This is the accepted manuscript made available via CHORUS. The article has been published as:

Towards a critical transition theory under different temporal scales and noise strengths
Jifan Shi, Tiejun Li, and Luonan Chen
Phys. Rev. E 93, 032137 — Published 21 March 2016
DOI: 10.1103/PhysRevE.93.032137
Towards a critical transition theory under different temporal scales and noise strengths

Jifan Shi and Tiejun Li
LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China

Luonan Chen
Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

(Dated: February 25, 2016)

The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, especially, considering slow parameter change and small noise. In this article, we systematically classify critical transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the classification is made by comparing three important time scales $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$, where $\tau_\lambda$ is the time scale of parameter change (e.g., the change of environment), $\tau_{\text{tran}}$ is the time scale when a particle or state transits from a metastable state into another, and $\tau_{\text{ergo}}$ is the time scale when the system becomes ergodic. According to the time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition and distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition and multi-trajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We also define the critical point for each type of critical transition, derive several properties, and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we show that the noise-to-signal ratio (NSR) is effective to make the classification of critical transitions for real systems.

PACS numbers: 05.70.Jk, 05.70.Fh, 05.10.Gg, 02.50.Ey

Key words: critical transition, multiple scales, early warning indicator, noise-induced transition

I. INTRODUCTION

Critical transitions of nonlinear systems have been studied for a long time in various fields, including earthquake, disease outbreak, stock-market crash and so on [1–16]. In particular, the topic to predict the critical point has attracted scientists for hundreds of years. In the ancient time, people used the life experiences to make predictions, but with limited accuracy due to lack of theoretical support. Even until the modern society, few precise indicators for real problems have been found although there are many mathematical models established to characterize the critical phenomena.

In 2000’s, one simple but effective prediction index, i.e., “critical slowing down” phenomenon, was proposed by Scheffer et al. based on the bifurcation theory [2, 3]. They found that the system would exhibit a drastically slowing down of relaxation time and a significant increase of variance when the system is close to the bifurcation point. Since then, many people have devoted to the development of similar models and many statistical indicators were proposed [4–5]. These theories and models have been widely applied to ecology [6–8], meteorology [9–12, 15], economics [13–14] and so on. In addition, Cavalcante et al. named the extreme events in chaotic systems “Dragon kings” and considered their predictability and controllability [17]. A rigorous and detailed mathematical description was given by Kuehn in 2011 [18]. Recently, an extension of Scheffer’s model to multi-variable systems or complex networks was established by Chen et al. since 2012 [19–24]. Their dynamical network biomarker (DNB) showed early-warning signals effectively, by exploring high-throughput data of gene sequences for biological and medical systems, which opens a door to the prediction of complex disease even in the pre-disease stage. Further extension to single sample statistics was also presented [25].

However, most of those works mentioned above assume sufficiently small noise perturbations, and thus the critical transition always happens near the bifurcation point. On the other hand, it is still an open question how to effectively characterize the critical transition so as to detect its early warning signals for a system with moderate or big noise [10]. Thompson et al. found the early and delayed escape under different drift and noise with first order auto-regression [26]. Dakos et al. made a step forward in this direction by discussing the “flickering” phenomenon [27]. They compared its statistical behaviors with the small noise case, and found almost all indicators could hardly be used anymore for big noise cases.

There are a number of other studies related to the stochastic systems with non-small noise transitions. Horsthemke and Lefever established a noise-induced transition theory in one-dimensional case [28]. They focused on the maximal points of the probability den-
sity function (pdf), and set the transition point as a state where a sudden change of their number (for maximal points) occurred. Arnold defined a $P$-bifurcation point where the distribution changed from unimodal to bimodal $29$. The transition path theory (TPT) was developed to study the statistical properties of transition paths as an ensemble $30$. Burghardt et al. discussed noise-induced phenomena under different scales of Kramers time $31$. Besides, there are also theoretical works on non-equilibrium phase transition, which were used to analyze the qualitative change of density function $32$ $33$. These works motivate us to consider the critical transitions in moderate and big noise cases with a general mathematical framework, and study their dynamical properties before the transitions.

In this paper, we aim to build a general mathematical framework for understanding critical transitions with the consideration of both small noise and big noise. To characterize the critical transitions, we will show that there are three key time scales, i.e., (a) the time scale of parameter change denoted as $\tau_\lambda$, (b) the time scale when a particle (or state of the system) transits out of a metastable basin denoted as $\tau_{\text{tran}}$, and (c) the time scale when the system becomes ergodic denoted as $\tau_{\text{ergo}}$. Clearly, the traditional theory based on small-noise, e.g., critical slowing down, is just a special case when $\tau_\lambda \ll \tau_{\text{tran}} \lesssim \tau_{\text{ergo}}$, which is called as the state transition in this paper. For such a case, the critical transition happens at or near the bifurcation point, i.e., the attraction basin of the stable equilibrium becomes sufficiently small. When the noise is not sufficiently small, generally there are at least two other important types of transition in mathematics. One type is the basin transition which exhibits as a particle transiting out of an attraction basin, and it generally happens not at but before the bifurcation point, i.e., the attraction basin of the stable equilibrium is not sufficiently small. This corresponds to the regime $\tau_{\text{tran}} < \tau_\lambda < \tau_{\text{ergo}}$ of the system. Another type corresponds to the regime of the system $\tau_{\text{tran}} \lesssim \tau_{\text{ergo}} \ll \tau_\lambda$. We call it the distribution transition, which may happen far before the bifurcation point due to the ergodic state of the system. For such dynamics, what can be observed is just the point cloud of trajectories or probability distribution of the system. Based on such time scales, we identify the features of critical transitions and further propose different indicators to predict the critical point for each case. In terms of dynamical behaviors, there are further two different ways of transitions, i.e., single-trajectory transition and multi-trajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We note that a related idea on discussing the timescale issues in mesoscopic dynamics was also proposed in $32$. We should also remark that the purpose of this paper does not intend to solve the problem of the prediction for critical transitions, but aims to present the theoretical framework with a minimal model to characterize the critical transitions for both small and big noises. However, as we can see, the considered minimal model shows essential features of general stochastic dynamics for critical transitions. Note that before the critical transition for case (a) or (b) from one stable equilibrium, there is no information on the dynamics of the transited stable equilibrium, but for case (c), the information on the dynamics of the transited stable equilibrium is considered to be available due to the ergodic condition. In such a sense, the critical transition for case (b) can be considered as a conditional distribution transition, in contrast to the distribution transition for case (c), while the state transition for case (a) can be also considered as one extreme case of the conditional distribution transition.

The structure of this paper is as follows. In Section II, we present a minimal model and its generalization. Then we define the three time scales associated with the model. In Section III, we classify the systems into three regimes. In each regime, we investigate the critical transition behavior and study the properties of the critical point. We also discuss the differences between the single-trajectory and multi-trajectory samplings. In Section IV, we list some indicators or properties useful in predicting the critical points. Simulation results are also presented. We show that the noise-to-signal ratio (NSR) can discriminate the regimes of the stochastic systems for classifying the transitions. Finally, we make the conclusion with the discussion on some omitted but interesting topics in Section V.

II. MODEL

Critical transition is a complicated behavior, governed by stochastic dynamics. In this section, we first propose a minimal model, which is a one-dimensional stochastic differential equation (SDE) with a gradient force and additive noise, to describe such behaviors. We then discuss its extension to general cases with multiple variables. In the end, we take a toy model having an analytical form for further discussions without loss of generality.

A. A one-dimensional model with additive noise

We start from a gradient SDE with changing parameters to model the critical phenomena in one dimension:

$$\begin{align*}
\frac{dx}{d\tau} &= -\partial_x U(x, \lambda) d\tau + \sqrt{2\eta} dw, \\
\frac{d\lambda}{d\tau} &= k.
\end{align*}$$

In Eq. (1), $x_\tau$ is the position of a particle or a state of the system at time $\tau$. $U(x, \lambda)$ is a potential function changing with the parameter $\lambda$. With the change of the parameter, there is a bifurcation which qualitatively changes the dynamics. Actually, the parameter $k$ adjusts the difference of time scales between $x$ and $\lambda$. The smaller $k$ is, the slower $\lambda$ varies than $x$. $w_\tau$ is a standard Brownian motion with mean zero and covariance $\langle w_\tau w_\tau' \rangle = \min(\tau, \tau')$.  

And $\eta$ denotes the noise strength. Here we employ the convention in probability theory to use $dw_t$ instead of the white noise $dW_t/d\tau$ because of the irregularity of Brownian paths. The system (1) is not an almighty model for describing the critical transitions, but it can exhibit some essential features for general dynamical systems.

Eq. (1) is a system with one variable $x$, two parameters $\tau$ and $\lambda$ with three degrees of freedom $U$, $k$ and $\eta$. If we set our observation time, i.e., the whole changing period of $\lambda$ as $O(1)$, we claim that there are three typical time scales in the dynamics expressed by Eq. (1):

- $\tau_\lambda$ — the time scale of parameter $\lambda$.
- $\tau_{\text{tran}}$ — the waiting time when a particle (or state of the system) transits across the boundary of a stable metastable well (or the boundary of the attracting basin for a stable equilibrium) into another.
- $\tau_{\text{ergo}}$ — the time scale when the system becomes ergodic.

It is easy to see that the order of $\tau_\lambda$ is $O(1/k)$ in Eq. (1). For $\tau_{\text{tran}}$, we have an approximate expression in special situations. When $k = 0$ and $\eta$ is sufficiently small, we have $\log(\tau_{\text{tran}}) \sim O(h_U/\eta)$, where $h_U$ is the energy barrier height of the potential well $U(x, \lambda)$ at a fixed $\lambda$. $\tau_{\text{ergo}}$ is one order higher than the maximum $\tau_{\text{tran}}$ between all metastable states. If we can get the largest negative eigenvalue $\lambda_1$ (with the largest magnitude) of the forward operator induced by Eq. (1), $\tau_{\text{ergo}}$ is in the order of $O(1/|\lambda_1|)$ (cf. Chapter 5 of [34]).

To set our observation time for $\lambda$ to be $O(1)$, we rescale Eq. (1) as

$$
\begin{align*}
&dx_t = -\partial_x V(x_t, \lambda)dt + \sqrt{2\sigma}dw_t,
&d\lambda/dt = 1,
\end{align*}
$$

by letting $t = k\tau$, $V(x, \lambda) = U(x, \lambda)/k$ and $\sigma = \eta/k$. Thus $\lambda$ will change with unit rate and $\tau_\lambda = O(1)$. With this manipulation, we reduce the number of degrees of freedom of the system (1) from three into two in (2) — $V$ and $\sigma$. For every $V$ and $\sigma$, there is a simple correspondence for $U$, $k$ and $\eta$.

For the three time scales $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$, though in general the last two can hardly have analytic expressions, it is obvious that the time rescaling from Eq. (1) to Eq. (2) will not change their ranking. And $\tau_{\text{ergo}}$ is always larger than $\tau_{\text{tran}}$. Now with a fixed $V(x, \lambda)$, it is $\sigma$ that determines the ranking of $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$. Concerning the primitive parameters in Eq. (1) corresponding to the same $V(x, \lambda)$, smaller temporal parameter $k$, which means slower environmental change, or larger noise strength $\eta$, will lead to bigger effective noise amplitude $\sigma$.

In Section [11] we will classify critical phenomena into three types with respect to different rankings of $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$. The ranking is mainly determined by noise amplitude $\sigma$, which is a combination of primitive parameters $k$ and $\eta$.

B. A general multi-dimensional model with multiplicative noise

The model in the previous subsection is a simplest minimal model, which has limitations in some sense. More often, we can consider a general dynamical system as:

$$
\begin{align*}
&dX_t = f(X_t, p)dt + \sqrt{2\sigma}g(X_t, p)dW_t,
&dp/dt = h(t),
\end{align*}
$$

where the coordinates $X_t \in \mathbb{R}^n$, parameter $p \in \mathbb{R}^m$, and $W_t$ is a $n$-dimensional Brownian motion with independent components. We choose the positive functions $g(x, p), h(t) \sim O(1)$. We suppose that dynamics of a nonlinear system are around a stable equilibrium initially with the gradual change of parameters, and we only consider co-dimension one bifurcations through the interactions of $f(x, p), g(x, p)$ and $\sigma$ without loss of generality.

To discuss the relation with our minimal model, let us give some suitable remarks on Eq. (3). Firstly, with a given initial condition, the parameter $p$ determines a simple curve in $\mathbb{R}^m$. Using the arclength as the natural coordinate of the curve, the parameter equation can be reduced into $d\lambda/dt = s(t)$. Thus Eq. (3) can be transformed into

$$
\begin{align*}
&dX_t = f(X_t, \lambda)dt + \sqrt{2\sigma}g(X_t, \lambda)dW_t,
&d\lambda/dt = s(t).
\end{align*}
$$

Secondly, in a high dimensional system, $f(x, \lambda)$ may not be written in a gradient form (in one dimension system, we can always transform it into a gradient form), and the effect of $g(x, \lambda)$ is not trivial. For Eq. (4), we can define the three time scales $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$ similar to those in Eq. (1) of Section [11]A. In a gradient system, $\tau_{\text{tran}}$ is the time when a particle transits across the barrier of potential well, but in a general system, $\tau_{\text{tran}}$ is the time when the particle or the state crosses over the attracting basin’s boundary of the stable equilibrium.

Thirdly, if we take the viewpoint of “effective potential” in non-equilibrium phase transition [28, 32] or “quasi-potential” in large derivations [37, 38]. We utilize an “ideal potential”, which has been mentioned without a name in [27], defined as

$$
V(x, \lambda) = -\sigma \ln p_{st}(x, \lambda).
$$

Here $p_{st}(x, \lambda)$ is the steady state pdf induced by Eq. (1) with a fixed $\lambda$. As the system Eq. (1) has only stable equilibrium points and co-dimension one bifurcations, we claim that the boundary of ideal potential $V$ can grasp the boundary of the attracting basin after sufficiently long time. Though $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$ cannot be estimated through $V$ anymore, the ideal potential still gives us an intuition on the scope of attracting basins.

Clearly, although we know Eq. (1) is much more complicated than the minimal model Eq. (2), with the previous discussion, we can do the same classification to
Eq. (3) or Eq. (4) according to the different rankings of \( \tau_\lambda, \tau_{\text{tran}} \) and \( \tau_{\text{ergo}} \). Thus the later discussions on our minimal model will shed light on the investigation for general models, and our study on the simplest system (2) presents the necessary steps towards the understanding of more complicated critical transitions.

C. Toy model for simulation

In the classification and simulations, we choose the potential function as

\[
U(x, \lambda) = \frac{1}{4} x^4 - \frac{3}{2} x^2 + \lambda x,
\]

which is unimodal or bimodal at different \( \lambda \) values. We take \( k = 0.01 \) and vary \( \eta \) (or \( \sigma \)). Hence, we have the corresponding

\[
V(x, \lambda) = 100 \left( \frac{1}{4} x^4 - \frac{3}{2} x^2 + \lambda x \right),
\]

To study the critical transitions, we take the dynamics in Eq. (2) with Eq. (7) and choose \( \lambda(0) = -3, x(0) \approx 2.1038 \), which corresponds to the unique stable fixed point of potential \( V(x, \lambda(0)) \). The terminal time is set at \( t = 6 \), i.e. \( \lambda = 3 \). When doing the simulations, we use the Euler-Maruyama scheme and choose a sufficiently small stepsize \( \Delta t = 10^{-6} \) if not particularly pointing out. The bifurcation diagram of \( V(x, \lambda) \) is shown in Fig. 1 with its stable (solid blue line) and unstable (dashed red line) equilibrium points marked out.

III. CLASSIFICATION OF CRITICAL TRANSITIONS IN DIFFERENT SCALES

A. Classification

According to the ranking and size of the typical timescales induced by the system (2), we classify the critical transitions into three cases.

- Case I: state transition, for \( \tau_\lambda \ll \tau_{\text{tran}} \ll \tau_{\text{ergo}} \), usually under relatively fast temporal parameter \( k \) or small parameter \( \eta \), i.e. small noise amplitude \( \sigma \).

- Case II: basin transition, for \( \tau_{\text{tran}} < \tau_\lambda < \tau_{\text{ergo}} \), usually under relatively medium temporal parameter \( k \) and parameter \( \eta \), i.e. medium noise amplitude \( \sigma \). It can be viewed as a conditional distribution transition.

- Case III: distribution transition, for \( \tau_{\text{tran}} \ll \tau_{\text{ergo}} \ll \tau_\lambda \), usually under relatively slow temporal parameter \( k \) or large parameter \( \eta \), i.e. big noise amplitude \( \sigma \).

We know that the ranking of \( \tau_\lambda, \tau_{\text{tran}} \) and \( \tau_{\text{ergo}} \) is only determined by \( \sigma \) with the same \( V \) in Eq. (2). We thus also call Case I as small noise case, Case II as medium noise case and Case III as big noise case. The main results of this paper are concluded in Table I including the classifications and the features of each case. We will discuss the details in next subsection.

Horsthemke and Lefever [28] mainly focused on the distribution transition which is Case III in our classification. And they especially discussed one dimensional model with the qualitative change of extrema of the stationary distribution as a signal. We will extend it to a high dimensional space and use KL divergence as a new indicator. Berghlund and Gentz [31] used Kramers time to classify the transitions but without \( \tau_{\text{ergo}} \). They have discussed stochastic resonance where drift term \( f \) is periodic in time instead of our medium noise case (Case II) which is much common in transition phenomena. In particular, the difference of single-trajectory sample and multi-trajectory sample has never discussed before. After all, our classification is clear and general, and we will also derive indicators as early-warning signals shown in Section IV.

B. Discussion on models and classification

Now we discuss in details how the classification is done and what is the definition of the critical transition in each case. As mentioned previously, we will classify the dynamics described by Eq. (2) into three types or cases: state transition, basin transition and distribution transition. Simulations are based on the dynamics Eqs. (2) and (7).

FIG. 1. (Color online) Bifurcation diagram of the dynamics in Eq. (2) with \( V(x, \lambda) \) in Eq. (7). The stable equilibrium points are marked by solid blue line and the unstable equilibrium points are marked by dashed red line. At \( \lambda = -2 \), the bistable state occurs, and at \( \lambda = 2 \) one metastable well disappears.
<table>
<thead>
<tr>
<th>Case</th>
<th>Transition type</th>
<th>Time scales</th>
<th>Noise amplitude $\sigma$</th>
<th>Temporal parameter $k$</th>
<th>Primitive noise $\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>state transition</td>
<td>$\tau_\lambda \ll \tau_{\text{tran}} \lesssim \tau_{\text{ergo}}$</td>
<td>small</td>
<td>fast</td>
<td>small</td>
</tr>
<tr>
<td>Case II</td>
<td>basin transition</td>
<td>$\tau_{\text{tran}} &lt; \tau_\lambda &lt; \tau_{\text{ergo}}$</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>Case III</td>
<td>distribution transition</td>
<td>$\tau_{\text{tran}} \lesssim \tau_{\text{ergo}} &lt; \tau_\lambda$</td>
<td>big</td>
<td>slow</td>
<td>large</td>
</tr>
</tbody>
</table>

The probability density of $x$ is also presented in Fig. 3.

1. **State transition under small noise**

Case I occurs when $\tau_\lambda \ll \tau_{\text{tran}} \lesssim \tau_{\text{ergo}}$, which means that $\sigma$ is much smaller than the barrier height of the potential and the particle or the state of the system $x(t)$ almost always stays in a close neighborhood of the stable equilibrium point. Thus during the observation, we can hardly see the transition until the state becomes unstable.

In this case, we define the critical point as the bifurcation point, where a metastable well disappears and the particle has to transit into another. This definition has no ambiguity between the multi-trajectory and single trajectory statistics, because all paths or trajectories make the sudden change at the same instant. In the sufficiently small noise case, many criteria of early warning signals for predicting the critical transitions are proposed, like the increasing of variance and autocorrelation and so on. “Critical slowing down” is the basis of these statistics for one-dimensional systems, and “strong fluctuation and correlation” is the signals for complex networks or multi-dimensional systems which can be referred to.

Transition path of a single particle is illustrated in Fig. 2(a), which is simulated by Euler-Maruyama scheme for dynamical Eqs. (2) and (7) under small noise $\sigma = 0.125$. The bifurcation point is at $\lambda = 2$, which is also the critical point in this case. We can observe a sudden transition of the position of the state, clearly.

2. **Basin transition under medium noise**

Case II occurs when $\tau_{\text{tran}} < \tau_\lambda < \tau_{\text{ergo}}$ with a relatively medium noise size. In this case we can observe the particle transiting at some place before the system bifurcates, but in general it will never get back. One realization of the path is explicitly shown in Fig. 4(a).

We want to emphasize that every trajectory has a quite different escaping time in the medium noise case. Therefore, we distinguish two concepts: the single-trajectory transition and multi-trajectory ensemble transition. For single-trajectory transition, we define the critical point as the time when the particle crosses the boundary of an attracting basin, i.e., the separatrix between two neighboring attraction basins. For multiple-trajectory transition, we define the critical point as the most probable transition point, at which the particles leave the attraction basin of the metastable state with the maximal escaping rate. We call it the ensemble transition point. Though the total transition probability saturates until the bifurcation point, the particles hardly stay in the initial metastable well eventually.

Now let us list some simple properties of the system in this case.

1. For a single trajectory, the particle follows the uphill path

$$\dot{x} = \nabla V(x, \lambda)$$
FIG. 2. (Color online) State transition case under small noise. The dynamics is given by Eq. (2) with potential (7). Noise amplitude \( \sigma = 0.125 \) is relatively small to the potential barrier. Fig. 2(a) is a path for a single particle under small noise and a transition can be seen. The solid red line is the stable equilibrium points and the dashed red line is the unstable equilibrium points. The trajectory of a state or particle is in blue. Critical point is defined as the bifurcation point \( \lambda = 2 \). Fig. 2(b) shows the first jump pdf for multiple particles under small noise strength. In Fig. 2(b), the first jump probability density is nearly a delta function at \( \lambda = 2 \), which is also the bifurcation point. From both Fig. 2(a) and Fig. 2(b) we know there is no difference between the multiple and single trajectory statistics in this small noise case.

FIG. 3. (Color online) The evolution of pdf of \( x \) for the dynamics (2) and (4) with \( \sigma = 0.125 \) for the small noise case. The solid blue line is the stable equilibrium points and the dashed red line is the unstable equilibrium points. Insets are pdfs at \( \lambda = -2.5, -1, 0, 1, 2.5 \). If we plot all the pdfs at every \( \lambda \), it will exhibit a sudden transition at \( \lambda = 2 \) (green triangle line).

1. For single-particle trajectories, the closer the particle gets to the boundary, the more seldom it stays there.

2. For multi-trajectory ensemble, the most probable transition point corresponds to the parameter \( \lambda^* \) at which the height of the basin \( h \) is in the same order of the noise amplitude \( \sigma \).

Simulation of a single-trajectory path is shown in Fig. 4(a) with \( \sigma = 50 \). We can see that the transition occurs far before the bifurcation point. For multiple trajectories, we simulate \( 10^5 \) paths to compute the probability density of the first jump at each parameter. The numerical pdf of the transition point is shown in Fig. 4(b). The most probable transition point is marked as the critical point for ensemble transition. We can observe that the transition time is generally different for the single trajectory and multiple trajectories. The evolution of probability density for \( x \) is plotted in Fig. 5.

3. For multi-trajectory ensemble, the most probable transition point corresponds to the parameter \( \lambda^* \) at which the height of the basin \( h \) is in the same order of the noise amplitude \( \sigma \).

3. Distribution transition under big noise

The third case is \( \tau_{\text{tran}} \ll \tau_{\text{ergo}} \ll \tau_\lambda \), which means that during the observation the state of the system has transitioned over the whole reachable space many times. Here \( \sigma \) is relatively bigger than the two former cases. As \( \tau_{\text{ergo}} \) is sufficiently small, the system reaches its equilibrium quickly at every \( \lambda \).

Because the system is ergodic with fast time scale, the single-path statistics in an \( O(1) \) time interval and multi-trajectory statistics in space make no difference. To define the critical point, we focus on the sudden qualitative change of the equilibrium distribution.

Some theories have been proposed on studying the qualitative change of distributions. The noise induced transition theory utilizes the number and position of sta-
FIG. 4. (Color online) Basin transition under medium noise. The dynamics is described by Eq. (2) with potential (7). We choose $\sigma = 50$ which is neither too small nor too big relative to potential barrier. A basin transition path for a single particle and the first jump pdf for multiple particles are shown in Fig. 4(a) and Fig. 4(b) respectively. In Fig. 4(a) the solid red line is the stable equilibrium points and dashed red line is the unstable equilibrium points. The trajectory of a single particle is in blue. For the single trajectory, the critical point is at which it crosses the boundary of a metastable well and moves to another metastable state. In Fig. 4(b), $10^5$ trajectories are simulated and we record the first jump time for each. The maximum of the density function is defined to be the critical point of ensemble transition, which is marked red in the figure ($\lambda \approx 0.33$). The definitions of critical transitions are different for single-trajectory transition and ensemble transition.

However, using the number or position of equilibrium points to measure qualitative change has some shortcomings. For example, in Eq. (2) the equilibrium pdf can be given for each fixed $\lambda$ as

$$p_{st}(x, \lambda) = \frac{1}{Z_\lambda} e^{-\frac{V(x, \lambda)}{\sigma}},$$

where $Z_\lambda$ is the normalization constant. A new stable equilibrium appears at $x = -1$ when $\lambda = -2$, but the probability around $x = -1$ is almost zero. Though the number of stable fixed points has a sudden change, there is no considerable change for the statistical quantities like the mean or variance. In practice, it is hard to be detected either.

The order parameters utilized in phase transition like the mean or variance are usually low order approximation of moments to the density function. For characterizing the distribution transition, KL divergence (relative entropy) between two density functions is a good candidate of indicators, which extends the approximation of pdf to the full order in terms of moments.

We define the critical point in this case as the sudden change point of distributions, and we take the Fisher information metric (FIM) or KL divergence between two pdfs in consecutive time as indicators. The FIM or its KL divergence approximation as the indicator involves the information of probability density in whole order.

We plot a simulation path with $\sigma = 200$ in Fig. 6(a). In state space, it is difficult to observe any critical phenomenon. The first jump probability density is shown in Fig. 6(b). Since the system is ergodic, the first transition happens whenever the bistable state occurs. The particles or states have been already moving over the whole

FIG. 5. (Color online) The evolution of pdf of $x$ with $\sigma = 50$ here for the medium noise case. The solid blue line is the stable equilibrium points and the dashed red line is the unstable equilibrium points. Insets are pdfs of $x$ at $\lambda = -2.5, -1, 0, 1, 2.5$. By comparing the neighboring pdfs at every $\lambda$, they exhibit the largest change before $\lambda = 1$ but after $\lambda = 0$ (about 0.33 marked by green triangle line), which corresponds to the ensemble transition point.

The phase transition theory commonly uses an order parameter, which is obtained by mean-field approximation or other methods in lattice models. However, using the number or position of equilibrium points as indicators, which are also the local maxima of pdf. The phase transition theory commonly uses an order parameter, which is obtained by mean-field approximation or other methods in lattice models.
space, so the peak in Fig. 9(b) is not meaningful. However, in probability space, we can plot the evolution of the whole pdf at each parameter $\lambda$ (see Fig. 7). Thus we can compute the Fisher information metric in theory and its KL divergence approximation by simulation. The result is shown in Fig. 8 and the peak at $\lambda = 0$ is set to be the critical point of distribution transition.

We call this regime distribution transition because if we let $\sigma \rightarrow 0$ and keep $\tau_{\text{ergo}} \ll \tau_\lambda$ in Eq. (3) (namely $k \rightarrow 0$ faster than $\eta$ in Eq. (1)), we will have a double-peaked delta-distribution centered at two metastable states when $\lambda = 0$, but have only one delta-distribution for the other values of $\lambda$. In this case, the FIM diverges at the critical point $\lambda = 0$. On the other hand, if we let $\eta \rightarrow 0$ faster than $k$, it corresponds to the small noise case. A similar discussion can be referred to [25].

C. Extension to the general model

We have shown in Section II B that the general model Eq. (3) or Eq. (4) also has the time scales $\tau_\lambda$, $\tau_{\text{tran}}$ and $\tau_{\text{ergo}}$. The main differences between Eqs. (4) and (2) are $\lambda$, which is a vector in high dimensions, and $\sigma(t)$, which is inhomogeneous in time. In the case of $s(t) \sim O(1)$, we can perform a time rescaling $\tau(t) = \int_0^t s(u)du$ to make $\lambda$ change with the unit rate during the observation. We then have the similar classification of transitions as the one-dimensional case.

1. State transition under small noise

In this case, $\sigma$ is relatively small such that $\tau_{\lambda} \ll \tau_{\text{tran}} \ll \tau_{\text{ergo}}$. The critical transition point is defined as the bifurcation point. Different from the one dimensional case, $X_t$ is now in $\mathbb{R}^n$. When we process the data, we should do clustering just as the procedure in DNB theory [19, 20, 25]. The basic assumption in DNB theory is that we can transform the system into eigenmodes, in which the principal eigenmode bifurcates. There are some but not all components related to the principal eigenmode. Their variances and autocorrelations will increase drastically when the system is close to critical transitions. Moreover, the correlations among these components increase fast while the correlations between this group and others decrease to zero.

2. Basin transition under medium noise

In this case, $\sigma$ is in a medium level such that $\tau_{\text{tran}} < \tau_{\lambda} < \tau_{\text{ergo}}$. As discussed in the one dimensional case, we have to distinguish the single trajectory transition and multi-trajectory ensemble transition. For single particle trajectory, we set the critical point at which the particle transits out of the basin of metastable state. For ensemble transition, the transition point is defined as the parameter with which the system achieves the maximal escaping rate. The properties of the system near the critical point are just extensions of the one dimensional case.

3. Distribution transition under big noise

In this case, $\sigma$ is relatively big such that $\tau_{\text{tran}} \ll \tau_{\text{ergo}} \ll \tau_{\lambda}$. The system can reach its equilibrium fast and we get the states distributed as $p_{\theta \lambda}$ at each $\lambda$. The ergodicity ensures us no statistical difference between single trajectory and the ensemble of trajectories. As the same as in the one dimensional case, we define the critical point at which the equilibrium pdf has a qualitative change or maximal change. We can quantify the change using Fisher information metric and KL divergence as an approximation. In high dimensions, the KL divergence or FIM is difficult to be numerically computed precisely by data. As we know, the KL divergence is affine invariant. We can first use principal component analysis [41] to obtain the principle components, and then sum up the KL divergences in each principal component to make the estimation.

Clearly, we can only observe the dynamics around the original stable equilibrium before the state transition or basin transition, but we can observe the dynamics around both the original and the transited stable equilibria before the distribution transition due to the ergodic condition. Thus, critical transition for the basin transition can be considered as a conditional distribution transition, in contrast to the distribution transition for the distribution transition, while the state transition can be also considered as one extreme case of the conditional distribution transition.

IV. INDICATORS AND PROPERTIES FOR EARLY WARNING SIGNALS

With the previous discussion on our minimal model and related extensions, now we aim to study how to make predictions on the critical transition from the available information in data.

A. Difference between single trajectory and multiple-trajectory ensemble

Before discussing about the indicators, we first explain the differences between the single trajectory and multiple-trajectory ensemble.

The key difference between the two concepts is whether we focus on individual sudden change or the parameter induced group change. Intuitively, transition for single trajectory is mainly an individual behavior, e.g. someone catches a cold. While the ensemble transition for multiple trajectories is a group behavior usually caused by the change of parameter or environment, e.g. the breakout
FIG. 6. (Color online) Distribution transition under big noise. We choose $\sigma = 200$ which is relatively big to potential barrier. A single particle trajectory and the first jump pdf for multiple particles are shown in Fig. 6(a) and Fig. 6(b), respectively. In Fig. 6(a), the solid red line is the stable equilibrium points, dashed red line is the unstable equilibrium points, and the blue line is a single trajectory of a particle. This trajectory is flickering all the time. In Fig. 6(b), the first jump probability density is nearly a delta function at $\lambda = -2$, where bistability occurs. This peak point marked red is not meaningful since the particle is always moving over the whole space even after that point.

FIG. 7. (Color online) The evolution of pdf with $\sigma = 200$ for the big noise case. The solid blue line is the stable equilibrium points and the dashed red line is the unstable equilibrium points. Insets are pdfs of $x$ at $\lambda = -2.5, -1, 0, 1, 2.5$. The Fisher information metric for the pdfs in consecutive time gives the critical $\lambda = 0$ with the biggest change, which corresponds to the distribution transition point we defined (green triangle line).

of influenza. The smaller the external noise is, the less the difference between the two behaviors is. When the noise tends to zero, the stochastic dynamics degenerates to the deterministic case like Case I. On the other hand, when the noise is sufficiently big such that the system becomes ergodic quickly, the statistical behavior in short time between these two is not remarkable and we are in Case III. Thus only in Case II with medium noise, the difference matters.

The difference of the two behaviors is also embodied in processing the data: the statistical quantities can be computed at each instant for multiple trajectories, but the time windows are needed for single-trajectory data.

B. Indicators and properties in different cases

Based on the analysis of our minimal model, we propose several indicators in different cases. Though these indicators have different forms, they are actually based on similar mechanisms. We can divide those indicators into two classes: signals in state space and signals in probability space. Variance, correlation and so on are among the former class, and the latter includes KL divergence and FIM, etc. In different cases, the difficulty in computing different indicators from the data varies dramatically.

1. State transition case

The prediction problem of early warning signal has been studied in vast literature in this case. The major mission is to detect the bifurcation point before the system bifurcates. Scheffer et al. presented an early work based on the critical slowing down behavior [2]. Chen’s group extended it into multivariate network and proposed the “DNB” (dynamical network biomarker) indicator [19] or “DNM” (dynamical network marker) [24] by further considering correlations among the variables among a network. To make a long story short, the most useful indicators are the variance and correlation. Many other proposals can be found in [4].

Corresponding to the trajectory in Fig. 2 we compute
FIG. 8. (Color online) (a) The theoretical Fisher information metric (FIM) at each $\lambda$ and (b) KL divergence of adjacent distributions with discretization. The KL divergence is computed from the empirical distributions for each pair $\lambda$ and $\lambda + \Delta \lambda$. $\Delta \lambda = 10^{-2}$ and $10^4$ trajectories are simulated to estimate the distribution. We define the critical point as the peak of the curve, where the largest change of distribution occurs. The curve will get more peaked when $\sigma$ is smaller, while ergodicity is preserved.

its variance through a moving time window. We can observe in Fig. 2 that the variance of $x$ increases drastically before the critical point, i.e. the bifurcation point. The result will be apparent if we compute via multiple trajectories.

2. Basin transition case

In this case, we distinguish the single trajectory and multiple-trajectory ensemble, in contrast to the state transition. The major mission is to detect when the single particle or many particles get close to the boundary of a metastable basin.

For the prediction of single trajectory critical transition, we propose the following indicator

$$S(x, \delta, N) = \frac{|x - \bar{x}_N|}{p_N(x, \delta)},$$

where $x$ is the current particle position, $\bar{x}_N$ is the mean position by the previous $N$ points, and $p_N(x, \delta)$ is the percentage of points in $\delta$-neighbor of $x$ among the previous $N$ points. The fact that $|x - \bar{x}_N|$ becomes bigger and $p_N(x, \delta)$ becomes smaller near the transition point means that the particle is getting into a place seldom visited before. Hence, the larger $S$ is, the closer the particle reaches the boundary of the attraction basin. Here $\delta$ and $N$ will be chosen according to the considered problem.

For the trajectory obtained in Fig. 4(a), the indicator $S$ is shown in Fig. 10. $S$ increases indeed when approaching the transition point, and each peak in the figure represents an attempt to jump out.

For the ensemble transition, in which we define the critical point as the instant when the system achieves the maximal escaping rate, there seems no suitable indicators if only the trajectories of particles which do not cross the boundary are available. This is often the real case, especially in medical examples. Although there are no clear rules of dynamics, our simulations support that the critical transition point occurs where $\sigma$ has the same order as the depth of the basin. We sampled 100 trajectories.
for each \(\sigma\) varied from 1 to 100, then plot \(h_U/\sigma\) for every \(\sigma\) in Fig. 11(a) where \(h_U\) is the barrier height when the trajectory transits across the boundary. In Fig. 11(b) we simulate the dynamics Eq. (1) with potential (7), where \(k\) varies from \(10^{-3}\) to \(10^{2}\) and \(\eta\) varies from \(10^{-6}\) to \(10^{2}\). 100 trajectories are simulated at each parameter to compute \(h_U/\eta\), where \(h_U\) is the barrier height at the first transition point. The colored contour means that the first transition is located in \(\lambda \in [-2, 2]\), and the blank domain means that either the particle walks around the whole space before \(\lambda = -2\) or it does not transit until \(\lambda = 2\) (see bifurcation diagram in Fig. 11). The Fig. 11(a) is a slice of Fig. 11(b) which are marked by red line with square symbol. Both results in Fig. 11 show that the particles prefer to jump when the barrier height is close to the noise amplitude. These results are helpful for understanding the critical transition pattern and providing heuristics for constructing the indicators in the medium noise case.

### 3. Distribution transition case

As discussed in the previous section, we define the critical point in Case III as the instant in which the sudden change of distribution occurs. The FIM or KL divergence of adjacent distributions achieves maximum there. Hence, one natural indicator is FIM or KL divergence, or we can take moments as a cheap alternative. In high dimensional case, we take the principal component analysis and make the sum of KL divergences for the marginal distribution on each component.

We take a lattice model as an example to show the applicability of the proposed indicators. The considered dynamics has the following form:

\[
dx = \left[ f(x) + \frac{1}{2} g(x)g'(x) - \frac{D}{N} \sum_{j \in N(i)} (x_i - x_j) \right] dt + \sigma g(x) dw_i, \tag{11}\]

where \(N(i)\) is the neighbors of site \(i\), \(N\) is the number of nearest neighbors, \(\sigma\) is the amplitude of noise, \(D\) controls the strength of spatial interaction, and \(w_i(t)\) are independent standard Brownian motions.

We choose \(10 \times 10\) square lattice in two dimensions, \(D = 25, \sigma = 1\) and

\[
f(x) = ax + x^3 - x^5, \quad g(x) = 1 + x^2. \tag{12}\]

We vary \(a\) from \(-2\) to \(0\) with stepsize 0.1. In simulations, \(\Delta t = 10^{-4}\) and \(10^6\) steps are taken in each \(a\). The system achieves ergodicity for each parameter. The results of order parameter \(|\langle x_i \rangle|\), average of variances \(\text{Var}(x_i)\) and average of KL divergence on each site are shown in Fig. 12. The signals at the critical point are clear.

### C. Classification by noise-to-signal ratio

We have discussed about the models and transitions. But for a specific problem, how to identify the regime of a critical transition is a nontrivial problem. Noise-to-signal ratio (NSR) can give heuristic classification on this problem, though it is difficult to give an exact judgment. In the model Eq. (2) with Eq. (7), we define the NSR as

\[
\text{NSR} = \log \frac{\sigma}{\mu}, \tag{13}\]

where \(\sigma\) is the amplitude of noise and \(\mu\) is the magnitude of the characteristic potential energy barrier. To identify which regime the considered dynamics with different parameters belongs to, we do a large number of simulations and make the grouping from the numerical behaviors of the sampled trajectories. From the discussions in the previous subsection, it is natural to make the following classification according to the characteristics of the simulated path as

- Case I: if the trajectory has only one transition point, which is very close to the bifurcation point;
- Case II: if the trajectory has only one transition point, but it is far before the bifurcation point;
- Case III: if the trajectory flicks over the whole space and crosses the boundary between two attraction basins many times.

We take the dynamics (2) with potential (1). When doing the simulation, \(\mu = 100\) is fixed and \(\sigma\) varies. We simulate trajectories for every NSR expressed by Eq. (13) from \(-4\) to \(1\) with step size 0.1, and observe which case
FIG. 11. (Color online) The ratio between the barrier height and noise amplitude when the first transition occurs. (a) $h/V/\sigma$ of various $\sigma$ in dynamics Eq. (2) with potential Eq. (7). (b) $h/\eta/\sigma$ of various $k$ and $\eta$ in dynamics Eq. (1) with potential Eq. (6). Average is taken by 100 and 1000 trajectories in Fig. 11(a) and Fig. 11(b) respectively. The blank domain in Fig. 11(b) means either the particle walks around the whole space before $\lambda = -2$ (top left blank) or does not transit until the bifurcation occurs at $\lambda = 2$ (bottom blank). Fig. 11(a) is the slice marked by red line with square symbols in Fig. 11(b). This shows the first transition usually happens when barrier height is in the same order of the noise amplitude.

the trajectories fall in. The results are shown in Fig. 13. In Fig. 13 we set each case an number — 1 for Case I, 2 for Case II and 3 for Case III. At each NSR from $-4$ to 1 with step 0.1, 100 trajectories are simulated and classified. The average case number is plotted by the red line. And the blue circles are results of several trajectories. From these results, we can summarize the following heuristic rules

- When NSR $\ll -2$, i.e. $\sigma/\mu \ll O(10^{-2})$, the system falls in Case I;
- When NSR $\sim -1$, i.e. $\sigma/\mu \sim O(10^{-1})$, the system falls in Case II with high probability;
- When NSR $\gtrsim 0$, i.e. $\sigma/\mu \gtrsim O(1)$, the system falls in Case III.

These observations may provide useful references for the consideration of specific problems with a model as Eq. (1) or Eq. (3).

V. CONCLUSION AND DISCUSSION

We studied critical phenomena or critical transitions with both a minimal model and its generalized model. The analysis is in both conceptual and computational aspects. One major contribution in our paper is that we classify the critical transitions into three types according to the time scales and noise strengths, which are state transition, basin transition and distribution transition, corresponding to the small, medium and big noise cases respectively. In each case, we define the critical transition and provide the early warning indicator or property. For small noise case, variance and correlation are good signals to predict the critical transition. For medium noise case with multiple particles, we find that the most probable jumping point is located at which the potential barrier has the same order as noise amplitude. And for big noise case, KL divergence shows significant signals. We also proposed to distinguish two concepts in medium noise case, i.e. the single-trajectory statistics and multiple-trajectory statistics. These two concepts lead to different locations of transition points in the medium noise, but they almost coincide in the small and big noise cases. The simulations support our theoretical results and the proposed indicators.

There are many related works considering the critical tipping points in other ways. We next briefly discuss several representative models and their relation with our work.

- R-tipping theory. Wieczorek et al. and Luke et al. have studied the excitability and compost bomb instability of dynamical systems [44, 45]. From these works, Ashwin et al. established a rate-dependent tipping (R-tipping) point theory [46, 47] which mainly focused on the changing rate of the parameters. According to different rates of parameters, the traceability of trajectories will suddenly change, and that is where the R-tipping occurs. R-tipping may be found even without bifurcation and noise. In our model (see Eq. (2)), we have transformed the rate changing effect into the noise term. We show that there are noise-induced transitions across the basin of attraction without a R-tipping. Thus, the R-tipping transition is a parallel theory with our framework, which focuses on different aspects of critical phenomena.
- Sandpile model. Discrete sandpile model has been
long used in the modeling of earthquake and so on [48, 49]. We can consider the sandpile model as a discrete situation in our medium noise case where no parameters change and $\tau_\lambda = +\infty$. The noise is set as adding a ball. We know the critical point is the state when the number of balls becomes closing to the threshold ($N$) of a cell. Just as demonstrated in Fig. 11, the most dangerous time (the number of balls is $N - 1$) is the state when the barrier height ($N$ – the number of balls) gets close to the noise amplitude (counts of ball added each time, which is just 1). We can set the size of the largest cluster of cells which have $N - 1$ balls as an order parameter. It will be a good indicator to the critical corruption. In principle, our idea or framework in the medium noise case is also plausible in this discrete model, but more detail analyses are necessary in future studies. A continuous sandpile model has also been proposed in 1996 [50], but the start point and equations are different from ours.

- Percolation models. Sornette et al. used different models, i.e. BFW (Bohman-Frieze-Wormald) [51] or hierarchical fiber bundle model [52, 53], to consider the transition problem in the percolation. They found several statistics which are powerful in prediction based on the pdfs (probability distribution functions). Though the model is different, we can consider that the system is in the situation $\tau_{\text{ergo}} \ll \tau_\lambda$. Thus, at any time the system is ergodic and we can obtain the equilibrium pdfs. Many statistics can be computed and used for prediction with these pdfs. Percolation models are not in a SDE form but the classification also makes sense for this case.

In our framework, some important questions remain to
FIG. 13. (Color online) Simulations to identify which case the trajectory belongs to by the noise-to-signal ratio (NSR). The vertical axis shows the classification according to the characteristics of sample paths with different parameters: Case I is for small noise, in which the only one transition point is near the bifurcation point; Case II is for medium noise, in which the only one transition point is far before the bifurcation point; and Case III is for big noise, in which the trajectory flicks over the space. We set Case I to value 1, Case II to 2 and Case III to 3. NSR varies from $-4$ to 1 with step size 0.1, and the blue circles are results of several trajectories corresponding to the related NSR. The red line is the average result of 100 trajectories at each NSR. In the transitional zones with intermediate NSR, we have overlapping between regimes. From the figure, we can know how the system evolves with the changing of NSR.

result. To make the result more accurate, the width of the window should tend to zero. In this case, more sample points in unit time is needed. Thus, a balance is required in real situations.

- More general bifurcation patterns.
  The bifurcation we discussed so far is only for the co-dimension one case. For co-dimension 2 or higher, the situation will be much more complicated. Generally it is difficult to know external or internal parameters simply based on the observed data. Besides, though the indicators in small noise case can be used in both catastrophic and non-catastrophic case [54], the signal is not so significant in the latter situation.

- Indicators for transition.
  So far we have good indicators for Case I with small noise. For Case II, the proposed indicator for the single-trajectory critical transition has clear theoretical background but needs further tests and improvements. How to set the parameters like the number of points $N$ or neighbor size $\delta$ is a practical issue. For Case III with big noise, one may encounter the problem that the noise dominates the signal if the noise magnitude is too big.

- More general models.
  As known to us, R-tipping theory, sandpile model, percolation models and many others cannot be simply written in the form of an SDE with white noise perturbations. But their critical phenomena have much similarity with our model and also classification. More general models need to be established to consider these models in a unified framework.

These problems challenge the future research on the study of critical transition theory.

ACKNOWLEDGEMENTS

The authors acknowledge Professor Hong Qian (Applied mathematics, University of Washington) for his valuable discussion. T. Li acknowledges the support of NSFC (Nos. 11171009, 11421101, 91130005) and the National Science Foundation for Excellent Young Scholars (No. 11222114). This work (L.Chen) was also supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13040700) and NSFC (Nos. 91529303, 91439103, 61134013).


