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The mechanism of critical phenomena or critical transitions has been recently studied from various
aspects, especially, considering slow parameter change and small noise. In this article, we system-
atically classify critical transitions into three types based on temporal scales and noise strengths of
dynamical systems. Specifically, the classification is made by comparing three important time scales
τλ, τtran and τergo, where τλ is the time scale of parameter change (e.g., the change of environment),
τtran is the time scale when a particle or state transits from a metastable state into another, and
τergo is the time scale when the system becomes ergodic. According to the time scales, we classify
the critical transition behaviors as three types, i.e., state transition, basin transition and distri-
bution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory
transition and multi-trajectory ensemble transition, which correspond to the transition of individual
behavior and population behavior, respectively. We also define the critical point for each type of
critical transition, derive several properties, and further propose the indicators for predicting critical
transitions with numerical simulations. In addition, we show that the noise-to-signal ratio (NSR) is
effective to make the classification of critical transitions for real systems.
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I. INTRODUCTION

Critical transitions of nonlinear systems have been
studied for a long time in various fields, including earth-
quake, disease outbreak, stock-market crash and so on
[1–16]. In particular, the topic to predict the critical
point has attracted scientists for hundreds of years. In
the ancient time, people used the life experiences to make
predictions, but with limited accuracy due to lack of the-
oretical support. Even until the modern society, few
precise indicators for real problems have been found al-
though there are many mathematical models established
to characterize the critical phenomena.
In 2000’s, one simple but effective prediction index,

i.e., “critical slowing down” phenomenon, was proposed
by Scheffer et al. based on the bifurcation theory [2, 3].
They found that the system would exhibit a drastically
slowing down of relaxation time and a significant increas-
ing of variance when the system is close to the bifurcation
point from a steady state. Since then, many people have
devoted to the development of similar models and many
statistical indicators were proposed [4, 5]. These theo-
ries and models have been widely applied to ecology [6–
8], meteorology [9–12, 15], economics [13, 14] and so on.
In addition, Cavalcante et al. named the extreme events
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in chaotic systems “Dragon kings” and considered their
predictability and controllability [17]. A rigorous and
detailed mathematical description was given by Kuehn
in 2011 [18]. Recently, an extension of Scheffer’s model
to multi-variable systems or complex networks was es-
tablished by Chen et al. since 2012 [19–24]. Their dy-
namical network biomarker (DNB) showed early-warning
signals effectively, by exploring high-throughput data of
gene sequences for biological and medical systems, which
opens a door to the prediction of complex disease even in
the pre-disease stage. Further extension to single sample
statistics was also presented [25].
However, most of those works mentioned above assume

sufficiently small noise perturbations, and thus the criti-
cal transition always happens near the bifurcation point.
On the other hand, it is still an open question how to
effectively characterize the critical transition so as to de-
tect its early warning signals for a system with moderate
or big noise [16]. Thompson et al. found the early and
delayed escape under different drift and noise with first
order auto-regression [26]. Dakos et al. made a step for-
ward in this direction by discussing the “flickering” phe-
nomenon [27]. They compared its statistical behaviors
with the small noise case, and found almost all indica-
tors could hardly be used anymore for big noise cases.
There are a number of other studies related to the

stochastic systems with non-small noise transitions.
Horsthemke and Lefever established a noise-induced
transition theory in one-dimensional case [28]. They
focused on the maximal points of the probability den-
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sity function (pdf), and set the transition point as a
state where a sudden change of their number (for max-
imal points) occurred. Arnold defined a P -bifurcation
point where the distribution changed from unimodal to
bimodal [29]. The transition path theory (TPT) was
developed to study the statistical properties of transi-
tion paths as an ensemble [30]. Burglund et al. dis-
cussed noise-induced phenomena under different scales
of Kramers time [31]. Besides, there are also theoretical
works on non-equilibrium phase transition, which were
used to analyze the qualitative change of density func-
tion [32–34]. These works motivate us to consider the
critical transitions in moderate and big noise cases with
a general mathematical framework, and study their dy-
namical properties before the transitions.

In this paper, we aim to build a general mathematical
framework for understanding critical transitions with the
consideration of both small noise and big noise. To char-
acterize the critical transitions, we will show that there
are three key time scales, i.e., (a) the time scale of param-
eter change denoted as τλ, (b) the time scale when a par-
ticle (or state of the system) transits out of a metastable
basin denoted as τtran, and (c) the time scale when the
system becomes ergodic denoted as τergo. Clearly, the
traditional theory based on small-noise, e.g., critical slow-
ing down, is just a special case when τλ ≪ τtran . τergo,
which is called as the state transition in this paper. For
such a case, the critical transition happens at or near the
bifurcation point, i.e., the attraction basin of the stable
equilibrium becomes sufficiently small. When the noise
is not sufficiently small, generally there are at least two
other important types of transition in mathematics. One
type is the basin transition which exhibits as a particle
transiting out of an attraction basin, and it generally hap-
pens not at but before the bifurcation point, i.e., the at-
traction basin of the stable equilibrium is not sufficiently
small. This corresponds to the regime τtran < τλ < τergo
of the system. Another type corresponds to the regime of
the system τtran . τergo ≪ τλ. We call it the distribution

transition, which may happen far before the bifurcation
point due to the ergodic state of the system. For such
dynamics, what can be observed is just the point cloud
of trajectories or probability distribution of the system.
Based on such time scales, we identify the features of
critical transitions and further propose different indica-
tors to predict the critical point for each case. In terms
of dynamical behaviors, there are further two different
ways of transitions, i.e., single-trajectory transition and
multi-trajectory ensemble transition, which correspond
to the transition of individual behavior and population
behavior, respectively. We note that a related idea on dis-
cussing the timescale issues in mesoscopic dynamics was
also proposed in [35]. We should also remark that the
purpose of this paper does not intend to solve the prob-
lem of the prediction for critical transitions, but aims to
present the theoretical framework with a minimal model
to characterize the critical transitions for both small and
big noises. However, as we can see, the considered min-

imal model shows essential features of general stochas-
tic dynamics for critical transitions. Note that before
the critical transition for case (a) or (b) from one sta-
ble equilibrium, there is no information on the dynamics
of the transited stable equilibrium, but for case (c), the
information on the dynamics of the transited stable equi-
librium is considered to be available due to the ergodic
condition. In such a sense, the critical transition for case
(b) can be considered as a conditional distribution tran-
sition, in contrast to the distribution transition for case
(c), while the state transition for case (a) can be also
considered as one extreme case of the conditional distri-
bution transition.
The structure of this paper is as follows. In Section

II, we present a minimal model and its generalization.
Then we define the three time scales associated with
the model. In Section III, we classify the systems into
three regimes. In each regime, we investigate the criti-
cal transition behavior and study the properties of the
critical point. We also discuss the differences between
the single-trajectory and multi-trajectory samplings. In
Section IV, we list some indicators or properties useful in
predicting the critical points. Simulation results are also
presented. We show that the noise-to-signal ratio (NSR)
can discriminate the regimes of the stochastic systems for
classifying the transitions. Finally, we make the conclu-
sion with the discussion on some omitted but interesting
topics in Section V.

II. MODEL

Critical transition is a complicated behavior, governed
by stochastic dynamics. In this section, we first propose
a minimal model, which is a one-dimensional stochastic
differential equation (SDE) with a gradient force and ad-
ditive noise, to describe such behaviors. We then discuss
its extension to general cases with multiple variables. In
the end, we take a toy model having an analytical form
for further discussions without loss of generality.

A. A one-dimensional model with additive noise

We start from a gradient SDE with changing parame-
ters to model the critical phenomena in one dimension:







dxτ =− ∂xU(xτ , λ)dτ +
√

2ηdwτ ,

dλ

dτ
=k.

(1)

In Eq. (1), xτ is the position of a particle or a state of the
system at time τ . U(x, λ) is a potential function changing
with the parameter λ. With the change of the parameter,
there is a bifurcation which qualitatively changes the dy-
namics. Actually, the parameter k adjusts the difference
of time scales between x and λ. The smaller k is, the
slower λ varies than x. wτ is a standard Brownian mo-
tion with mean zero and covariance 〈wτwτ ′〉 = min(τ, τ ′).
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And η denotes the noise strength. Here we employ the
convention in probability theory to use dwτ instead of the
white noise dwτ/dτ because of the irregularity of Brow-
nian paths. The system (1) is not an almighty model for
describing the critical transitions, but it can exhibit some
essential features for general dynamical systems.
Eq. (1) is a system with one variable x, two parameters

τ and λ with three degrees of freedom U , k and η. If we
set our observation time, i.e., the whole changing period
of λ as O(1), we claim that there are three typical time
scales in the dynamics expressed by Eq. (1):

• τλ — the time scale of parameter λ.

• τtran — the waiting time when a particle (or state of
the system) transits across the boundary of a stable
metastable well (or the boundary of the attracting
basin for a stable equilibrium) into another.

• τergo — the time scale when the system becomes
ergodic.

It is easy to see that the order of τλ is O(1/k) in
Eq. (1). For τtran, we have an approximate expression
in special situations. When k = 0 and η is sufficiently
small, we have log(τtran) ∼ O(hU/η), where hU is the en-
ergy barrier height of the potential well U(x, λ) at a fixed
λ. τergo is one order higher than the maximum τtran be-
tween all metastable states. If we can get the largest
negative eigenvalue λ1 (with the least magnitude) of the
forward operator induced by Eq. (1), τergo is in the order
of O(1/|λ1|) (cf. Chapter 5 of [36]).
To set our observation time for λ to be O(1), we rescale

Eq. (1) as






dxt =− ∂xV (xt, λ)dt+
√
2σdwt,

dλ

dt
=1,

(2)

by letting t = kτ , V (x, λ) = U(x, λ)/k and σ = η/k.
Thus λ will change with unit rate and τλ = O(1). With
this manipulation, we reduce the number of degrees of
freedom of the system (1) from three into two in (2) —
V and σ. For every V and σ, there is a simple correspon-
dence for U , k and η.
For the three time scales τλ, τtran and τergo, though

in general the last two can hardly have analytic expres-
sions, it is obvious that the time rescaling from Eq. (1)
to Eq. (2) will not change their ranking. And τergo is al-
ways larger than τtran. Now with a fixed V (x, λ), it is σ
that determines the ranking of τλ, τtran and τergo. Con-
cerning the primitive parameters in Eq. (1) correspond-
ing to the same V (x, λ), smaller temporal parameter k,
which means slower environmental change, or larger noise
strength η, will lead to bigger effective noise amplitude
σ.
In Section III, we will classify critical phenomena into

three types with respect to different rankings of τλ, τtran
and τergo. The ranking is mainly determined by noise
amplitude σ, which is a combination of primitive param-
eters k and η.

B. A general multi-dimensional model with

multiplicative noise

The model in the previous subsection is a simplest min-
imal model, which has limitations in some sense. More
often, we can consider a general dynamical system as:







dXt =f(Xt,p)dt+
√
2σg(Xt,p)dWt,

dp

dt
=h(t),

(3)

where the coordinates Xt ∈ R
n, parameter p ∈ R

m,
and Wt is a n-dimensional Brownian motion with inde-
pendent components. We choose the positive functions
g(x,p),h(t) ∼ O(1). We suppose that dynamics of a
nonlinear system are around a stable equilibrium initially
with the gradual change of parameters, and we only con-
sider co-dimension one bifurcations through the interac-
tions of f(x,p), g(x,p) and σ without loss of generality.
To discuss the relation with our minimal model, let

us give some suitable remarks on Eq. (3). Firstly, with
a given initial condition, the parameter p determines a
simple curve in R

m. Using the arclength as the natural
coordinate of the curve, the parameter equation can be
reduced into dλ/dt = s(t). Thus Eq. (3) can be trans-
formed into







dXt =f(Xt, λ)dt+
√
2σg(Xt, λ)dWt,

dλ

dt
=s(t).

(4)

Secondly, in a high dimensional system, f(x, λ) may
not be written in a gradient form (in one dimension sys-
tem, we can always transform it into a gradient form),
and the effect of g(x, λ) is not trivial. For Eq. (4), we
can define the three time scales τλ, τtran and τergo similar
to those in Eq. (1) of Section II A. In a gradient system,
τtran is the time when a particle transits across the bar-
rier of potential well, but in a general system, τtran is
the time when the particle or the state crosses over the
attracting basin’s boundary of the stable equilibrium.
Thirdly, if we take the viewpoint of “effective po-

tential” in non-equilibrium phase transition [28, 32] or
“quasi-potential” in large derivations [37, 38]. We utilize
an “ideal potential”, which has been mentioned without
a name in [27], defined as

V (x, λ) = −σ ln pst(x, λ). (5)

Here pst(x, λ) is the steady state pdf induced by Eq. (4)
with a fixed λ. As the system Eq. (4) has only stable
equilibrium points and co-dimension one bifurcations, we
claim that the boundary of ideal potential V can grasp
the boundary of the attracting basin after sufficiently
long time. Though τλ, τtran and τergo cannot be esti-
mated through V anymore, the ideal potential still gives
us an intuition on the scope of attracting basins.
Clearly, although we know Eq. (3) is much more com-

plicated than the minimal model Eq. (2), with the pre-
vious discussion, we can do the same classification to
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Eq. (3) or Eq. (4) according to the different rankings
of τλ, τtran and τergo. Thus the later discussions on our
minimal model will shed light on the investigation for
general models, and our study on the simplest system
(2) presents the necessary steps towards the understand-
ing of more complicated critical transitions.

C. Toy model for simulation

In the classification and simulations, we choose the po-
tential function as

U(x, λ) =
1

4
x4 − 3

2
x2 + λx, (6)

which is unimodal or bimodal at different λ values. We
take k = 0.01 and vary η (or σ). Hence, we have the
corresponding

V (x, λ) = 100

(

1

4
x4 − 3

2
x2 + λx

)

. (7)

To study the critical transitions, we take the dynam-
ics in Eq. (2) with Eq. (7) and choose λ(0) = −3,
x(0) ≈ 2.1038, which corresponds to the unique stable
fixed point of potential V (x, λ(0)). The terminal time is
set at t = 6, i.e.λ = 3. When doing the simulations, we
use the Euler-Maruyama scheme and choose a sufficiently
small stepsize ∆t = 10−6 if not particularly pointing out.
The bifurcation diagram of V (x, λ) is shown in Fig. 1
with its stable (solid blue line) and unstable (dashed red
line) equilibrium points marked out.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

λ

x

 

 

FIG. 1. (Color online) Bifurcation diagram of the dynamics in
Eq. (2) with V (x, λ) in Eq. (7). The stable equilibrium points
are marked by solid blue line and the unstable equilibrium
points are marked by dashed red line. At λ = −2, the bistable
state occurs, and at λ = 2 one metastable well disappears.

III. CLASSIFICATION OF CRITICAL

TRANSITIONS IN DIFFERENT SCALES

A. Classification

According to the ranking and size of the typical
timescales induced by the system (2), we classify the crit-
ical transitions into three cases.

• Case I: state transition, for τλ ≪ τtran . τergo,
usually under relatively fast temporal parameter k
or small parameter η, i.e. small noise amplitude σ.

• Case II: basin transition, for τtran < τλ < τergo,
usually under relatively medium temporal parame-
ter k and parameter η, i.e. medium noise amplitude
σ. It can be viewed as a conditional distribution
transition.

• Case III: distribution transition, for τtran . τergo ≪
τλ, usually under relatively slow temporal parame-
ter k or large parameter η, i.e. big noise amplitude
σ.

We know that the ranking of τλ, τtran and τergo is only
determined by σ with the same V in Eq. (2). We thus
also call Case I as small noise case, Case II as medium
noise case and Case III as big noise case. The main re-
sults of this paper are concluded in Table I including the
classifications and the features of each case. We will dis-
cuss the details in next subsection.
Horsthemke and Lefever [28] mainly focused on the

distribution transition which is Case III in our classifi-
cation. And they especially discussed one dimensional
model with the qualitative change of extrema of the sta-
tionary distribution as a signal. We will extend it to a
high dimensional space and use KL divergence as a new
indicator. Berglund and Gentz [31] used Kramers time
to classify the transitions but without τergo. They have
discussed stochastic resonance where drift term f is pe-
riodic in time instead of our medium noise case (Case
II) which is much common in transition phenomena. In
particular, the difference of single-trajectory sample and
multi-trajectory sample has never discussed before. Af-
ter all, our classification is clear and general, and we will
also derive indicators as early-warning signals shown in
Section IV.

B. Discussion on models and classification

Now we discuss in details how the classification is done
and what is the definition of the critical transition in each
case. As mentioned previously, we will classify the dy-
namics described by Eq. (2) into three types or cases:
state transition, basin transition and distribution tran-
sition. Simulations are based on the dynamics Eqs. (2)
and (7).
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TABLE I. Classification of critical transitions and features of each case

Case I Case II Case III

Transition type state transition basin transition distribution transition

Time scales τλ ≪ τtran . τergo τtran < τλ < τergo τtran . τergo ≪ τλ

Noise ampli-
tude σ

small medium big

Temporal
parameter k

fast medium slow

Primitive noise
η

small medium large

Single-
trajectory
critical point
(λ∗)

bifurcation point point when a particle crosses the
boundary of an attracting basin for
the stable equilibrium

point when sudden or largest
change of distribution (computed
by time sequence in windows)
occurs

Ensemble criti-
cal point (λ∗)

bifurcation point point when most trajectories transit point when sudden or largest
change of distribution (computed
by trajectory ensemble at each
time) occurs

Properties near
critical point

increase of variance, autocorrela-
tion, correlation and so on

large deviations from mean; noise
and barrier height in the same order

sudden change of some moments;
increasing KL divergence between
adjacent distributions

1. State transition under small noise

Case I occurs when τλ ≪ τtran . τergo, which means
that σ is much smaller than the barrier height of the po-
tential and the particle or the state of the system x(t)
almost always stays in a close neighborhood of the stable
equilibrium point. Thus during the observation, we can
hardly see the transition until the state becomes unsta-
ble.

In this case, we define the critical point as the bifurca-
tion point, where a metastable well disappears and the
particle has to transit into another. This definition has
no ambiguity between the multi-trajectory and single tra-
jectory statistics, because all paths or trajectories make
the sudden change at the same instant. In the sufficiently
small noise case, many criteria of early warning signals
for predicting the critical transitions are proposed, like
the increasing of variance and autocorrelation and so on.
“Critical slowing down” is the basis of these statistics
[2, 4] for one-dimensional systems, and “strong fluctua-
tion and correlation” is the signals for complex networks
or multi-dimensional systems which can be referred to
[19].

Transition path of a single particle is illustrated in
Fig. 2(a), which is simulated by Euler-Maruyama scheme
for dynamical Eqs. (2) and (7) under small noise σ =
0.125. The bifurcation point is at λ = 2, which is also
the critical point in this case. We can observe a sud-
den transition of the position of the state, clearly. In
probability space for multi-trajectory ensemble, we can
compute the first jump pdf, which is almost a delta func-
tion at λ = 2 and is shown in Fig. 2(b). The evolution of

the probability density of x is also presented in Fig. 3.

2. Basin transition under medium noise

Case II occurs when τtran < τλ < τergo with a relatively
medium noise size. In this case we can observe the parti-
cle transiting at some place before the system bifurcates,
but in general it will never get back. One realization of
the path is explicitly shown in Fig. 4(a).
We want to emphasize that every trajectory has a quite

different escaping time in the medium noise case. There-
fore, we distinguish two concepts: the single-trajectory
transition and multi-trajectory ensemble transition. For
single-trajectory transition, we define the critical point
as the time when the particle crosses the boundary of an
attraction basin, i.e., the separatrix between two neigh-
boring attraction basins. For multiple-trajectory transi-
tion, we define the critical point as the most probable
transition point, at which the particles leave the attrac-
tion basin of the metastable state with the maximal es-
caping rate. We call it the ensemble transition point.
Though the total transition probability saturates until
the bifurcation point, the particles hardly stay in the ini-
tial metastable well eventually.
Now let us list some simple properties of the system in

this case.

1. For a single trajectory, the particle follows the up-
hill path

ẋ = ∇V (x, λ) (8)
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FIG. 2. (Color online) State transition case under small noise. The dynamics is given by Eq. (2) with potential (7). Noise
amplitude σ = 0.125 is relatively small to the potential barrier. Fig. 2(a) is a path for a single particle under small noise and
a transition can be seen. The solid red line is the stable equilibrium points and the dashed red line is the unstable equilibrium
points. The trajectory of a state or particle is in blue. Critical point is defined as the bifurcation point λ = 2. Fig. 2(b) shows
the first jump pdf for multiple particles under small noise strength. In Fig. 2(b), the first jump probability density is nearly a
delta function at λ = 2, which is also the bifurcation point. From both Fig. 2(a) and Fig. 2(b), we know there is no difference
between the multiple and single trajectory statistics in this small noise case.
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FIG. 3. (Color online) The evolution of pdf of x for the dy-
namics (2) and (7) with σ = 0.125 for the small noise case.
The solid blue line is the stable equilibrium points and the
dashed red line is the unstable equilibrium points. Insets are
pdfs at λ = −2.5,−1, 0, 1, 2.5. If we plot all the pdfs at every
λ, it will exhibit a sudden transition at λ = 2 (green triangle
line).

with a high probability before the transition (cf.
[39, 40]).

2. For single-particle trajectories, the closer the parti-
cle gets to the boundary, the more seldom it stays
there.

3. For multi-trajectory ensemble, the most probable
transition point corresponds to the parameter λ∗

at which the height of the basin h is in the same
order of the noise amplitude σ.

Simulation of a single-trajectory path is shown in
Fig. 4(a) with σ = 50. We can see that the transition
occurs far before the bifurcation point. For multiple tra-
jectories, we simulate 105 paths to compute the probabil-
ity density of the first jump at each parameter. The nu-
merical pdf of the transition point is shown in Fig. 4(b).
The most probable transition point is marked as the crit-
ical point for ensemble transition. We can observe that
the transition time is generally different for the single
trajectory and multiple trajectories. The evolution of
probability density for x is plotted in Fig. 5.

3. Distribution transition under big noise

The third case is τtran . τergo ≪ τλ, which means that
during the observation the state of the system has tran-
sited over the whole reachable space many times. Here
σ is relatively bigger than the two former cases. As τergo
is sufficiently small, the system reaches its equilibrium
quickly at every λ.
Because the system is ergodic with fast time scale, the

single-path statistics in an O(1) time interval and multi-
trajectory statistics in space make no difference. To de-
fine the critical point, we focus on the sudden qualitative
change of the equilibrium distribution.
Some theories have been proposed on studying the

qualitative change of distributions. The noise induced
transition theory utilizes the number and position of sta-
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FIG. 4. (Color online) Basin transition under medium noise. The dynamics is described by Eq. (2) with potential (7). We
choose σ = 50 which is neither too small nor too big relative to potential barrier. A basin transition path for a single particle
and the first jump pdf for multiple particles are shown in Fig. 4(a) and Fig. 4(b), respectively. In Fig. 4(a), the solid red line
is the stable equilibrium points and dashed red line is the unstable equilibrium points. The trajectory of a single particle is in
blue. For the single trajectory, the critical point is at which it crosses the boundary of a metastable well and moves to another
metastable state. In Fig. 4(b), 105 trajectories are simulated and we record the first jump time for each. The maximum of the
density function is defined to be the critical point of ensemble transition, which is marked red in the figure (λ ≈ 0.33). The
definitions of critical transitions are different for single-trajectory transition and ensemble transition.
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FIG. 5. (Color online) The evolution of pdf of x with
σ = 50 here for the medium noise case. The solid blue
line is the stable equilibrium points and the dashed red line
is the unstable equilibrium points. Insets are pdfs of x at
λ = −2.5,−1, 0, 1, 2.5. By comparing the neighboring pdfs
at every λ, they exhibit the largest change before λ = 1 but
after λ = 0 (about 0.33 marked by green triangle line), which
corresponds to the ensemble transition point.

ble equilibrium points as indicators, which are also the
local maxima of pdf [28]. The phase transition theory
commonly uses an order parameter, which is obtained
by mean-field approximation or other methods in lattice
models [33, 34].

However, using the number or position of equilibrium
points to measure qualitative change has some shortcom-
ings. For example, in Eq. (2) the equilibrium pdf can be
given for each fixed λ as

pst(x, λ) =
1

Zλ

e−
V (x,λ)

σ , (9)

where Zλ is the normalization constant. A new stable
equilibrium appears at x = −1 when λ = −2, but the
probability around x = −1 is almost zero. Though the
number of stable fixed points has a sudden change, there
is no considerable change for the statistical quantities
like the mean or variance. In practice, it is hard to be
detected either.
The order parameters utilized in phase transition like

the mean or variance are usually low order approxima-
tion of moments to the density function. For character-
izing the distribution transition, KL divergence (relative
entropy) between two density functions is a good candi-
date of indicators, which extends the approximation of
pdf to the full order in terms of moments.
We define the critical point in this case as the sudden

change point of distributions, and we take the Fisher in-
formation metric (FIM) or KL divergence between two
pdfs in consecutive time as indicators. The FIM or its
KL divergence approximation as the indicator involves
the information of probability density in whole order.
We plot a simulation path with σ = 200 in Fig. 6(a).

In state space, it is difficult to observe any critical phe-
nomenon. The first jump probability density is shown in
Fig. 6(b). Since the system is ergodic, the first transition
happens whenever the bistable state occurs. The parti-
cles or states have been already moving over the whole
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space, so the peak in Fig. 6(b) is not meaningful. How-
ever, in probability space, we can plot the evolution of
the whole pdf at each parameter λ (see Fig. 7). Thus
we can compute the Fisher information metric in theory
and its KL divergence approximation by simulation. The
result is shown in Fig. 8, and the peak at λ = 0 is set to
be the critical point of distribution transition.
We call this regime distribution transition because if

we let σ → 0 and keep τergo ≪ τλ in Eq. (2) (namely k →
0 faster than η in Eq. (1)), we will have a double-peaked
delta-distribution centered at two metastable states when
λ = 0, but have only one delta-distribution for the other
values of λ. In this case, the FIM diverges at the critical
point λ = 0. On the other hand, if we let η → 0 faster
than k, it corresponds to the small noise case. A similar
discussion can be referred to [35].

C. Extension to the general model

We have shown in Section II B that the general model
Eq. (3) or Eq. (4) also has the time scales τλ, τtran and
τergo. The main differences between Eqs. (4) and (2) are
x, which is a vector in high dimensions, and s(t), which
is inhomogeneous in time. In the case of s(t) ∼ O(1), we

can perform a time rescaling τ(t) =
∫ t

0
s(u)du to make

λ change with the unit rate during the observation. We
then have the similar classification of transitions as the
one-dimensional case.

1. State transition under small noise

In this case, σ is relatively small such that τλ ≪
τtran . τergo. The critical transition point is defined as
the bifurcation point. Different from the one dimensional
case, Xt is now in R

n. When we process the data, we
should do clustering just as the procedure in DNB theory
[19, 20, 25]. The basic assumption in DNB theory is that
we can transform the system into eigenmodes, in which
the principal eigenmode bifurcates. There are some but
not all components related to the principal eigenmode.
Their variances and autocorrelations will increase dras-
tically when the system is close to critical transitions.
Moreover, the correlations among these components in-
crease fast while the correlations between this group and
others decrease to zero.

2. Basin transition under medium noise

In this case, σ is in a medium level such that τtran <
τλ < τergo. As discussed in the one dimensional case, we
have to distinguish the single trajectory transition and
multi-trajectory ensemble transition. For single particle
trajectory, we set the critical point at which the particle
transits out of the basin of metastable state. For en-
semble transition, the transition point is defined as the

parameter with which the system achieves the maximal
escaping rate. The properties of the system near the crit-
ical point are just extensions of the one dimensional case.

3. Distribution transition under big noise

In this case, σ is relatively big such that τtran . τergo ≪
τλ. The system can reach its equilibrium fast and we get
the states distributed as pst at each λ. The ergodicity
ensures us no statistical difference between single trajec-
tory and the ensemble of trajectories. As the same as
in the one dimensional case, we define the critical point
at which the equilibrium pdf has a qualitative change
or maximal change. We can quantify the change using
Fisher information metric and KL divergence as an ap-
proximation. In high dimensions, the KL divergence or
FIM is difficult to be numerically computed precisely by
data. As we know, the KL divergence is affine invari-
ant. We can first use principal component analysis [41]
to obtain the principle components, and then sum up the
KL divergences in each principal component to make the
estimation.
Clearly, we can only observe the dynamics around the

original stable equilibrium before the state transition or
basin transition, but we can observe the dynamics around
both the original and the transited stable equilibria be-
fore the distribution transition due to the ergodic condi-
tion. Thus, critical transition for the basin transition can
be considered as a conditional distribution transition, in
contrast to the distribution transition for the distribution
transition, while the state transition can be also consid-
ered as one extreme case of the conditional distribution
transition.

IV. INDICATORS AND PROPERTIES FOR

EARLY WARNING SIGNALS

With the previous discussion on our minimal model
and related extensions, now we aim to study how to make
predictions on the critical transition from the available
information in data.

A. Difference between single trajectory and

multiple-trajectory ensemble

Before discussing about the indicators, we first ex-
plain the differences between the single trajectory and
multiple-trajectory ensemble.
The key difference between the two concepts is whether

we focus on individual sudden change or the parameter
induced group change. Intuitively, transition for single
trajectory is mainly an individual behavior, e.g. someone
catches a cold. While the ensemble transition for multiple
trajectories is a group behavior usually caused by the
change of parameter or environment, e.g. the breakout
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FIG. 6. (Color online) Distribution transition under big noise. We choose σ = 200 which is relatively big to potential barrier.
A single particle trajectory and the first jump pdf for multiple particles are shown in Fig. 6(a) and Fig. 6(b), respectively. In
Fig. 6(a), the solid red line is the stable equilibrium points, dashed red line is the unstable equilibrium points, and the blue
line is a single trajectory of a particle. This trajectory is flickering all the time. In Fig. 6(b), the first jump probability density
is nearly a delta function at λ = −2, where bistability occurs. This peak point marked red is not meaningful since the particle
is always moving over the whole space even after that point.
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FIG. 7. (Color online) The evolution of pdf with σ = 200
for the big noise case. The solid blue line is the stable equi-
librium points and the dashed red line is the unstable equi-
librium points. Insets are pdfs of x at λ = −2.5,−1, 0, 1, 2.5.
The Fisher information metric for the pdfs in consecutive time
gives the critical λ = 0 with the biggest change, which corre-
sponds to the distribution transition point we defined (green
triangle line).

of influenza. The smaller the external noise is, the less
the difference between the two behaviors is. When the
noise tends to zero, the stochastic dynamics degenerates
to the deterministic case like Case I. On the other hand,
when the noise is sufficiently big such that the system
becomes ergodic quickly, the statistical behavior in short
time between these two is not remarkable and we are in
Case III. Thus only in Case II with medium noise, the
difference matters.
The difference of the two behaviors is also embodied

in processing the data: the statistical quantities can be
computed at each instant for multiple trajectories, but
the time windows are needed for single-trajectory data.

B. Indicators and properties in different cases

Based on the analysis of our minimal model, we pro-
pose several indicators in different cases. Though these
indicators have different forms, they are actually based
on similar mechanisms. We can divide those indicators
into two classes: signals in state space and signals in

probability space. Variance, correlation and so on are
among the former class, and the latter includes KL di-
vergence and FIM, etc. In different cases, the difficulty
in computing different indicators from the data varies
dramatically.

1. State transition case

The prediction problem of early warning signal has
been studied in vast literature in this case. The ma-
jor mission is to detect the bifurcation point before the
system bifurcates. Scheffer et al. presented an early
work based on the critical slowing down behavior [2].
Chen’s group extended it into multivariate network and
proposed the “DNB” (dynamical network biomarker) in-
dicator [19] or “DNM” (dynamical network marker) [24]
by further considering correlations among the variables
among a network. To make a long story short, the most
useful indicators are the variance and correlation. Many
other proposals can be found in [4].
Corresponding to the trajectory in Fig. 2, we compute
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FIG. 8. (Color online) (a)The theoretical Fisher information metric (FIM) at each λ and (b) KL divergence of adjacent
distributions with discretization. The KL divergence is computed from the empirical distributions for each pair λ and λ+∆λ.
∆λ = 10−2 and 104 trajectories are simulated to estimate the distribution. We define the critical point as the peak of the
curve, where the largest change of distribution occurs. The curve will get more peaked when σ is smaller, while ergodicity is
preserved.

its variance through a moving time window. We can ob-
serve in Fig. 9 that the variance of x increases drastically
before the critical point, i.e. the bifurcation point. The
result will be apparent if we compute via multiple trajec-
tories.
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FIG. 9. (Color online) Critical indicator — variance in Case
I. The simulation result is computed by using single trajec-
tory in moving time windows. We plot the curve (solid blue
line) before the critical point (dashed red line). The dramatic
increase of variance is clearly observed.

2. Basin transition case

In this case, we distinguish the single trajectory and
multiple-trajectory ensemble, in contrast to the state
transition. The major mission is to detect when the sin-
gle particle or many particles get close to the boundary
of a metastable basin.
For the prediction of single trajectory critical transi-

tion, we propose the following indicator

S(x, δ,N) =
|x− x̄N |
pN (x, δ)

, (10)

where x is the current particle position, x̄N is the mean
position by the previous N points, and pN(x, δ) is the
percentage of points in δ-neighbor of x among the pre-
vious N points. The fact that |x − x̄N | becomes bigger
and pN (x, δ) becomes smaller near the transition point
means that the particle is getting into a place seldom vis-
ited before. Hence, the larger S is, the closer the particle
reaches the boundary of the attraction basin. Here δ and
N will be chosen according to the considered problem.
For the trajectory obtained in Fig. 4(a), the indicator S

is shown in Fig. 10. S increases indeed when approaching
the transition point, and each peak in the figure repre-
sents an attempt to jump out.
For the ensemble transition, in which we define the

critical point as the instant when the system achieves the
maximal escaping rate, there seems no suitable indicators
if only the trajectories of particles which do not cross the
boundary are available. This is often the real case, espe-
cially in medical examples. Although there are no clear
rules of dynamics, our simulations support that the crit-
ical transition point occurs where σ has the same order
as the depth of the basin. We sampled 100 trajectories
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FIG. 10. (Color online) Critical indicator — signal S (see
Eq. (10)) in Case II. The simulation result is computed using
the single-trajectory data by moving the time window. We
take N = 104 and δ = 0.1. The highest sharp peak (red
point) is the transition point where the particle travels across
the boundary of the attraction basin.

for each σ varied from 1 to 100, then plot hV /σ for every
σ in Fig. 11(a) where hV is the barrier height when the
trajectory transits across the boundary. In Fig. 11(b), we
simulate the dynamics Eq. (1) with potential (6), where
k varies from 10−3 to 102 and η varies from 10−6 to 102.
103 trajectories are simulated at each parameter to com-
pute hU/η, where hU is the barrier height at the first
transition point. The colored contour means that the
first transition is located in λ ∈ [−2, 2], and the blank
domain means that either the particle walks around the
whole space before λ = −2 or it does not transit until
λ = 2 (see bifurcation diagram in Fig. 1). The Fig. 11(a)
is a slice of Fig. 11(b) which are marked by red line with
square symbol. Both results in Fig. 11 show that the
particles prefer to jump when the barrier height is close
to the noise amplitude. These results are helpful for un-
derstanding the critical transition pattern and providing
heuristics for constructing the indicators in the medium
noise case.

3. Distribution transition case

As discussed in the previous section, we define the crit-
ical point in Case III as the instant in which the sudden
change of distribution occurs. The FIM or KL diver-
gence of adjacent distributions achieves maximum there.
Hence, one natural indicator is FIM or KL divergence,
or we can take moments as a cheap alternative. In high
dimensional case, we take the principal component analy-
sis and make the sum of KL divergences for the marginal
distribution on each component.
We take a lattice model as an example to show the

applicability of the proposed indicators. The considered
dynamics has the following form [32, 42, 43]

dxi =[f(xi) +
1

2
g(xi)g

′(xi)−
D

N

∑

j∈N (i)

(xi − xj)]dt

+ σg(xi)dwi, (11)

where N (i) is the neighbors of site i, N is the number
of nearest neighbors, σ is the amplitude of noise, D con-
trols the strength of spatial interaction, and wi(t) are
independent standard Brownian motions.
We choose 10 × 10 square lattice in two dimensions,

D = 25, σ = 1 and

f(x) = ax+ x3 − x5, g(x) = 1 + x2. (12)

We vary a from −2 to 0 with stepsize 0.1. In simulations,
∆t = 10−4 and 106 steps are taken in each a. The sys-
tem achieves ergodicity for each parameter. The results
of order parameter |〈xi〉|, average of variances Var(xi)
and average of KL divergence on each site are shown in
Fig. 12. The signals at the critical point are clear.

C. Classification by noise-to-signal ratio

We have discussed about the models and transitions.
But for a specific problem, how to identify the regime
of a critical transition is a nontrivial problem. Noise-to-
signal ratio (NSR) can give heuristic classification on this
problem, though it is difficult to give an exact judgment.
In the model Eq. (2) with Eq. (7), we define the NSR as

NSR = log
σ

µ
, (13)

where σ is the amplitude of noise and µ is the magni-
tude of the characteristic potential energy barrier. To
identify which regime the considered dynamics with dif-
ferent parameters belongs to, we do a large number of
simulations and make the grouping from the numerical
behaviors of the sampled trajectories. From the discus-
sions in the previous subsection, it is natural to make the
following classification according to the characteristics of
the simulated path as

• Case I: if the trajectory has only one transition
point, which is very close to the bifurcation point;

• Case II: if the trajectory has only one transition
point, but it is far before the bifurcation point;

• Case III: if the trajectory flicks over the whole space
and crosses the boundary between two attraction
basins many times.

We take the dynamics (2) with potential (7). When
doing the simulation, µ = 100 is fixed and σ varies. We
simulate trajectories for every NSR expressed by Eq. (13)
from −4 to 1 with step size 0.1, and observe which case
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FIG. 11. (Color online) The ratio between the barrier height and noise amplitude when the first transition occurs. (a) hV /σ of
various σ in dynamics Eq. (2) with potential Eq. (7). (b) hU/η of various k and η in dynamics Eq. (1) with potential Eq. (6).
Average is taken by 100 and 1000 trajectories in Fig. 11(a) and Fig. 11(b), respectively. The blank domain in Fig. 11(b) means
either the particle walks around the whole space before λ = −2 (top left blank) or does not transit until the bifurcation occurs
at λ = 2 (bottom blank). Fig. 11(a) is the slice marked by red line with square symbols in Fig. 11(b). This shows the first
transition usually happens when barrier height is in the same order of the noise amplitude.

the trajectories fall in. The results are shown in Fig. 13.
In Fig. 13, we set each case an number — 1 for Case
I, 2 for Case II and 3 for Case III. At each NSR from
−4 to 1 with step 0.1, 100 trajectories are simulated and
classified. The average case number is plotted by the red
line. And the blue circles are results of several trajecto-
ries. From these results, we can summarize the following
heuristic rules

• When NSR ≪ −2, i. e. σ/µ ≪ O(10−2), the system
falls in Case I;

• When NSR ∼ −1, i. e. σ/µ ∼ O(10−1), the system
falls in Case II with high probability;

• When NSR & 0, i. e. σ/µ & O(1), the system falls
in Case III.

These observations may provide useful references for the
consideration of specific problems with a model as Eq. (1)
or Eq. (3).

V. CONCLUSION AND DISCUSSION

We studied critical phenomena or critical transitions
with both a minimal model and its generalized model.
The analysis is in both conceptual and computational
aspects. One major contribution in our paper is that we
classify the critical transitions into three types according
to their time scales and noise strengths, which are state
transition, basin transition and distribution transition,
corresponding to the small, medium and big noise cases
respectively. In each case, we define the critical transition
and provide the early warning indicator or property. For
small noise case, variance and correlation are good signals

to predict the critical transition. For medium noise case
with multiple particles, we find that the most probable
jumping point is located at which the potential barrier
has the same order as noise amplitude. And for big noise
case, KL divergence shows significant signals. We also
proposed to distinguish two concepts in medium noise
case, i.e. the single-trajectory statistics and multiple-
trajectory statistics. These two concepts lead to different
locations of transition points in the medium noise, but
they almost coincide in the small and big noise cases.
The simulations support our theoretical results and the
proposed indicators.
There are many related works considering the critical

tipping points in other ways. We next briefly discuss
several representative models and their relation with our
work.

• R-tipping theory. Wieczorek et al. and Luke et al.
have studied the excitability and compost bomb
instability of dynamical systems [44, 45]. From
these works, Ashwin et al. established a rate-
dependent tipping (R-tipping) point theory [46, 47]
which mainly focused on the changing rate of the
parameters. According to different rates of param-
eters, the traceability of trajectories will suddenly
change, and that is where the R-tipping occurs. R-
tipping may be found even without bifurcation and
noise. In our model (see Eq. (2)), we have trans-
formed the rate changing effect into the noise term.
We show that there are noise-induced transitions
across the basin of attraction without a R-tipping.
Thus, the R-tipping transition is a parallel theory
with our framework, which focuses on different as-
pects of critical phenomena.

• Sandpile model. Discrete sandpile model has been
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FIG. 12. (Color online) Critical transition of a lattice model with big noise. The system Eq. (11) is ergodic in each parameter
a. Fig. 12(a) is a sketch-map of the dynamics on 10 × 10 lattice. The absolute mean value (Fig. 12(b)), average variance of
sites (Fig. 12(c)) and KL distance of adjacent equilibrium distributions (Fig. 12(d)) are computed. The red points in the last
three figures correspond to the critical transition point where a sudden change of distribution occurs.

long used in the modeling of earthquake and so on
[48, 49]. We can consider the sandpile model as a
discrete situation in our medium noise case where
no parameters change and τλ = +∞. The noise is
set as adding a ball. We know the critical point is
the state when the number of balls becomes closing
to the threshold (N) of a cell. Just as demonstrated
in Fig. 11, the most dangerous time (the number of
balls is N − 1) is the state when the barrier height
(N − the number of balls) gets close to the noise
amplitude (counts of ball added each time, which
is just 1). We can set the size of the largest cluster
of cells which have N − 1 balls as an order pa-
rameter. It will be a good indicator to the critical
corruption. In principle, our idea or framework in
the medium noise case is also plausible in this dis-
crete model, but more detail analyses are necessary
in future studies. A continuous sandpile model has

also been proposed in 1996 [50], but the start point
and equations are different from ours.

• Percolation models. Sornette et al. used differ-
ent models, i.e. BFW (Bohman-Frieze-Wormald)
[51] or hierarchical fiber bundle model [52, 53], to
consider the transition problem in the percolation.
They found several statistics which are powerful
in prediction based on the pdfs (probability distri-
bution functions). Though the model is different,
we can consider that the system is in the situa-
tion τergo ≪ τλ. Thus, at any time the system
is ergodic and we can obtain the equilibrium pdfs.
Many statistics can be computed and used for pre-
diction with these pdfs. Percolation models are not
in a SDE form but the classification also makes
sense for this case.

In our framework, some important questions remain to
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FIG. 13. (Color online) Simulations to identify which case the
trajectory belongs to by the noise-to-signal ratio (NSR). The
vertical axis shows the classification according to the charac-
teristics of sample paths with different parameters: Case I is
for small noise, in which the only one transition point is near
the bifurcation point; Case II is for medium noise, in which the
only one transition point is far before the bifurcation point;
and Case III is for big noise, in which the trajectory flicks over
the space. We set Case I to value 1, Case II to 2 and Case III
to 3. NSR varies from −4 to 1 with step size 0.1, and the blue
circles are results of several trajectories corresponding to the
related NSR. The red line is the average result of 100 trajecto-
ries at each NSR. In the transitional zones with intermediate
NSR, we have overlapping between regimes. From the figure,
we can know how the system evolves with the changing of
NSR.

be further studied in the future.

• Sampling frequency issue.

Most of the results are simulated with a fixed small
k, which means that the parameter λ changes very
slowly. Although our theory still works for big k,
which is transformed to a different noise magnitude
σ, the big k case generally corresponds to very low
sampling size actually since the system varies too
fast in real time. We need a high frequency sam-
pling to obtain sufficient information. This gener-
ally imposes difficulty in real problems.

• Time window issue for single-trajectory data.

In dealing with the single-trajectory data, we move
the time window to get the statistics. In general,
the width of the time window influences the final

result. To make the result more accurate, the width
of the window should tend to zero. In this case,
more sample points in unit time is needed. Thus,
a balance is required in real situations.

• More general bifurcation patterns.

The bifurcation we discussed so far is only for
the co-dimension one case. For co-dimension 2 or
higher, the situation will be much more compli-
cated. Generally it is difficult to know external or
internal parameters simply based on the observed
data. Besides, though the indicators in small noise
case can be used in both catastrophic and non-
catastrophic case [54], the signal is not so signif-
icant in the latter situation.

• Indicators for transition.

So far we have good indicators for Case I with small
noise. For Case II, the proposed indicator for the
single-trajectory critical transition has clear theo-
retical background but needs further tests and im-
provements. How to set the parameters like the
number of points N or neighbor size δ is a practi-
cal issue. For Case III with big noise, one may en-
counter the problem that the noise dominates the
signal if the noise magnitude is too big.

• More general models.

As known to us, R-tipping theory, sandpile model,
percolation models and many others cannot be sim-
ply written in the form of an SDE with white noise
perturbations. But their critical phenomena have
much similarity with our model and also classifica-
tion. More general models need to be established
to consider these models in a unified framework.

These problems challenge the future research on the
study of critical transition theory.
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