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Abstract8

A new approach to turbulence closure is presented that eliminates the need to specify a prede-9

fined turbulence model and instead provides for fully-adaptive, self-optimizing, autonomic closures.10

The closure is autonomic in the sense that the simulation itself determines the optimal local, in-11

stantaneous relation between any unclosed term and resolved quantities through the solution of12

a nonlinear, nonparametric system identification problem. This nonparametric approach allows13

the autonomic closure to freely adapt to varying nonlinear, nonlocal, nonequilibrium, and other14

turbulence characteristics in the flow. Even a simple implementation of the autonomic closure for15

large eddy simulations provides remarkably more accurate results in a priori tests than do dynamic16

versions of traditional prescribed closures.17
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Introduction. Turbulence typically involves very wide ranges of length and time scales,18

which place an enormous computational burden on direct solutions of transport equations19

for momentum, energy, and scalars in turbulent flows. Coarse-graining [e.g., large eddy20

simulation (LES)] reduces this burden by solving equations for only intermediate and large21

scales, but nonlinearity in the original equations then introduces unclosed terms that must22

be modeled to achieve closure. For instance, with tildes denoting coarse-grained quantities,23

the incompressible momentum equation after low-pass filtering at scale ∆̃ is24

∂

∂t
ũi + ũj

∂

∂xj
ũi = − ∂

∂xi
p̃+ ν

∂2

∂x2j
ũi −

∂

∂xj
τij , (1)

where ũi (x, t) and p̃ (x, t) are the “resolved” velocity and pressure, with the density absorbed25

in p̃, and where τij ≡ ũiuj − ũiũj is the unclosed stress that accounts for local, instanta-26

neous momentum exchange between resolved and unresolved scales. Coarse-graining of other27

transport equations introduces similar unclosed terms.28

A central challenge in turbulence simulations is to achieve closure of coarse-grained equa-29

tions by relating unclosed terms such as τij to resolved quantities via turbulence models.30

Many such models have been proposed, particularly for use in LES, with the most common31

[1–4] prescribing τij relations that depend only on the resolved strain rate tensor, as re-32

viewed in [5]. However since coarse graining was introduced, more than 50 years of research33

has failed to provide universal models for τij or other unclosed terms that reliably account34

for nonlinear, nonlocal, nonequilibrium, and other turbulence effects [6–8] with fidelity ap-35

proaching that of direct simulation in the resolved scales at all local flow conditions.36

Autonomic Closure Approach. Here we take a completely different approach to turbulence37

closure that circumvents the need to prescribe a fixed relation between unclosed terms and38

resolved variables. Rather than specifying a prescribed model for the unclosed stress τij or39

other unclosed terms, we instead use a fully general nonparametric relation F that represents40

the true unclosed quantity in terms of all resolved variables at all points and all prior times.41

For example, to model τij in incompressible turbulence this fully general nonparametric42

relation for the stress can be expressed as43

τFij (x, t) ≡ Fij [ũ(x + x′, t− t′), p̃(x + x′, t− t′) ∀ x′, t′ ≥ 0] , (2)

where (x′, t′) is a stencil with center point (x, t) on which the resolved variables in Fij44

are defined and τFij represents the true stress τij. Due to its generality, Fij will typically45
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have a very large number of degrees of freedom, and is thereby free to adapt to the local,46

instantaneous turbulence state in the flow.47

The particular form of the general relation Fij is determined at each point and time using48

system identification based on test filtering. Resolved variables are filtered at a test scale49

∆̂ > ∆̃ to yield test-filtered resolved variables, such as ̂̃u (x, t) and ̂̃p (x, t), which are then50

used to obtain a test field for the unclosed quantity; e.g., for τij ≡ ũiuj − ũiũj the test field51

is Tij ≡ ̂̃uiũj − ̂̃uî̃uj. The same nonparametric relation Fij introduced in Eq. (2) is used to52

relate the known test field to known test-filtered variables. Thus, for instance, analogous to53

Eq. (2)54

TFij (x, t) ≡ Fij
[̂̃u(x + x′, t− t′), ̂̃p(x + x′, t− t′) ∀ x′, t′ ≥ 0

]
. (3)

Values for the degrees of freedom in Fij are determined by optimizing the local, instantaneous55

agreement of TFij with Tij via minimization of a suitably defined objective function56

Jij (x, t) = E
[
Tij (x, t) , TFij (x, t)

]
(4)

that measures the error in representing Tij (x, t) with TFij (x, t) and which may include regu-57

larization. For example, E could be based on the `2 norm of local instantaneous differences58

between Tij (x, t) and TFij (x, t) over P distinct stencil center points sampled from a region59

in which the turbulence state – and thus the relation Fij – is taken to be uniform. This is60

typically a local region centered on (x, t), but could extend in homogeneous directions or61

along Lagrangian paths. The sample region could in some cases span the full computational62

domain, but is typically much smaller to allow Fij to adapt to local, instantaneous changes63

in the turbulence state, with the sampling being repeated over the full domain. Regular-64

ization in Eq. (4) ensures that Fij stably generalizes to points in the same turbulence state65

that were not included in the set of P stencil center points. Once the degrees of freedom in66

Fij have been determined in this way, the resulting locally optimal form of Fij is then used67

in Eq. (2) to obtain the local, instantaneous value of τFij .68

The same procedure can be implemented for any other unclosed quantity. In effect,69

we solve a local nonlinear system identification problem at the test scale to determine the70

optimal local instantaneous degrees of freedom in the nonparameteric relation F . This can71

be repeated at every point and every time in the simulation, so that a new locally optimal72

relation between the unclosed quantity and all resolved variables is determined at each point73
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and time. This approach is therefore a fully-adaptive, self-optimizing autonomic closure for74

coarse-grained equations.75

The closure is “autonomic” in the sense that the simulation itself determines the opti-76

mal local, instantaneous relation between the unclosed quantity and resolved variables. In77

particular, F is free at each point and time to adapt as needed to the relative degree of non-78

linear, nonlocal, nonequilibrium, and other turbulence effects in the flow. In a sense, this79

new closure approach can be regarded as a nonparametric generalization of the dynamic80

approach used with various prescribed closure models, such as the dynamic Smagorinsky81

model [3, 4]. Computational costs associated with this autonomic closure can be controlled82

by limiting the degrees of freedom in F and reducing the size of the spatio-temporal stencil83

(x′, t′) associated with its inputs.84

It will be shown here through a priori tests involving τij that even simple implementations85

of this autonomic approach can provide far more accurate closures for unclosed terms than86

do dynamic versions of traditional prescribed closure models.87

Example of a General Nonparametric Relation F . Although any sufficiently general form88

could be used, here we show an example of a fully general nonparametric relation that may89

be used for autonomic closure of τij. In this example, we choose Fij in Eqs. (2) and (3) to be90

a Volterra series [9], namely a sum of multidimensional convolutions over all possible linear91

and nonlinear combinations of all resolved variables at all points and times. For instance,92

the Nth-order Volterra series for an M -dimensional multivariate input vector v(t) and scalar93

output y(t), namely y(t) = F [v(t)], is given by94

y (t) = h(0) +
N∑
n=1

[
M∑

m1=1

· · ·
M∑

mn=1

]∫
Rn

h(n)m1···mn
(τ1, · · · , τn)

n∏
p=1

vmp (t− τp) dτp , (5)

where h
(n)
m1···mn are Volterra coefficients that are formally related to partial derivatives of95

F . For systems with fading memory and bounded inputs, the Stone-Weierstrass theorem96

guarantees that any continuous function can be represented to within arbitrary precision by97

a Volterra series of sufficient but finite order [10].98

The continuous Volterra series in Eq. (2) can be written in discrete form for implemen-99

tation in turbulence simulations. For Nv resolved variables on a discrete spatio-temporal100

stencil with [Nx, Ny, Nz] spatial points and Nt times, the number of variables in the input101
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vector is M = NvNxNyNzNt. The resulting Nth-order discrete Volterra series for Fij is then102

Fij = h
(0)
ij +

N∑
n=1

[
M∑

m1=1

· · ·
M∑

mn=mn−1

]
h
(n)
ij,m1···mn

n∏
p=1

ṽmp , (6)

where the lower bounds on the summations span only unique variable combinations while103

still allowing for variable repetition in the products. In this example, the input vector ṽ104

in Eq. (6) consists of ũ and p̃ at all points and times (x′, t′) in the spatio-temporal stencil,105

namely106

ṽ(x, t) = { vec [ũ1(x + x′, t− t′) ∀ x′, t′ ≥ 0] , vec [ũ2(x + x′, t− t′) ∀ x′, t′ ≥ 0] , (7)

vec [ũ3(x + x′, t− t′) ∀ x′, t′ ≥ 0] , vec [p̃(x + x′, t− t′) ∀ x′, t′ ≥ 0] }T .

Each (ij) in Eq. (6) has a set of coefficients hij ≡ h
(n)
m1···mn which, once determined, allows107

the stress τFij in Eq. (2) to be obtained from resolved variables ṽ on the stencil.108

Since Eq. (6) is a sum of all possible multi-point products of all orders among all resolved109

variables at all locations and times on the stencil, this general relation can represent many110

mathematical operations among the resolved variables, including multi-point differences and111

products, spatial and temporal derivatives, filters, and others depending on the coefficients112

hij. Thus, in addition to many other fluid dynamically recognizable quantities, the auto-113

nomic closure allows τij to locally depend on the resolved strain rate but, as previously114

recommended [11], does not require or impose any such dependence.115

For each (ij) in Eq. (6) the total number of coefficients in hij is Nc = (M +N)!/(N !M !),116

so Nc becomes very large as the series order N and stencil size M become large. However,117

truncation of the series and limitation of the stencil size allows determination of hij in118

the autonomic closure to become sufficiently manageable for implementation in practical119

turbulence simulations.120

Implementation of Autonomic Closure. For example, the objective function in Eq. (4)121

may be represented using a mean squared error for E with Tikhonov regularization. With122

TFij (x, t) given by Fij in Eq. (6), this is equivalent to a damped least squares minimization,123

namely124

min Jij (x, t) = ‖Tij −Vhij‖2 + λ‖hij‖2 , (8)

where ‖ · ‖ is the `2 norm, Tij is a P × 1 column vector composed of the known test stresses125

Tij(x, t) at the P stencil center points (x, t), hij is the Nc × 1 column vector of unknown126
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coefficients, and V represents the P ×Nc array of all linear and nonlinear combinations of127

the input vector ̂̃v(x, t), each row of which corresponds to a different stencil center point128

(x, t). Here ̂̃v is composed of ̂̃ui and ̂̃p and is the test-scale analog of ṽ in Eq. (7). Since129

Tij and V are known at the test scale, Eq. (8) can be solved for hij. For λ > 0, the least130

squares problem is full rank and can be solved as131

hij =
(
VTV + λI

)−1
VTTij . (9)

This smoothly damps small singular values of VTV that would otherwise generate instabil-132

ities, and also ensures that the solution is full rank even in the event that P < Nc.133

Once the local coefficients hij are determined at the test scale from Eq. (8), they are134

projected to the original coarse-grain scale where F can be used to evaluate the local un-135

closed quantity, as in Eq. (2). In effect, the local, instantaneous coefficients hij characterize136

the local, instantaneous state of the turbulence, including the extent of nonlinear, nonlocal,137

nonequilibrium, and other characteristics of the turbulence at that point and time. When138

the coarse-grain and test-filter scales are sufficiently close, the relative effect of these char-139

acteristics should locally be the same in the coarse-grain fields as in the test fields, and thus140

hij should also be the same.141

Demonstration and Tests of Autonomic Closure. We now show a simple demonstration142

of autonomic closure and use it in a priori tests to assess the accuracy and utility of this143

new turbulence closure approach. Specifically, we represent τij with the Volterra series form144

in Eq. (6) and use Eq. (7) to write the input vector ṽ in terms of ũi and p̃ (Nv = 4), but we145

truncate the series after second order (N = 2) and use only time-local variables (Nt = 1) on146

a 3× 3× 3 spatial stencil, giving M = 108 and Nc = 5995. The large number of coefficients147

hij is due to the many multipoint second-order products that can be formed from ũi and p̃148

on even this small stencil.149

Using spectrally sharp filters applied to data from a 10243 pseudo-spectral direct nu-150

merical simulation (DNS) of homogeneous isotropic turbulence at Reλ = 433 in the Johns151

Hopkins Turbulence Database [12], the velocity and pressure fields are coarse-grained and152

test-filtered to, respectively, retain 30 and 15 Fourier modes. The sample region here spans153

the entire domain, although smaller regions could be used instead to reveal local variations154

in the turbulence state via hij. Across the sample region we sample at 25 equally-spaced155

increments along each direction, giving P = 15, 625 total points and providing an over-156
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determined system for hij, which is solved using Eq. (9).157

Figure 1 shows typical examples of test stress fields Tij(x, t) and corresponding TFij (x, t)158

fields resulting from the least-squares minimization for hij. It is apparent that even this159

relatively simple Fij is sufficient to represent most of the features in the test stresses Tij(x, t).160

Also shown for comparison is the corresponding representation of the test stresses from the161

dynamic Smagorinsky (DS) model of Lilly [4] with no additional averaging or clipping,162

denoted TDSij (x, t). The DS model is chosen for comparison due to its widespread use and163

because, similar to the current approach, it effectively requires the solution of an optimization164

problem to determine a variable model coefficient. It is apparent from Fig. 1 that the highly165

prescriptive relation in the DS model between the test stresses and the test-filtered variables166

is far less able to represent features in Tij(x, t) than the autonomic closure.167

Figure 2 shows corresponding results for the turbulent stress field τij(x, t) to allow com-168

parison with the autonomic closure representation τFij (x, t), which uses the same hij deter-169

mined at the test filter scale in Fig. 1. Also shown for comparison are corresponding results170

τDSij (x, t) from the DS model. It is apparent that τFij (x, t) from the autonomic closure pro-171

vides a remarkably accurate representation of the true stress τij(x, t), especially in view of172

the global optimization used here, while τDSij (x, t) has nearly no correlation with features in173

τij(x, t).174

Figure 3 uses probability densities to compare test stress values Tij with TFij and TDSij ,175

and turbulent stress values τij with τFij and τDSij . The distributions TFij and τFij from the176

autonomic closure agree remarkably well with the true stress distributions Tij and τij, while177

those from the DS model greatly overpredict the occurrence of large positive and negative178

stress values.179

Figure 4 similarly compares the kinetic energy flux between resolved and unresolved180

scales, P̃ (x, t) = τijS̃ij, with corresponding results P̃F(x, t) from the autonomic closure and181

P̃DS(x, t) from the DS model, each obtained from their corresponding stress fields. It is182

apparent that the autonomic closure provides remarkably accurate results for P̃ (x, t) and183

its distribution, while the DS model essentially matches only the average energy flux and has184

nearly no correlation with the actual energy transfer field. This is verified in the probability185

densities in Fig. 5, where even this simple autonomic closure is seen to provide accurate186

results for the distribution of energy flux values, while the prescribed (DS) closure greatly187

overpredicts large positive and negative energy flux values.188
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Summary and Conclusions. The autonomic approach to turbulence closure presented189

here provides a fully-adaptive, self-optimizing way to treat unclosed terms in coarse-grained190

equations, based on a locally optimal relation between the unclosed quantity and all re-191

solved variables at each point and time. The nonparametric nature of the approach allows192

the closure relation to freely adapt to varying nonlinear, nonlocal, nonequilibrium, and other193

turbulence characteristics throughout the flow. By limiting the degrees of freedom in the194

general relation and reducing the size of the stencil on which it is implemented, the com-195

putational cost associated with the autonomic closure can be managed. Even the simple196

implementation of the autonomic closure demonstrated here gives remarkably more accurate197

results than dynamic versions of traditional prescribed turbulence models.198

The autonomic approach also provides a means for “model discovery” by finding optimal199

coefficients hij at a test scale that give effective representations for unclosed terms. These200

coefficients and the associated stencil then provide an autonomically-discovered static model201

that can be broadly implemented. Furthermore, the resulting hij can be decomposed into202

any desired set of fluid dynamically recognizable quantities that can be formed from the203

resolved variables on the chosen stencil, thereby providing autonomically-enabled insights204

into local turbulence physics; e.g., in near-wall turbulence.205

This new closure is broadly related to recent applications of machine-learning approaches206

to turbulence simulations (e.g., [13–16]). A key distinction is that the autonomic closure207

does not require external training data. In effect, the test fields here provide internal training208

data and the scale-invariance of local turbulence characteristics between the test-filter and209

coarse-grain scales allows the local degrees of freedom in the general nonparametric relation210

F to be projected from one scale to the other.211

We have shown results from a priori tests of autonomic closure for LES, but full assess-212

ment of the performance and accuracy of this new approach also requires a posteriori tests213

to investigate matters such as numerical stability, computational cost, and closure accuracy214

for non-spectrally sharp filters. In particular, accurate predictions of forward and backward215

scatter of kinetic energy, as well as the duration of backward scatter events, are critical216

for ensuring that the closure is both realistic and stable in simulations. The present results217

show that both forward and backward scatter of kinetic energy in P̃ (x, t) flux fields from the218

autonomic closure agree well with corresponding DNS fields, in contrast to the largely un-219

physical fluxes predicted by the dynamic Smagorinsky model. Although some prior models220
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showing improved agreement in a priori tests, such as the similarity model [17], are known221

to be insufficiently dissipative, it is anticipated that the large number of degrees of freedom222

in the autonomic closure may enable accurate predictions of backscatter and dissipation223

across a wide range of local turbulence states. Ongoing work is also exploring whether test224

filtering can be similarly applied to ensemble-averaged fields in order to allow the approach225

presented here to extend to autonomic closure of ensemble (Reynolds) averaged turbulence226

simulations.227
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FIG. 1. Test stress fields T11(x, t) (top row), T12(x, t) (middle row), and T13(x, t) (bottom row),

showing results for (left column) the true stress Tij(x, t), (middle column) the autonomic stress

TFij (x, t), and (right column) the stress TDSij (x, t) from the dynamic Smagorinsky model. (color

online)
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FIG. 2. Coarse-grained turbulent stress fields τ11(x, t) (top row), τ12(x, t) (middle row), and

τ13(x, t) (bottom row), showing results for (left column) the true stress τij(x, t), (middle column)

the autonomic closure τFij (x, t), and (right column) the dynamic Smagorinsky model τDSij (x, t).

(color online)
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FIG. 3. Probability densities of turbulent stress components at the test-filter scale (top row) and

coarse-grain scale (bottom row), showing results for T11 and τ11 (left column), T12 and τ12 (middle

column), and T13 and τ13 (right column), showing densities for the true stresses from DNS (black

lines), stresses from the autonomic closure (red lines), and stresses from the dynamic Smagorinsky

model (blue lines). (color online)
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FIG. 4. Kinetic energy flux fields at the test-filter scale (top row) and coarse-grain scale (bottom

row), showing results for the true flux fields P̃ (x, t) (left), the fields P̃F (x, t) resulting from the

autonomic closure (center), and the fields P̃DS(x, t) from the dynamic Smagorinsky model. Even

this simple implementation of autonomic closure is far more accurate than the prescribed closure

in the dynamic Smagorinsky model. (color online)

FIG. 5. Probability densities of kinetic energy fluxes (a) P̂ at the test-filter scale and (b) P̃ at the

coarse-grain scale, showing distributions of the true fluxes from DNS (black lines), fluxes from the

autonomic closure (red lines), and fluxes from the dynamic Smagorinsky model (blue lines). (color

online)
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