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In this article we derive expressions for Casimir-like pressures induced by nonequilibrium concen-
tration fluctuations in liquid mixtures. The results are then applied to liquid mixtures in which the
concentration gradient results from a temperature gradient through the Soret effect. A comparison
is made between the pressures induced by nonequilibrium concentration fluctuations in liquid mix-
tures and those induced by nonequilibrium temperature fluctuations in one-component fluids. Some
suggestions for experimental verification procedures are also presented.
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I. INTRODUCTION

Fluctuation-induced forces will appear in confined flu-
ids when long-ranged fluctuations are present [1]. These
phenomena are also frequently referred to as Casimir ef-
fects. A well-known example is the Casimir effect in
critical systems, where the forces are induced by long-
range critical fluctuations [2–5]. A more recent exam-
ple is the nonequilibrium Casimir effect in fluids. Ther-
mal fluctuations in fluids in nonequilibrium steady states
are large and very long ranged [6, 7]. These nonequilib-
rium fluctuations are particularly spectacular in fluids in
the presence of a temperature or concentration gradient.
They arise from a coupling between the heat-diffusion or
mass-diffusion mode and the viscous mode through the
convective term in the fluctuating hydrodynamics equa-
tions [8, 9]. As a consequence, they induce Casimir-like
forces much larger than fluctuation-induced forces in flu-
ids in thermodynamic equilibrium.

In some previous works, fluctuation-induced forces in
one-component fluids in the presence of a temperature
gradient have been considered [10–13]. The purpose of
the present paper is to study fluctuation-induced forces in
liquid mixtures in the presence of a concentration gradi-
ent. Such a concentration gradient may either be isother-
mal [14, 15], or it may be the result of a temperature gra-
dient through the Soret effect [16–20]. A brief account
of our principal results has been presented in a recent
letter [21]. In the present paper we study this nonequi-
librium (NE) Casimir effect in liquid mixtures in more
detail.

We shall proceed as follows. In Section II we derive the
relationship between the NE fluctuation-induced pressure
and the NE concentration fluctuations. In dealing with
the NE fluctuations in liquid mixtures we shall use a fre-
quently adopted large-Lewis-number approximation, in
which concentration fluctuations and temperature fluctu-
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ations decouple. In Section III we consider the intensity
of the NE concentration fluctuations deduced from NE
fluctuating hydrodynamics. The resulting expressions for
the NE fluctuation-induced pressure will be investigated
in Section IV. We conclude with a discussion of the re-
sults in Section V. In the Appendix we relate the pressure
expansion equation for the fluctuation-induced pressure
derived in Section II to the usual statistical mechanical
definition of the pressure.

II. RELATION BETWEEN NE PRESSURE AND
NE CONCENTRATION FLUCTUATIONS

To derive the expression for a nonequilibrium
fluctuation-induced pressure, we consider the pressure p
as a function of the fluctuating conserved densities, which
for a liquid mixture are the fluctuating energy density
e + δe, the fluctuating mass density ρ1 + δρ1 of compo-
nent 1 (solute) and the fluctuating mass density ρ2 + δρ2

of component 2 (solvent):

p (e+ δe, ρ1 + δρ1, ρ2 + δρ2) = p (e, ρ1, ρ2) + δp. (2.1)

We expand p (e+ δe, ρ1 + δρ1, ρ2 + δρ2) in a Taylor series
in terms of δe, δρ1, and δρ2. Dealing with the slow mass-
diffusion mode, we can neglect the fast propagating sound
modes, and, hence the linear fluctuation contribution to
the pressure:(

∂p

∂e

)
ρ1,ρ2

δe+

(
∂p

∂ρ1

)
e,ρ2

δρ1 +

(
∂p

∂ρ2

)
e,ρ

δρ2 = 0. (2.2)

Retaining only terms quadratic in the fluctuations, we
thus obtain for the Taylor expansion of δp:

δp =
1

2



(
∂2p

∂e2

)
ρ1,ρ2

(δe)
2

+

(
∂2p

∂ρ2
1

)
e,ρ2

(δρ1)
2

+

(
∂2p

∂ρ2
2

)
e,ρ1

(δρ2)
2

+ 2

(
∂2p

∂e∂ρ1

)
δeδρ1

+2

(
∂2p

∂e∂ρ2

)
δeδρ2 + 2

(
∂2p

∂ρ1∂ρ2

)
δρ1δρ2


. (2.3)
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In liquid mixtures there are two diffusion modes that
are linear combination of heat diffusion and mass diffu-
sion [17, 22]. An important parameter for mixtures is
the Lewis number Le = DT /D, which is the ratio of
the thermal diffusivity DT and the mass-diffusion co-
efficient D. For liquid mixtures the Lewis number is
substantially larger than unity. Hence, in dealing with
fluctuations in liquid mixtures one often adopts a large-
Lewis-number approximation [8]. When Le � 1, the
two diffusion modes decouple into a pure temperature
fluctuation mode with a decay time proportional to DT

and a concentration fluctuation mode with a decay time
proportional to D [23]. Hence, to get the slowest-mode
contribution when Le� 1, we not only may neglect lin-
ear pressure fluctuations in accordance with Eq. (2.2),
but also temperature fluctuations:

δT = 0. (2.4)

For the concentration variable we adopt the mass frac-
tion w = ρ1/ρ of the solute, where ρ = ρ1 + ρ2 is the
mass density of the mixture. From Eqs. (2.2) and (2.4)
it follows that the fluctuations δe, δρ1, and δρ2 can be
related to the concentration fluctuation δw at constant
pressure p and constant temperature T :

δe =

(
∂e

∂w

)
p,T

δw, δρ1 =

(
∂ρ1

∂w

)
p,T

δw, (2.5)

δρ2 =

(
∂ρ2

∂w

)
p,T

δw.

Substituting Eq. (2.5) into Eq. (2.3) and taking an av-
erage, we obtain for the fluctuation-induced pressure
pwNE = 〈δp〉:

pwNE (r) =
1

2
Aw

〈
[δw (r)]

2
〉

NE
(2.6)

with
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(2.7)

The superscript w indicates that pwNE is a pressure in-
duced by concentration fluctuations. Only the NE con-

centration fluctuations
〈

[δw (r)]
2
〉

NE
cause a renormal-

ized pressure, since the equilibrium concentration fluc-
tuations are already incorporated in the unrenormal-
ized pressure. Just as for the case of a one-component

fluid [11], our approach for deriving Eq. (2.6) from an ex-
pansion of the pressure fluctuations in terms of the con-
served quantities can be justified from an explicit mode-
coupling theory generalized to nonequilibrium steady
states, as shown in the Appendix. We comment that
at this stage the fluctuation-induced pressure at any lo-
cation r is related to the intensity of the NE concen-
tration fluctuations at the same location. We shall see
later that mechanical equilibrium requires that the actual
fluctuation-induced pressure in a nonequilibrium steady
state will be spatially uniform.

By using Eq. (2.2) and noting that dρ1 = wdρ+ ρ dw
and dρ2 = (1− w) dρ− ρ dw, Eq. (2.7) can be simplified
to

Aw = −
(
∂p

∂e

)
ρ,w

[(
∂2e

∂w2

)
p,T

−
(
∂e

∂ρ

)
p,w

(
∂2ρ

∂w2

)
p,T

− 2

ρ

(
∂e

∂w

)
p,ρ

(
∂ρ

∂w

)
p,T

]
. (2.8)

To evaluate Eq. (2.8) we first note that (∂p/∂e)ρ,w =

(γ − 1) /αT , where γ = cp,w/cV,w is the ratio of the spe-
cific isobaric and isochoric heat capacities, and where
α = −ρ−1 (∂ρ/∂T )p,w is the thermal expansion coeffi-

cient of the mixture at constant composition [24]. The
remainder of Eq. (2.8) can be expressed in terms of
the thermodynamic variables w, p, T by using thermo-
dynamic relations collected for mixtures by Wood [22].
Realizing that the thermodynamic field conjugate to the
mass fraction w is the difference µ between the chemical
potentials of the solute and the solvent, we then obtain

Aw = −ρ (γ − 1)

αT

[
χ−1 − T

(
∂χ−1

∂T

)
p,w

− ρcp,w
α

(
∂χ−1

∂p

)
T,w

]
,

(2.9)

where χ = (∂w/∂µ)p,T is an osmotic susceptibility. We

note that in thermodynamic equilibrium
〈

(δw)
2
〉

E
=

kBT (ρV )−1χ, where kB is Boltzmann’s constant and V
the volume of the system [25–27]. The inverse osmotic
susceptibility χ−1 can be related to the excess molar
Gibbs energy GE [28]:

χ−1 =

(
∂µ

∂w

)
p,T

(2.10)

=
RT M

w (1− w)M1M2

{
1− x1x2

(
∂2GE/RT

∂x1∂x2

)
p,T

}
,

where R is the molar gas constant, x1 and x2 are the mole
fractions, and M1 and M2 the molar weights of solute
and solvent, respectively, while M = M1x1 +M2x2 is the
molar weight of the mixture. Substitution of Eq. (2.10)
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into Eq. (2.9) yields finally

Aw = −ρ (γ − 1)

αT

M3

M2
1M

2
2

[(
∂2HE

∂x2
1

)
p,T

(2.11)

− ρcp,w
α

(
∂2V E

∂x2
1

)
p,T

]
,

to be substituted into Eq. (2.6), where HE is the excess
molar enthalpy and V E the excess molar volume. It is
interesting to compare this result with the expression for
the NE pressure pTNE induced by temperature fluctuations
in a one-component fluid [13]

pTNE (r) =
1

2
AT

〈
[δT (r)]

2
〉

NE
(2.12)

with

AT = −ρ (γ − 1)

αT

[(
∂2h

∂T 2

)
p

− ρcp
α

(
∂2v

∂T 2

)
p

]
, (2.13)

where h is the specific enthalpy and v the specific volume.

III. NE CONCENTRATION FLUCTUATIONS

We consider a liquid mixture between two horizontal
plates separated by a distance L. We take a coordinate
system with the z axis in the vertical direction. The
plates are located at z = −L/2 and at z = +L/2. The
liquid mixture is subjected to a stationary concentration
gradient ∇w0, where w0 (z) is the local average concen-
tration which is assumed to be a linear function of z.
We also assume that the liquid mixture is in a quiet me-
chanically stable state far away from any convective in-
stability [29, 30]. Under these conditions, the NE con-
centration fluctuation δw = δw (r, t), which depends on
the location r and the time t, satisfies a simple linearized
fluctuating mass-diffusion equation:

ρ

[
∂δw

∂t
+ δv · ∇w0

]
= ρD∇2δw −∇ · δJ, (3.1)

where δJ is a fluctuating mass-diffusion flux [9, 16, 31].
This fluctuating mass-diffusion equation differs from the
one in equilibrium by the presence of the term δv · ∇w0,
which causes a coupling of the concentration fluctuations
δw with the velocity fluctuations δv. The velocity fluc-
tuations are to be determined from a fluctuating Stokes
equation:

ρ
∂δv

∂t
= η∇2δv −∇ · δΠ, (3.2)

where η is the shear viscosity and δΠ a fluctuating stress
tensor. In fluctuating hydrodynamics δJ and δΠ are as-
sumed to satisfy a local fluctuation-dissipation theorem
such that [8, 27, 31–33]

〈δJi (r, t) δJj (r′, t′)〉 = 2kBTρχD δij

× δ (r− r ′) δ (t− t′) (3.3)

and

〈δΠij (r, t) δΠkl (r
′, t′)〉 = 2kBT η (δikδjl + δilδjk)

× δ (r− r′) δ (t− t′) . (3.4)

Not only the Lewis number, but also the Schmidt num-
ber Sc = ν/D, where ν = η/ρ is the kinematic viscosity,
is commonly much larger than unity. It means that the
viscous fluctuations decay much faster than the concen-
tration fluctuations. Hence, for Sc � 1, we may ne-
glect the time derivative in Eq. (3.2) [34]. In principle,
the thermophysical properties in Eqs. (3.1)-(3.4) may de-
pend on the concentration (and on the temperature, if a
temperature gradient is present). In practice we identify
them with their values at the center of the fluid layer; this
has been shown to be a very good approximation [28].

These fluctuating hydrodynamics equations need to be
solved subject to appropriate boundary conditions for the
concentration and for the velocity fluctuations at the sur-
faces of the plates. Solutions have been presented in some
previous publications, originally for artificial but mathe-
matically convenient boundary conditions [35] and, sub-
sequently, for more realistic boundary conditions [34, 36].
Realistic boundary conditions are no-slip for the veloc-
ity fluctuations and impervious walls for the mass flow.
If we neglect the effect of sound modes (divergence-free
δv), they are [34, 37]:

δvz =

(
∂δvz
∂z

)
= 0,

(
∂δw

∂z

)
= 0, at z = ±L

2
,

(3.5)

where δvz is the fluctuation of the z component of the
velocity v. For Le � 1 we have been able to obtain an
explicit solution [34] without a need for any Galerkin ap-
proximation that is usually considered for velocity fluctu-
ations with rigid boundary conditions [8]. From Ref. [34]
we find 〈

[δw (z)]
2
〉

NE
=
kBT

ρνD
F (z) L (∇w0)

2
(3.6)

with

F (z) =
1

2π

∫ ∞
0

q S̃ (q, z) dq, (3.7)

where q is the magnitude of a dimensionless wave vector
q‖L associated with the concentration fluctuations in the

x−y plane parallel to the plates. In Eq. (3.7) S̃ (q, z) is a
dimensionless generalized structure factor that contains
two contributions:

S̃ (q, z) = S̃0 (q) + S̃1 (q, z) . (3.8)

The first term in Eq. (3.8) is a contribution independent
of z and represents the structure factor that is experimen-
tally accessible in NE light-scattering or shadowgraph ex-
periments:

S̃0 (q) =
1

q4
+

4 (1− cosh q)

q5 (q + sinh q)
. (3.9)
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The second term is an additional z-dependent contribu-
tion:

S̃1 (q, z) = 2

∞∑
N=0
M=1

ÃNM cos (2Nπz̃) cos (2Mπz̃)

q2 + 2N2π2 + 2M2π2
(3.10)

+ 2

∞∑
N=0
M=0

B̃NM sin [(2N + 1)πz̃] sin [(2M + 1)πz̃]

q2 +
[
(2N + 1)

2
+ (2M + 1)

2
] π2

2

.

in terms of a dimensionless variable, z̃ = z/L. The ma-
trix elements in this double trigonometric series are given
by

ÃNM (q) =
q2δNM

(q2 + 4N2π2)
2 (3.11)

+
8q5 (1− cosh q) cos (Nπ) cos (Mπ)

(q + sinh q) (q2 + 4N2π2)
2

(q2 + 4M2π2)
2 ,

B̃NM (q) =
π4q2δNM[

q2

π2
+ (2N + 1)

2

]2 +
8π8q5

q − sinh q
(3.12)

× (1 + cosh q) cos (Nπ) cos (Mπ)[
q2

π2
+ (2N + 1)

2

]2 [
q2

π2
+ (2M + 1)

2

]2

where δNM is a Kronecker delta. The integral obtained
upon substituting Eq. (3.8) into Eq. (3.7) can be readily
evaluated and we obtain

F (z) = F0 +
1

2π

∫ ∞
0

q S̃1 (q, z) dq (3.13)

with

F0 =
1

2π

∫ ∞
0

q S̃0(q) dq ' 3.11× 10−3. (3.14)

The contribution from the second term in Eq. (3.13)
is illustrated graphically in Fig. 1, where we show〈

[δw (z)]
2
〉

NE
as a function of z/L (red curve) calculated

numerically from Eq. (3.6) and relative to the height-
averaged value〈

[δw (z)]
2
〉

NE
=

1

L

∫ +L/2

−L/2

〈
[δw (z)]

2
〉

NE
dz

=
kBT

ρνD
F L (∇w0)

2
,

(3.15)

with

F =

∫ +1/2

−1/2

F (z̃) dz̃ ' 5.724× 10−3. (3.16)

There are interesting differences between the profile
for the intensity of the NE concentration fluctuations in
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FIG. 1: (color on line).
〈
[δw (z)]2

〉
NE

as a function of z ob-
tained from Eq. (3.6) with Eq. (3.13) (red curve). For com-
parison we also show

〈
[δT (z)]2

〉
NE

for a one-component fluid
in the presence of a temperature gradient obtained for rigid
boundary conditions [11] and infinite Prandtl number (blue
curve). Both curves are normalized independently, so that
the average value in the fluid layer for both types of fluctua-
tions is unity. The horizontal line indicates the value of the
z-independent approximation obtained by retaining only the
constant F0 in Eq. (3.13) for F (z), with the same normaliza-
tion as the concentration fluctuations (red) curve [21].

a mixture and the profile for the intensity of the NE tem-
perature fluctuations in a one-component fluid. For rigid
boundaries the NE temperature fluctuations depend on
the Prandtl number Pr [38]. The blue curve in Fig. 1
shows the intensity of the NE temperature fluctuations
in a one-component fluid, relative to the correspond-
ing height-average [11], in the limit of infinite Prandtl
number, consistent with the infinitely large Lewis and
Schmidt numbers approximations adopted in the present
paper. An important difference observed in Fig. 1 is
that in a fluid between two impervious thermally con-
ducting walls the temperature fluctuations vanish at the
walls, but the concentration fluctuations do not. Another
difference is that the intensity of the NE temperature
fluctuations approaches the walls with a vanishing slope,
while the intensity of the NE concentration approaches
the walls with a finite slope.

IV. NE PRESSURES INDUCED BY THE
CONCENTRATION FLUCTUATIONS

In principle the NE pressure induced by the concen-
tration fluctuations is obtained by substituting Eq. (3.6)
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into Eq. (2.6), so that

pwNE (z) =
kBT

2ρνD
AwF (z)L (∇w0)

2
. (4.1)

Equation (4.1) represents a fluctuation-induced pressure
profile depending on the location z in the liquid layer. We
want to calculate the resulting effective non-equilibrium
pressure pwNE,eff on the plates. We write the total pressure
as

p = peq + pwNE,eff, (4.2)

where peq is the uniform equilibrium pressure. Mechani-
cal equilibrium requires that dp/dz = 0. The mechanism
to compensate the z dependence of the pressure pwNE(z)
is a fluctuation-induced NE contribution ρNE(z) to the
density profile such that the total pressure derivative is
indeed zero. This gives [11]

ρNE (z) = −
(
∂ρ

∂p

)
T,w

[
pwNE (z)− pwNE,eff

]
. (4.3)

Conservation of mass requires that

1

L

∫ +L/2

−L/2
ρNE(z) dz = 0. (4.4)

From Eqs. (4.3) and (4.4) it thus follows that the effective
fluctuation-induced pressure acting on the walls is simply
the spatial average of pNE(z)

pwNE,eff =
1

L

∫ +L/2

−L/2
pNE(z) dz = pwNE. (4.5)

Thus the uniform NE fluctuation-induced pressure is
obtained by replacing F (z) in Eq. (4.1) with F from
Eq. (3.16):

pwNE =
kBT

2ρνD
AwF L (∇w0)

2
. (4.6)

We note that for a fixed value of the concentration gra-
dient the NE fluctuation-induced pressure increases lin-
early with the distance L. This large NE Casimir effect
is a direct consequence of the fact that in the absence of
boundary conditions the intensity of the NE fluctuations
varies with the wave number as q−4, as can be seen from
the leading term in Eq. (3.9).

A convenient experimental procedure for establishing
a concentration gradient is by subjecting the liquid mix-
ture to a stationary temperature gradient ∇T0. Then a
concentration gradient will be established in the mixture
through the Soret effect:

∇w0 = −STw0 (1− w0)∇T0, (4.7)

where ST is the Soret coefficient [16–20]. Then

pwNE =
kBT 0

2ρνD
AwF w2

0 (1− w0)
2
S2
TL (∇T0)

2
, (4.8)

where we have approximated the local temperature and
concentration by their average values, T 0 and w0, in the
center of the liquid layer. Experimentally, it may be more
practical to study the NE fluctuation-induced pressure as
a function of the distance L at a fixed temperature differ-
ence ∆T = L∇T0. Substituting Eq. (2.11) for the ampli-
tude Aw into Eq. (4.8), we obtain as our final expression
for the NE pressure induced by the concentration fluctu-
ations:

pwNE = −kBT
2

0 (γ − 1)

2ανD

M3

M2
1M

2
2

×

[(
∂2HE

∂x2
1

)
p,T

− ρcp,w
α

(
∂2V E

∂x2
1

)
p,T

]

× F w2
0 (1− w0)

2
S2
T

1

L

(
∆T

T 0

)2

.

(4.9)

In Table I we present some estimated NE fluctuations-
induced pressures in a liquid layer with an average tem-
perature of 298 K subjected to a temperature difference
of 25 K. In addition, we compare the NE pressures pwNE,
given by Eq. (4.9) from NE concentration fluctuations
for two liquid mixtures, with NE pressures pTNE from NE
temperature fluctuations previously found for water and
n-heptane [11]. Generally, the NE fluctuation-induced
pressures in simple liquid mixtures are comparable to
those in one-component liquids, as can be seen by com-
paring the NE-pressure values for toluene+n-hexane with
those for n-heptane. The approximation of large Lewis
and Schmidt numbers uncouples NE concentration and
temperature fluctuations. However, temperature fluctu-
ations are still coupled to the fluctuating Stokes equa-
tion (3.2), maintaining a structure similar to the one-
component fluid case [8, 36]. As a consequence, in ad-
dition to pressures induced by NE concentration fluctu-
ations, there will be pressures induced by NE temper-
ature fluctuations, that in the large-Lewis -number ap-
proximation are given by the same expressions as those
for one-component fluids [10, 11], but with properties
referred to those of the mixture. The corresponding or-
der of magnitude is the same as the pTNE for the exam-
ples shown in Table I. In the parallel-plate configuration
considered here, typical experimental separations are of
the order of micrometers [39–41]. The NE Casimir effect
may make it possible to measure Casimir forces at larger
length scales [13].

The data in Table I show, as discussed in some pre-
vious papers [10, 11, 13], that NE fluctuation-induced
pressures are significantly larger than Casimir pressures
induced in equilibrium fluids by critical fluctuations. The
physical reason is that the intensity of both NE concen-
tration and NE temperature fluctuations varies in the
absence of boundaries with the wave number as q−4,
while critical fluctuations only vary as q−2 [42]. Since
in liquid mixtures the NE Casmir effect is proportional
to the square of the Soret coefficient, the effect can be
further enhanced by selecting a liquid mixture with a
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TABLE I: Estimated NE fluctuation-induced pressures (T 0 = 298 K, ∆T = 25 K)

L = 10−6 m L = 10−5 m L = 10−4 m L = 10−3 m
pwNE, water+methanola +2 × 10−1 Pa +2 × 10−2 Pa +2 × 10−3 Pa +2 × 10−4 Pa
pwNE, tetralin+n-dodecanea +3 × 10−1 Pa +3 × 10−2 Pa +3 × 10−3 Pa +3 × 10−4 Pa
pwNE, toluene+n-hexanea +4 × 10−1 Pa +4 × 10−2 Pa +4 × 10−3 Pa +4 × 10−4 Pa
pwNE, aniline+methanola −6 × 10−1 Pa −6 × 10−2 Pa −6 × 10−3 Pa −6 × 10−4 Pa
pwNE, 1-methylnaphtalene +17 Pa +2 Pa +2 × 10−1 Pa +2 × 10−2 Pa

+n-heptanea

pTNE, water [11] +5 × 10−1 Pa +5 × 10−2 Pa +5 × 10−3 Pa +5 × 10−4 Pa
pTNE, n-heptane [11] +2 × 10−1 Pa +2 × 10−2 Pa +2 × 10−3 Pa +2 × 10−4 Pa

a
Equimolar mixture
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FIG. 2: (color on line). NE fluctuation-induced (Casimir)
pressures as a function of the (average) molar fraction x of
tetralin in a binary mixture with n-dodecane at atmospheric
pressure, for ∆T = 25 K and L = 1 mm. Red curve repre-
sents the pressure induced by NE concentration fluctuations,
Eq. (4.9). The blue curve represents the pressure induced by
NE temperature fluctuations.

large Soret coefficient [43]. This is the reason why pwNE

is much larger in 1-methylnaphtalene+n-heptane than
in toluene+n-heptane. We also see from Eq. (4.9) that
pwNE is strongly related to the concentration dependence
of the excess molar enthalpy and excess molar volume.
Hence, as shown in Table I, pwNE can be either positive or
negative.

For the system tetralin+n-dodecane, all required ther-
mophysical properties are available as a function of the
concentration: excess enthalpy [44] and volume [45], dif-
fusion and Soret coefficients [46], etc. Therefore, for this
particular system it is possible to study the dependence
of pwNE on the average concentration of the mixture. In
Fig. 2 we represent as a red curve the pressure induced by
NE concentration fluctuations, calculated from Eq. (4.9),
as a function of the average tetralin mole fraction in the

mixture, x. Temperature difference is ∆T = 25 K and
L = 1 mm, corresponding to the right-most column in
Table I. We are also plotting in Fig. 2 the pressure in-
duced by NE temperature fluctuations [10, 11] calculated
for the mixture properties, so that it slightly depends on
concentration. The total pressure induced by NE fluctu-
ations will be the sum of the two curves in Fig. 2.

We note that, due to their spatial long-range na-
ture, the NE concentration fluctuations depend on grav-
ity [18, 36, 47]. Essentially, gravity (buoyancy) sup-
presses the intensity of NE concentration fluctuations
when it is parallel to the correspondingly induced sta-
tionary density gradient, while it further enhances NE
fluctuations when it is antiparallel to this density gra-
dient. The effects of buoyancy are more prominent the
larger the spatial size of the fluctuation. Hence, gravity
affects mostly fluctuations of small q, and competes with
boundary effects in this wave number range. As a con-
sequence, the NE pressures discussed in this paper will
also depend on gravity. The effect of gravity on pTNE has
been elucidated in a previous publication [11]. It turns
out that the effect of gravity is modest when the liquid
is far away from any hydrodynamic instability. There-
fore, we expect that the effect will also be modest in
liquid mixtures far away from any hydrodynamic insta-
bility. However, NE pressures will diverge at the onset of
any convective instability [11].

Our result for the NE Casmir effect in liquid mixtures
is fundamentally different from the Casimir-Soret effect
discussed by Najafi and Golestanian [48]. Najafi and
Golestanian have used a Langevin equation for a Gold-
stone mode to obtain an estimate for a Soret-like effect
in a model system. They do not consider any mode cou-
pling in the fluctuating mass-diffusion equation (3.1), but
do account for the variation of the temperature in the
expression (3.3) for the fluctuation-dissipation theorem
when the mixture is subjected to a temperature gradient.
They conclude that the inhomogeneity of the noise causes
a thermophoretic force that is linear in the temperature
gradient ∇T0. Fluctuations caused by the inhomogene-
ity of the noise terms in the fluctuating-hydrodynamics
equations are of much shorter range than fluctuations
induced by mode coupling [13, 49]. As a consequence,
Najafi and Golestanian find a force that is very strongly
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dependent on a molecular cutoff. In general one should
expect several types of fluctuation-induced forces near
walls, both from molecular origin and from long-ranged
fluctuations. As pointed out in the literature [3, 5], one
normally identifies Casimir effects with those resulting
from truly long-ranged fluctuations that induce forces
that are independent of any molecular cutoff.

V. DISCUSSION

We have shown that in liquid mixtures NE concentra-
tion fluctuations induce NE pressures that are propor-
tional to the square of the concentration gradient ∇w0

and increase with the distance L. Like NE pressures
induced by NE temperature fluctuations [10, 11, 13],
they are significantly larger than Casimir-like pressures
induced in equilibrium fluids by critical concentration
fluctuations. In liquid mixtures these NE fluctuation-
induced pressures can be further enhanced by selecting
a mixture with a large Soret coefficient, as illustrated in
Table I.

As a possible implication we may imagine a configura-
tion where a thin plate with temperature T2 is located in
a liquid between two walls, both at a temperature T1, as
schematically shown in Fig. 3. When pNE > 0, the NE
pressure will exert forces on the two sides of the inner
plate proportional to (∆T )

2
/L1 and (∆T )

2
/L2. This

will be the case either for a one-component liquid or a liq-
uid mixture (pTNE or pwNE). When pNE > 0 and L1 6= L2,
the plate will experience a net force causing it to move
away from the walls. Hence, the force needed to move this
plate off center would be a measure of the NE Casimir
force. In practice it may be difficult to maintain plates at
a close distance parallel to each other [39, 50, 51]. Hence,
in studying Casimir forces, one commonly measures the
force on a particle close to a surface [52]. While a geo-

T1

L2 L1

T2 T1

(T1 – T2)2

L2

 
(T1 – T2)2

L1

 

FIG. 3: Schematic illustration of a NE Casimir pressure pNE

> 0 on a plate with temperature T2 located in a liquid between
two walls with temperature T1. For pNE < 0, the plate would
be pulled to the closest wall.

metrical analysis of such a configuration becomes more
complicated [3, 53, 54], the physical principle remains the
same.

NE Casimir forces are to be distinguished from ther-
mophoretic forces Eth on a particle in a liquid subjected
to a temperature gradient [55]:

Eth = −6πRDth∇T0, (5.1)

whereDth is its thermophoretic mobility in the liquid and
R the radius of the particle. This thermophoretic force
has been investigated experimentally by Regazzetti et al.
for silica particles with a radius R = 3 µm in a number of
liquids, including water and n-heptane [56]. The experi-
ments were conducted in a liquid layer with L = 0.1 mm
subjected to a temperature difference ∆T = 25 K. This is
the reason why Table I gives estimates for the NE pres-
sures with ∆T = 25 K. From the experimental results
of Regazzetti et al., we have earlier concluded that for
silica particles in water Eth = 280 fN and in n-heptane
Eth = 30 fN [11]. Most recently, Helden et al., by adopt-
ing a sophisticated optical technique that takes advan-
tage of evanescent light after a total reflection, have di-
rectly measured the thermophoretic force experienced by
polystyrene particles of 2.5 µm radius in water. They re-
port somewhat smaller forces, of the order of Eth = 50 fN
for a temperature gradient of 0.14 K·µm−1 (correspond-
ing to L ' 2× 10−4 m for ∆T = 25 K).

Electrophoresis is qualitatively different from our pre-
dicted NE Casimir effect. From Eq. (5.1) we see that
thermophoresis causes a particle to move either to the
cold wall or to the hot wall depending on the sign of the
thermophoretic mobility Dth. On the other hand, we see
from Fig. 3 that the NE Casimir effect (for pNE > 0)
would drive the particle to the center. Accounting for
the difference of the forces on the two sides of the parti-
cle, we may get an order-of-magnitude estimate for the
net force needed to move such a particle from the cen-
ter as πR2pNE · R/L which amounts to several fN for
micrometer-sized particles in water with ∆T = 25 K. De-
pending on the size of the particles, the magnitude of the
temperature gradient, and the choice of liquid or liquid
solution, NE fluctuation-induced forces may be compa-
rable to thermophoretic forces.

However, the major difference is that thermophoretic
forces are linear functions of the temperature gradient,
while the NE Casimir forces are proportional to the
square of the temperature gradient. This suggests two
possibilities for detecting NE Casimir forces experimen-
tally. One procedure would be to study the force on
a particle as a function of the temperature difference
∆T to see whether the force has a component that de-
pends on the square of the temperature gradient ∆T [57].
An even more direct indication of the presence of NE
Casmir forces would be to change the direction of the
temperature gradient in the experiments. While a ther-
mophoretic force would change sign upon changing the
direction of ∇T0, the NE force should reveal itself as a
component that is independent of the direction of the
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temperature gradient ∇T0.
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Appendix A: Statistical-Mechanical Derivation

In statistical mechanics the pressure is given by the
diagonal element of the microscopic stress tensor aver-
aged over the N -particle distribution function, ρN . Here
we consider a two-component fluid in a non-equilibrium
steady state (NESS) that is close to local equilibrium.
We can then decompose ρN into a local equilibrium part,
ρLE, and a part linear in the macroscopic gradients, ρ∇.
The explicit expression for the local equilibrium part is

ρLE =
exp[y?a]

Tr exp[y?a]
(A1)

with {a} = {n1, n2,g, e} the set of microscopic con-
served quantities, {y} = {β(µ1 − m1u

2/2), β(µ2 −
m2u

2/2), βu,−β} the macroscopic conjugate variables,
while y?a =

∫
dr y(r) a (r) denotes an integration over

space. In these expressions, ni is the number density of
species i = (1, 2), g is the momentum density, e is the
energy density, β = 1/kBT is the inverse temperature, µi
is the chemical potential of species i, mi is the mass of
species i, and u is the fluid velocity with magnitude u.

In a non-equilibrium steady state of a two-component
fluid with a chemical potential gradient of species 1, but
no velocity gradients, or temperature gradients, Liou-
ville’s equation gives for the gradient part of the N -
particle distribution function a time-dependent integral
of the form [58]

ρ∇ = −
∫ ∞

0

dt exp (−Lt) ρLE Ĵ1?
∂y1

∂x
. (A2)

Here L is Liouville’s operator, Ĵ1 is the part of the mass
current of species 1 that is orthogonal to the conserved

quantities [22], and y1 = βµ1. The pressure is defined as
1/d (d being the spatial dimension) times the average of
the trace of the microscopic stress tensor. For our pur-
pose we can relate it to one of the diagonal elements that
we denote by Jl [59]. The non-equilibrium or gradient
part of the pressure can then be written as,

pNE (r) = 〈Jl (r)〉NE

= −
∫ ∞

0

dt
〈
Jl (r, t) Ĵ1 (0)

〉
LE
?
∂y1

∂x
.

(A3)

Here 〈〉NE denotes a non-equilibrium ensemble average
and 〈〉LE denotes a local-equilibrium ensemble average.
Generally, pNE (r) is a local NE pressure depending on
the position r = {x, y, z}. Equation (A3) has the struc-
ture of a Green-Kubo expression for a transport coef-
ficient, namely, an unequal time current-current corre-
lation function, integrated over all times t [60]. Note,
however, that the currents in the integrand of this equa-
tion are different, unlike the current-current correlation
functions for the usual Navier-Stokes transport coeffi-
cients [6]. Hence, the NE pressure originates from a cross
Onsager-like effect, i.e., a normal stress or pressure is
caused by a chemical potential gradient.

Techniques to evaluate the long-wavelength, or
hydrodynamic-mode, contributions to local-equilibrium
correlation functions like Eq. (A3) have been developed
by Kirkpatrick et al. [61–63], who extended the meth-
ods of Ernst et al. [24, 59, 64] to non-equilibrium steady
states. In the large Lewis number limit, the leading con-
tribution is

pNE (r) =
1

2

(
ρ

kBT

)2(
∂µ

∂w

)2

p,T

〈Jl,0w0w0〉 〈[δw(r)]2〉NE.

(A4)
Here µ = µ1 − µ2 and the subscript 0 of the phase vari-
ables in the statistical-mechanical average in Eq. (A4)
indicate that they are at zero wave number. Finally,
Eq. (109) in Ref. [22] gives,

Aw =

(
ρ

kBT

)2(
∂µ

∂w

)2

p,T

〈Jl,0w0w0〉 , (A5)

with Aw given by Eq. (2.8). We conclude that Eq. (A4)
for pNE is identical to the one given in Section II.
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and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139
(2000).

[20] C. Giraudet, H. Bataller, Y. Sun, A. Donev, J. M. Ortiz
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J. B 21, 135 (2001).

[39] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys.
Rev. Lett. 88, 041804 (2002).

[40] P. Antonini, G. Bimonte, G. Bressi, G. Carugno,
G. Galeazzi, G. Messino, and G. Ruoso, J. Phys.: Con-
ference Series 161, 012006 (2009).

[41] J. Zou, Z. Marcet, A. W. Rodriguez, M. T. H. Reid,
A. P. McCauley, I. I. Kravchenko, T. Lu, Y. Bao, S. G.
Johnson, and H. B. Chen, Nature Comm. 4, 1845 (2013).

[42] M. E. Fisher, J. Math. Phys. 5, 944 (1964).
[43] S. Hartmann, G. Wittko, F. Schock, W. Grosz, F. Lind-
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Chem. Phys. 141, 134704 (2014).
[55] R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bu-

choltz, Optics Express 19, 10571 (2011).
[56] A. Regazetti, M. Hoyos, and M. Martin, J. Phys. Chem.

B 108, 15285 (2004).
[57] L. Helden, R. Eichhorn, and C. Bechinger, Soft Matter

11, 2379 (2015).
[58] D. N. Zubarev, Nonequilibrium Statistical Thermody-

namics (Consultants Bureau, New York, 1974).
[59] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J.

Stat. Phys. 15, 23 (1976).
[60] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
[61] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,

Phys. Rev. A 26, 950 (1982).
[62] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,

Phys. Rev. A 26, 972 (1982).
[63] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman,

Phys. Rev. A 26, 995 (1982).
[64] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,

Phys. Rev. A 4, 2055 (1971).


