limit cycle shown in Fig. 1 is eventually destroyed
as the value of a increases, as illustrated in Figure 2b.
When α = 10, and a = −3/10 + 0.001, the limit cy-
cle appears almost semi-stable as illustrated in the phase
portrait in Figure 2a. This suggests a Hopf bifurcation
caused by the real-parts of the eigenvalues (see Expres-
sion 22) of the Jacobian matrix crossing over the real-
axis. Note the angular bends in the trajectories shown in
Fig. 2 are not an artifact of the numerical solution. Such
highly curved trajectories are reminiscent of the phase
portrait for the Van der Pol oscillator (see e.g. [29, 30]).
It is also worth noting that these dynamics persist when a
variation of the Heaviside step function (defined as 1/2 at

(a)

(b)

FIG. 2: Phase portrait for the two-dimensional varia-
tion of the Generalized RSP dynamics with g(x;α) =
1

2
(tanh(αx) + 1), α = 10, and: a) a = −3/10 + 0.001; b)

a = 1.
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FIG. 3: (A) Numerical bifurcations for Eq. (20), shown for
the variable y, as the asymmetry parameter a varies for fixed
α = 10; (SN) labels a saddle-node bifurcation, and (He) a
heteroclinic orbit. Thick green lines show the periodic or-
bit emerging from the Hopf bifurcation. Red lines are stable
equilibria and black are unstable. (B) Two parameter dia-
gram showing the curve of Hopf bifurcations, saddle nodes
(SN), and heteroclinics (He).

0) is used for g(z). Thus, the conditions given in Propo-
sition 11 are sufficient, but not necessary.
We can get a fuller picture of the dynamics by first fix-

ing α = 10 and tracking the dynamics as the parameter a
varies using the software package XPPAUT (which incor-
porates an interface to the continuation package, AUTO)
[25]. Figure 3-A shows the dynamics of RSP as the asym-
metry parameter a varies with fixed α. Starting from the
left (at the maximum asymmetry), we see that there is a
stable equilibrium (red line) corresponding to y (paper)
dominating. There are corresponding stable equilibria
with x and z as winners. As a increases, this stable equi-
librium coalesces with a saddle point at a saddle-node
bifurcation and disappears. Starting from the right at
a = 0, there is a unique stable coexistent equilibrium
(1/3, 1/3, 1/3) that remains stable until a = acrit where
there is a supercritical Hopf bifurcation leading to a sta-
ble periodic orbit (green curve). This branch of oscilla-
tions persists until it meets the saddle-point at a hete-
roclinic orbit. At this point, there is a heteroclinic cycle
going between each of the saddles (see the phase-plane in
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FIG. 4: Heteroclinic cycle (blue) for α = 10 and a ≈ −1.2595
in RSP dynamics; the blue circles are the saddle points, and
black squares are stable nodes. The cycle consists of three
saddle-saddle connections. The red and green lines are the
x−nullclines and y-nullclines, respectively. The red circle is
the unstable coexistence equilibrium.

Figure 4). There is a small region of a for which there is
multi-stability. The stable oscillation exists and in addi-
tion there are three stable equilibria that correspond to
each of R, P, or S strategies dominating.

B. Finite stochastic model

The formulation of a model in terms of a transition
matrix between the different populations of RSP suggests
a simple stochastic simulation, in which there are a finite
number of agents N divided between the three strategy
populations X,Y, Z, non-negative integers representing
rock, scissors, paper respectively. We simulate this by
using a Gillespie algorithm with transition rates that are
given by Eq. (13). That is, for a given state (X,Y, Z), we
form the normalized quantities, (x, y, z) = (X,Y, Z)/N ,
compute the fitness from these numbers, from which we
produce a transition rate from each of the three states
to the others. For example, Rock (X) will transition
to Paper (Z) at a rate g(fz − fx) where the fi are the
fitnesses of the two strategies. As N → ∞, we expect the
dynamics to follow the deterministic equation. When N
is small enough and there are multiple attractors such as
near the heteroclinic cycle in Figure 4, then the stochastic
nature of problem can introduce enough “noise” to allow
transitions between the various stable states.
Figure 5 shows histograms of the stochastic trajectories

for N = 90 agents and 106 iterations, as the parameter
a decreases. Each pixel is colored according to the log of
the fraction of iterations that the state is reached dur-
ing the simulation. In panel A, the dominance attractors
do not yet exist (a = −1), and the probabilities are all
centered around the deterministic limit cycle, shown in
black. In panel B, the dominance attractors co-exist with
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FIG. 5: Histograms for the stochastic RSP model with N =
90 agents, for a near the region of multistability between the
limit cycle and the three dominant equilibria. Color scale
shows log of the probability of finding (X,Y ) at that pixel;
solid black curve is the deterministic limit cycle: (A) a =
−1.0, in the deterministic system, there is only a stable limit
cycle and the dominant equilibria do not exist; (B) a = −1.12,
the limit cycle and the three dominance attractors co-exist;
(C) a = −1.15, the basin of the dominance attractors is large
enough so that most time is spent near them (three small red
pixels in the corners of the triangle).
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the limit cycle (a = −1.12), but have relatively small
basins of attraction. Thus most of the time is spent near
the limit cycle, especially along the center edges of the
triangle. At the corners, however, probability density is
lost from the limit cycle as the dynamics is pulled toward
the dominance equilibria. Finally, in Figure 5C, where
a = −1.15, the basins of the three dominance equilibria
are large and deep enough such that most of the time
is spent near the extremes (X = N, Y = 0, Z = 0, and
the other two analogous attractors). There are three red
pixels at the corners corresponding to these points. The
limit cycle is still evident, but has a low probability com-
pared to the corners. For large N , the multiple attractors
will be harder to see in the stochastic simulation, since
the probability of making a jump is roughly proportional
to exp(−K

√
N) where K is related to the basin of at-

traction (see e.g. [24]).

V. COOPERATOR PERSISTENCE IN THE

PRISONER’S DILEMMA

As mentioned above, the transition matrix model does
not necessarily have the property that a Nash equilibrium
is also a fixed point of the dynamics; there are other
possibilities, in the case where g is continuous and g(0) >
0. To see this, consider the canonical Prisoner’s Dilemma
matrix:

B :=

[

R S
T P

]

with S < P < R < T . The Nash equilibrium is e2, the
defect strategy. The evolution of population proportions
x and y in the transition matrix model is given by



















ẋ = yg ((R − T )x+ (S − P )y)

− xg (−(R− T )x− (S − P )y)

ẏ = xg (−(R− T )x− (S − P )y)

− yg ((R − T )x+ (S − P )y)

(30)

Evaluating the right-hand-side at the Nash equilibrium
(x, y) = (0, 1) yields:

{

ẋ|(0,1) = g(S − P )

ẏ|(0,1) = −g(S − P )

Since S − P < 0, if g(z) = 0 for z ≤ 0 then (0, 1) =
e2 is a fixed point. If g(S − P ) > 0, then g(0) > 0
by the monotonic properties of g and the fact that g is
continuous, which means that e2 is not a fixed point.
Note that if g(z) = 0 for z < 0 and g(0) 6= 0 but g is
discontinuous, we still have a fixed point at e2.
One way to interpret this property is that g(S−P ) > 0

represents spontaneous mutations of the dominant (pure)
strategy to a weaker strategy. The result is there will al-
ways be a small endemic element of the population play-
ing the cooperate strategy. The details are highly de-
pendent on the relative values in the Prisoner’s Dilemma

FIG. 6: A comparison of the effect of α, which governs the
sharpness of the function g defined in (23), on the proportion
of cooperators that remain endemic (in the stationary state)
for the Prisoner’s Dilemma defined by (35). We compare the
precise value, computed from (34), to the first-order approx-
imation characterizing the structure of the curve, given by
(38).

matrix. To analyze this further, we define the combined
population variable (R−T )x+(S−P )y ≡ ν(x, y), which
with x+ y = 1 becomes

ν(x) = (R − T )x+ (S − P )(1 − x)

From System (30), the fixed point equation is

ẋ = 0 = (1 − x)g(ν(x)) − xg(−ν(x)) (31)

If the function g(·) has the property

g(z) + g(−z) = C, (32)

where C is a constant, then Equation (31) simplifies to:

g(ν)− x (g(ν) + g(−ν)) = (g ◦ ν)(x) − Cx = 0 (33)

Thus if we define the function

γ(x) ≡ 1

C
(g ◦ ν)(x) (34)

then any fixed point cooperator population of System
(30) is also a solution to x = γ(x).
Unfortunately, there is no generalized closed form solu-

tion to (34). As mentioned before, one of the strengths of
this approach is that it allows for the analytic derivation
of dynamic properties based on given functions g(z). The
example defined by Eq. 23, with g(z) = 1

2 (tanh(αz) + 1),
satisfies Property 32 with C = 1. We obtain the effect
of α on the proportion of the endemic cooperator popu-
lation, shown in Figure 6 for a fixed Prisoner’s Dilemma
payoff matrix:

B =

[

15 10
17 11

]

(35)

We next derive a general analytic result for our model,
starting with Eq. 34 for the Prisoner’s Dilemma

x =
1

2
(tanh (α [(S − P ) + (P +R− S − T )x]) + 1) .
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If the matrix parameters are chosen such that P + R −
S − T = 0, then the RHS of the fixed point condition
becomes a constant (independent of x), and we have

x =
1

2
(tanh (α(S − P )) + 1) (36)

It is somewhat surprising that, in this case, the endemic
population of cooperators depend only on the values S
and P , i.e. on defect payoffs.
We expand around this by defining φ = P +R−S−T

and θ = S−P , so that the fixed point condition becomes

x(φ) =
1

2
(tanh (α [θ + φx]) + 1)

Using a linear approximation (for small values of φ), we
see that:

dx

dφ

∣

∣

∣

∣

φ=0

=
1

2
αx(0) sech2(aα) (37)

where x(0) = 1
2 (tanh (αθ) + 1), as in (36). Thus the

proportion of the population that remains cooperative
in the Prisoner’s Dilemma (as a function of α) has first
order approximation:

x∗ ≈ 1
2 (tanh (αθ) + 1)

(

1 +
φ

2
α sech2(αθ)

)

(38)

The effectiveness of this approximation is illustrated for
x∗ vs α in Figure 6, for φ = 1. This approximation
is not valid when φ is large, but for small values does
capture the shape shown in the figure. It is also worth
noting that as α approaches infinity (and the function
g(z) becomes discontinuous but with the property that
g(z) = 0 for z < 0) the proportion of the endemic co-
operator population goes to zero, as one would expect.
Thus the approximation is well-behaved.

VI. DISCUSSION

In this paper, we have considered a general approach
to evolutionary games, in which the changing distribu-
tion of strategies is determined by a transition matrix
characterizing the strength of coupling between any two
strategies. This approach allows for a population flux to
any strategy choice, without the requirement that it be
previously populated. The populations move away from
unsuccessful strategies and towards more successful ones,
in a manner qualitatively consistent with evolution on a
Markov chain, or the Master equation approach to tran-
sition probabilities. The presence of the universal tran-
sition function g(·), on which our model is based, allows
some flexibility - including the possibility of a (low prob-
ability) flux towards less successful strategies - in terms of
the properties of g. We show that a majority of the Folk

Theorem of evolutionary game theory (with slight modi-
fications) holds for our model, suggesting that additional
analytic results may be derived for this model.
We also show that the transition matrix model ad-

mits a Hopf bifurcation for the generalized rock-scissors-
paper (RSP) game, and discuss conditions under which
the limit cycle appears. A similar result is found for RSP
with global mutations [9], and more recently with single
mutations [10]. The specifics of our proof require that
there be only one interior fixed point, however the neces-
sary and sufficient conditions for the actual existence of
limit cycles for generalized RSP may be more general.

In our model, the occurrence of “mutation” arises di-
rectly from the value of the transition function g(0), in-
stead of being superposed as an additional term. The
resultant possibility of flow to less fit strategies is simi-
lar to trembling hand equilibria [3]; the full implications
of this feature on the dynamics remain to be explored.
We have shown that for any g(0) > 0, a strictly dom-
inating boundary equilibrium (e.g., defect in prisoner’s
dilemma) need not be a fixed point of the system. In-
stead, this kind of continuous mutation included in this
model allows the dominated population to maintain a fi-
nite representation; the spontaneous emergence of domi-
nated strategies is also possible.

As a future extension of this work, it would be interest-
ing to explore its relationship to the DeGroot model for
social dynamics, and related phenomena [16, 18]. In addi-
tion, we would like to identify an evolving trust/opinion
data set to determine whether a game-theoretic model
can capture the dynamic opinions, following the approach
of [27]. In these social applications, the transition matrix
model may provide a useful mathematical perspective.

We have studied the transition matrix model in the
context of evolutionary games, however this approach
could be further generalized to biological contexts. In
terms of the definition of the fitness for species i in the
replicator, our model is written

dxi

dt
=

∑

j

xj g (fi − fj)−
∑

j

xi g (fj − fi)

Although it is unclear that this unified approach, based
on g(·), is more appropriate than the standard, addi-
tive approach to mutation in evolutionary dynamics, it
is intriguing to consider the implications of treating both
replication and mutation as being derived from a single
function.
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