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Abstract

Granular flows in rotating drums transition between two regimes characterized by straight and

curved free surfaces. Here we predict this behavior using a depth-integrated theory applicable to

general eroding flows. Closure is achieved by a local µ(I) rheology and an equation for kinetic

energy. Spanning the transition, the theory yields relations for all flow properties in terms of a

single dimensionless rotation rate. In accord with experiments, distinct scaling laws are obtained

for slow and fast rates, dominated respectively by local energy dissipation and longitudinal energy

transfer.
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Granular surface flows in half-filled rotating drums are a simple analog of geophysical

processes such as debris flows and rock avalanches. Like their natural counterparts, they

entrain, convey, and detrain grains from an erodible substrate [1]. Unlike natural flows, their

dynamics are simple to observe experimentally over a wide range of regimes produced by

varying the rotation rate of the drum [2–4]. From very slow to very fast rotation rates, the

flows range from intermittent to continuous to centrifugal [5, 6]. Restricting our attention

to continuous, non-centrifugal avalanching, experimental flows exhibit a gradual transition

between rolling and cascading regimes, characterized respectively by straight and curved

free surfaces [5–8] and governed by different scaling laws [9, 10]. So far, theories have not

been able to predict these flows based on rheology and mechanics alone without ad hoc

assumptions [7, 11, 12].

In this communication, we show that the transition between rolling and cascading can

be predicted from a simple depth-integrated theory applicable to general eroding flows. In

this theory [13], an equation for kinetic energy completes a system of mass and momentum

equations for the flowing layer. Crucially for drum flows, it captures granular entrainment

and detrainment without requiring either a separate erosion law [14, 15] or a constraint on

the shear rate across the layer [7, 11]. The only closures needed are a rheological law for

the granular stresses, capturing their rate-dependence, and a law for wall friction accounting

for the crucial role played by the sidewalls. Across the rolling to cascading transition, the

theory predicts drum flow properties that compare well with experimental measurements.

Beyond this predictive ability, the theory provides new insights into the flow physics.

Instead of the multiple dimensionless numbers identified earlier as potentially relevant [8, 16],

the transition between rolling and cascading is found to depend on a single dimensionless

rotation rate ω̂, expressing the strength of entrainment. Corresponding to slow and fast rates

ω̂, rolling and cascading are associated with distinct energy dynamics. At slow rates, flows

maintain a local equilibrium between production and dissipation of kinetic energy. At fast

rates, longitudinal transfer of kinetic energy dominates. This produces distinct power-law

asymptotes for the two regimes.

Consider a drum of width W and radius R, half-filled with dry grains of diameter D

(Fig. 1(a)). When rotating the drum at constant angular velocity ω, two distinct granular

regions form [2, 5]: a deep bed, undergoing rigid body rotation, and a shallow avalanching

layer undergoing shear flow. We seek to predict at steady state the mean flow velocity u(x)
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FIG. 1. Definition sketch: (a) overview; (b) local cutaway.

and the top and bottom boundaries z̃(x) and ˜z(x) of the avalanching layer. Whereas no

flux occurs across the free surface z̃(x), the basal interface ˜z(x) is a yield locus across which

grains are continuously entrained and detrained at rate ˜w(x) = −ωx. Since there are three

unknown profiles u(x), z̃(x) and ˜z(x), two balance equations for mass and momentum are

not sufficient [17]. Recently, we proposed to complete the description by deriving a third

balance law for the kinetic energy of the flowing layer. For steady flow, this yields the three

depth-integrated equations [13]:
d

dx
(hu) = ˜w , (1)

d

dx

(
77
48
hu2
)

= −g⊥h
dz̃

dx
− µW
W

g⊥h
2 , (2)

d

dx

(
κhu3

)
= −g⊥hu

dz̃

dx
− 5

9

µW
W

g⊥h
2u− 35

9
χDg

1/2
⊥

u2

h1/2
. (3)

Derived subject to the shallow flow approximation (h/R << 1), these are balance equations

for the mass, momentum, and kinetic energy of the flowing layer, integrated over the width

W and depth h(x) = z̃(x)−˜z(x) (Fig. 1). For example, eq. (1) results from integrating the

local continuity equation ∂u/∂x+∂w/∂z = 0 from˜z to z̃, subject to the kinematic boundary

conditions ˜u = 0 and ˜w = −ωx along the basal interface, and w̃ = ũ ∂z̃/∂x along the free

surface. The forces considered in eqs (2) and (3) are those resulting from gravity, friction

along the side walls, and internal granular stresses (see [13, 18] for detailed derivations). The

coordinate x is measured along a straight axis tilted at the granular angle of repose α, with

origin x = 0 at the drum center, and g⊥ = g cosα is the component of gravity normal to the

x axis. Constitutive parameters µW and χ are respectively the wall friction coefficient and
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the slope of the linearized µ(I) rheology adopted to model the granular stresses [19–22]:

τxz = µ(I)σ = (µ0 + χI)σ , (4)

where τxz is the shear stress, I = γ̇xzD
√
ρ/σ the inertial number, γ̇xz the shear rate, µ0 =

tanα the stress ratio at yield, σ = ρg⊥(z̃−z) the granular pressure, assumed lithostatic, and

ρ = cSρS the bulk density. In (4), the first rate-independent term µ0σ is the Coulomb yield

stress, which vanishes from (2,3) because of the tilted coordinate system. The second, rate-

dependent term χIσ represents a granular-viscous contribution, with a pressure-dependent

effective viscosity.

In (2) and (3) the left-hand terms are the momentum and kinetic energy fluxes. On the

right hand sides, the first terms are the force and work of the pressure gradient, and the

second terms the force and energy dissipation due to wall friction. The last term of (3) is a

key term with no counterpart in (2), representing energy dissipation by the granular-viscous

stress. In (2,3), the coefficients 77
48

, κ = 342853
233376

≈ 1.469, 5
9

and 35
9

are obtained from moments

of the self-similar velocity profile produced by the rheology for steady uniform heap flow

[13, 19, 23]. This depth-wise profile is given by (Fig.1(b)):

u(x, z)

u(x)
= 7

3
− 35

6
η̂3/2 + 7

2
η̂5/2 , (5)

where η̂(x, z) = (z̃(x)− z)/h(x), and allows the full velocity field to be reconstructed from

long profiles u(x), z̃(x) and ˜z(x).

Choosing the drum rotation rate ω as the principal control variable and setting x̂ = x/R,

the response variables h, u and S = −dz̃/dx can be normalized independently of ω in the

form ĥ = h/hc, û = u/uc, and Ŝ = S/Sc where the expressions for hc, uc, and Sc are given

in Table I. On normalizing in this way, the response depends on the single dimensionless

number

ω̂ =
ωR9/8(W/µW )1/8

g
1/2
⊥ (χD)3/4

. (6)

Physically, the dimensionless rotation rate ω̂ can be interpreted as the ratio of the forced

entrainment rate fc = ωR to the free entrainment rate ec = hc/tc obtained for uniform

unsteady flows, where tc = h
3/2
c /(g

1/2
⊥ χD) is the time scale over which unsteady entrainment

occurs [13]. For zero entrainment (ω̂ = 0), the solution is a steady uniform flow in equilibrium

with excess slope Ŝ. The parameter ω̂ therefore measures how strongly entrainment perturbs

the flow away from local equilibrium, and we hereafter call it the entrainment number.
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TABLE I. Characteristic variable definitions ξc and scaling exponents aξ, bξ for asymptotic regimes

Ra (ω̂ → 0) and Rb (ω̂ → ∞). For any given variable ξ, we denote by ξ̂ = ξ/ξc its dimensionless

value, and by ξ̂ ∝ ω̂aξ or ξ̂ ∝ ω̂bξ its asymptotic scaling law.

ξ ξc aξ bξ

h (χD)1/2R1/4(W/µW )1/4 2/7 2/3

u g
1/2
⊥ (χD)1/4R5/8(W/µW )−3/8 5/7 1/3

S (χD)1/2R1/4(W/µW )−3/4 2/7 2/3

A hcR 2/7 2/3

K hcu
2
cR 12/7 4/3

Φ g
1/2
⊥ (χD)h

−1/2
c u2cR 9/7 1/3

Subject to the above assumptions, this number ω̂ is the sole control parameter for granular

flows in half-filled drums.

Further insight can be obtained by examining the two asymptotic regimes Ra and Rb

resulting from defining ĥa = h/ha, ĥb = h/hb etc., then assuming the power law scalings

ha = ω̂ahhc, hb = ω̂bhhc etc., with exponents ah, bh etc., selected to balance particular terms

in equations (1)-(3) (see Table I). For both regimes, we first set ah + au = bh + bu = 1 to

balance the two sides of continuity equation (1). For regime Ra, we then equilibrate the

right-hand terms of (2) and (3) to obtain the dimensionless equations

ω̂8/7 d

dx̂

(
77
48
ĥaû

2

a

)
= ĥaŜa − ĥ2a , (7)

ω̂8/7 d

dx̂

(
κĥaû

3

a

)
= ĥaûaŜa − 5

9
ĥ2aûa − 35

9
ĥ−1/2a û

2

a . (8)

In the limit ω̂ → 0, the left-hand terms associated with convective inertia are found to

vanish. Adopting the Ra scalings (see Table I) therefore produces ω̂-independent equations

in the limit of low entrainment numbers. In this limit, the momentum and kinetic energy

fluxes play no role and the flow layer balances momentum and kinetic energy locally. Flow

depth, mean velocity, and excess inclination consequently exhibit the simple scaling laws

ĥ ∝ ω̂2/7, û ∝ ω̂5/7, and Ŝ ∝ ω̂2/7.

For regime Rb, we balance all terms of (2) and (3), with the exception of the last right-

hand term of (3) associated with dissipation by granular-viscous stresses. This produces the

5



new dimensionless equations

d

dx̂

(
77
48
ĥbû

2

b

)
= ĥbŜb − ĥ2b , (9)

d

dx̂

(
κĥbû

3

b

)
= ĥbûbŜb − 5

9
ĥ2b ûb −

(
1

ω̂

)4/3
35
9
ĥ
−1/2
b û

2

b . (10)

Now the last term of (10) vanishes in the limit ω̂ →∞. Adopting the Rb scalings (see Table

I) leads to ω̂-independent equations in the limit of high rotation rates. In this limit, granular-

viscous dissipation exerts no influence. Instead, the pressure gradient and wall friction are

balanced by convective inertia, hence the left-hand momentum and kinetic energy fluxes play

dominant roles. For this asymptote, the flow depth, mean velocity, and excess inclination

vary with rotation rate according to the scaling laws ĥ ∝ ω̂2/3, û ∝ ω̂1/3, and Ŝ ∝ ω̂2/3.

In the limits of low and high entrainment numbers, we thus obtain two asymptotic regimes

characterized by distinct power-law exponents. By solving equations (1)-(3), we can also

calculate flow profiles, and capture the gradual transition between the two regimes. For arbi-

trary entrainment number ω̂, solutions to the equations are obtained as follows. Integration

of (1) first yields the granular discharge q(x) = h(x)u(x) = 1
2
ω(R2−x2) [5]. The excess slope

S = −dz̃/dx is then eliminated between (2) and (3), to produce a single non-linear ordinary

differential equation for the depth profile h(x). In dimensionless variables, this ODE reads

dĥ

dx̂
=

560ĥ1/2q̂ − 64ĥ4 + 6ω̂7/8(72κ− 77)ĥq̂ dq̂/dx̂

3ω̂7/8(96κ− 77)q̂2
, (11)

where ĥ(x̂) is the unknown depth profile and q̂(x̂) = 1
2
ω̂(1− x̂2) is the prescribed discharge

profile, both in dimensionless form. The solution curve ĥ(x̂) can then integrated numerically

starting from upstream boundary condition ĥ(−1) = 0. When both ĥ and q̂ are greater

than 0 (away from the upstream and downstream ends x̂ = ∓1), the right-hand-side is well-

behaved and simple to integrate. Care is required at the two ends, however, where both ĥ

and q̂ tend to zero and the solution curve features vertical tangents. For low values of ω̂, the

ODE becomes stiff and difficult to solve numerically. Fortunately the solution curve in the

limit ω̂ → 0 can be found analytically and is given by ĥ(x̂) = (35
4
q̂(x̂))2/7. Once the depth

profile h(x) is obtained, the excess slope profile S(x) = −dz̃/dx is also known. Subject to

the integral condition
∫ R
−R z̃(x)dx = 0 (expressing mass conservation), this slope profile can

finally be integrated to obtain the surface shape profile z̃(x).
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To check the theory, we conducted rotating drum experiments in which the full granular

velocity field was measured with precision. Two sets of spherical, mildly polydisperse alumi-

nosilicate millstones (ρS = 2610 kg m−3) with different mean grain diameters D1 = 2.3 mm

and D2 = 4.1 mm respectively were used to half-fill a drum of radius R = 200 mm and width

W = 40 mm with aluminum and glass walls on either side. Experiments were restricted to

the range 5×10−5 < Fr < 0.3, where Fr = Rω2/g is the Froude number or ratio of centrifugal

to gravitational acceleration. Below the lower bound, intermittent avalanching is observed

in our experimental system. Above the upper bound, on the other hand, centrifugal effects

can be expected to play a dominant role [6]. Applicability of the proposed theory is therefore

restricted to the selected range.

The constitutive coefficients of the theory were estimated from independent experimental

tests. Grain-wall friction coefficients µA = 0.26 and µG = 0.21 were measured in slider

tests yielding a mean of µW = 0.24. For the same grains, steady uniform heap flows were

used in [13] to calibrate coefficient values µ0 = 0.33 and χ = 0.52 for the linearized µ(I)

rheology (4), and we adopt these values without adjustment for the comparisons below. A

high speed video camera and particle tracking velocimetry were used to record and track

grain motions at millisecond intervals through the glass sidewall [24]. Grain displacement

vectors gathered over several seconds of flow were converted into time-averaged velocity

fields and streamfunctions Ψ over a 1 mm-resolution Cartesian grid. Using the dimensionless

streamfunction Ψ̂ = Ψ/(1
2
ωR2), experimental surface and basal interfaces z̃ and ˜z were then

inferred from the respective loci Ψ̂ = 0.01 and Ψ̂− Ψ̂0 = 0.02, where Ψ0 = 1
2
ω(R2− x2− z2)

is the streamfunction associated with solid body rotation alone.

Measured and predicted results are presented in Fig.2 for diameter D1 and the two rota-

tion rates ω = 1 rpm and ω = 10 rpm. These correspond to entrainment numbers ω̂ = 0.7

and ω̂ = 7, and display the distinct signatures of the rolling and cascading regimes [5, 7, 8].

In the rolling regime (Fig.2(a),(c)) the avalanching layer adopts a lenticular thickness pro-

file h(x) and a nearly straight free surface z̃(x) (black lines). In the cascading regime

(Fig.2(b),(d)), by contrast, the layer acquires an asymmetric thickness profile, blunt up-

stream but cusped downstream, and a curved free surface. The largest velocity magnitudes

(in color), focused near the free surface, are symmetric with respect to the drum center for

the rolling regime, but displaced downstream for the cascading regime. Finally the stream-

lines (white contours) show clearly how grains trapped in the slowly rotated deposits are
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FIG. 2. Comparison of measured (a,c) and predicted flow fields (b,d) for low and high entrainment

numbers: (a,b) ω̂ = 0.7; (c,d) ω̂ = 7. Color: velocity magnitude; black profiles: free surface and

basal interface; white contours: streamlines from level sets of the dimensionless streamfunction

Ψ̂ at equally spaced values. For the predicted streamlines on panels (b) and (d), we added a

correction ∆Ψ = −1
2ωz

2 to the streamfunction Ψ deduced from the theory, to add back the small

velocity component u0 = −∂Ψ0/∂z due to solid body rotation and neglected by our shallow flow

approximation.

fed back to the rapidly avalanching surface flows. For all these features, good qualitative

agreement is obtained between the measured and predicted flow fields. The level of quan-

titative agreement, however, is not sufficient to collapse predicted and measured profiles on

the same plot.

To visualize the energy dynamics of the two regimes, color grids in Fig.3(a)-(d) illustrate

spatial distributions of the quantity

ϕ(x, z) =
∂

∂xj

(
1
2
|u|2 uj

)
+ χD(σ/ρ)1/2 |γ̇|2 , (12)

equal to the sum of two terms: the divergence of the kinetic energy flux and the dissipation
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FIG. 3. Visualization of the energy dynamics at low and high entrainment numbers ω̂ = 0.7 (left)

and ω̂ = 7 (right): (a),(b) measured ϕ(x, z) grids; (c),(d) predicted ϕ(x, z) grids; (e),(f) measured

(blue) and predicted φ(x) profiles (black). For the measured profile φ(x), the coordinate x is taken

along a secant line connecting the upstream and downstream endpoints of the free surface.

by the granular-viscous stress. Here |u| is the norm of the local velocity and |γ̇| is the

second invariant of the shear rate tensor γ̇ij = ∂ui/∂xj + ∂uj/∂xi, where (x1, x2) = (x, z).

Consistent with the shallow flow assumption, for the theory we approximate |u|2 ≈ u2 and

|γ̇|2 ≈ γ̇2xz, and deduce profiles in the z-direction from the assumed self-similar shape of the

velocity profile (5). For the experiments, we calculate the full expressions |u| = √ukuk and

|γ̇| =
√
γ̇ij γ̇ij from the measured velocity fields.

The resulting ϕ(x, z) distributions demonstrate how rolling and cascading are associated

with distinct energy dynamics. In the rolling regime (Fig.3(a),(c)), granular-viscous dissi-

pation dominates over kinetic energy transfer (limit ω̂ → 0 of regime Ra). Since the local
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dissipation (second right-hand term of (12)) is positive definite, this yields a monopolar (red)

ϕ distribution. In the cascading regime (Fig.3(b),(d)), by contrast, kinetic energy transfer

dominates over viscous dissipation (limit ω̂ →∞ of regime Rb). Produced upstream, where

its flux has positive divergence, kinetic energy is convected downstream where its diver-

gence becomes negative. As kinetic energy is transported from source (red) to sink (blue),

a bipolar ϕ distribution is obtained.

To make the comparisons more quantitative, we plot in Fig.3(e),(f) the profiles φ(x) =∫ z̃
˜z ϕ(x, z) dz obtained by integrating ϕ(x, z) over the flow depth. In the rolling regime

(Fig.3(e)), the φ(x) profile is nearly symmetric about x = 0, as the dominant granular-

viscous dissipation inherits the symmetry of the flow discharge and thickness profiles. In

the cascading regime (Fig.3(f)), the source and sink due to the divergence of the kinetic

energy flux dominate, and the φ(x) profile becomes nearly antisymmetric. Good agreement

with the experiments is obtained, confirming that the theory correctly captures the energy

dynamics for both regimes.

Figure 4 shows results from 34 drum experiments in which the rotation rate ω was varied

from 1 to 30 rpm. Measurements are compared with predictions for the following quantities:

the excess surface inclination S = −dz̃/dx at the drum centerline (Fig.4(a)), the area of the

flowing layer A =
∫ R
−R(z̃ −˜z) dx, (Fig.4(b)), the total kinetic energy K =

∫ R
−R

∫ z̃
˜z |u|

2 dz dx

(Fig.4(c)), and the total dissipation by viscous stresses Φ =
∫ R
−R φ dx (Fig.4(d)). When

normalized by their characteristic values Sc, Ac, Kc and Φc (Table I), the dimensionless

quantities Ŝ = S/Sc, Â = A/Ac, K̂ = K/Kc and Φ̂ = Φ/Φc are predicted to vary with the

entrainment number ω̂ according to universal dimensionless curves Ŝ(ω̂), Â(ω̂), K̂(ω̂) and

Φ̂(ω̂) (blue lines). On the log-log graphs, the power-law asymptotes associated with regimes

Ra (ω̂ → 0, in green) and Rb (ω̂ →∞, in red) plot as straight lines with inclinations equal

to their power law exponents (Table I). The dependence of Â on ω̂, for instance, transitions

from the scaling Â ∝ ω̂2/7 to the scaling Â ∝ ω̂2/3 as ω̂ increases. This is consistent with

empirical scaling exponents obtained earlier for the dependence of the flow depth h on the

rotation rate ω [9, 10]. Note that the asymptotes associated with the two regimes do not

cross at the same entrainment number ω̂ for different quantities. Intersection points range

instead from ω̂ = 2, for the excess slope (Fig.4(a)), to ω̂ ≈ 20 for the dissipation (Fig.4(d)).

Instead of a sudden change at a well-defined value of ω̂, the transition between rolling and

cascading involves a gradual shift in the relative strength of different mechanisms. Similar
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FIG. 4. Comparison of predictions and measurements for the variation with entrainment number

ω̂ of the following quantities: (a) excess slope; (b) flow layer area; (c) total kinetic energy; (d)

total viscous dissipation. Lines: theoretical curves (blue) and their low (green, regime Ra) and

high ω̂ asymptotes (red, regime Rb). Symbols: our experiments for diameters D1 (circles) and D2

(squares), and those of [25] (deltas) and [7] (nablas).

gradual transitions between distinct power law asymptotes are well documented for heat

flow between parallel plates [26].

Overall, experimental results are in reasonable agreement with the theoretical predic-

tions. On normalization, our results for the two different grain diameters D1 (circles) and

D2 (squares) collapse to approximate colinearity with the theoretical curves. For further

comparison, slope data from [25] (deltas) and area data from [7] (nablas) are plotted in

Fig.4(a) and Fig.4(b), assuming respectively the values µ0 = 0.30, µW = 0.20, χ = 0.25 and

11



µ0 = 0.50, µW = 0.20, χ = 0.35 for the constitutive coefficients. In all cases, the theory

captures well both the asymptotic (green, red) and transitional responses (blue) observed in

the experiments. The excess slope at the centerline, however (Fig.4(a)), is underpredicted

by a constant factor of approximately 1.5, hence a constant offset in log units. The origin of

this offset is unclear, but could be due to finite system size effects not modeled by the µ(I)

rheology. So far, most experimental support for this rheology has come from granular heap

flows in long inclined channels [13, 19, 21]. As in other finite size systems ([22]), there may

be granular effects associated with the limited length of the drum system that the descrip-

tion does not capture, and which could cause this discrepancy. We have checked that the

problem cannot be addressed simply by resetting the values of the constitutive coefficients

µ0 and χ (instead of using those calibrated from inclined channel experiments), as improving

the fit for the excess slope S causes significantly poorer agreement for the flow area A and

dissipation Φ.

In this communication, we have shown how a simple set of depth-integrated equations

can predict avalanching flows in rotating drums based purely on rheology and mechanics. A

single dimensionless parameter, the entrainment number ω̂, was found to govern the transi-

tion between rolling and cascading. The corresponding asymptotic regimes are dominated

respectively by granular-viscous dissipation and by kinetic energy transport, yielding dis-

tinct power law exponents. These results clarify why the rotating drum has proven difficult

to use as a granular rheometer [4, 9]. It turns out that, as the rotation speed increases,

the influence of the rate-dependent granular rheology becomes negligible compared to the

effects of convective inertia, not included in previous theories [5].

Our findings open several avenues for further investigation. In [13], the unsteady uniform

version of equations (1)-(3) was found to capture well transient granular flows in tilting

channels. In this communication, the equations were shown to describe steady, but spatially

varying flows. It remains to test the full equations [13] for general eroding flows, variable in

both space and time. The proposed equations could also support investigations of granular

segregation. In [27], it was shown that for the same conditions, binary flows involving

grains of two different sizes exhibit roughly the same flow field as monodisperse flows of

similarly sized grains, and that segregation and mixing patterns can be modeled based on

the kinematics of this flow field. Moreover, modeling is greatly facilitated when a simple

description is available for the flow kinematics. By providing simple solutions for the flow
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kinematics across the rolling to cascading transition, therefore, our work could provide a

useful basis for modeling binary flows in the same regimes. By incorporating non-local

effects absent from the µ(I) rheology [22], finally, it may become possible to extend the

theory to the intermittent regime.
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