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Theoretical attempts proposed so far to describe ordinary percolation processes on real-world
networks rely on the locally tree-like ansatz. Such an approximation, however, holds only to a
limited extent, as real graphs are often characterized by high frequencies of short loops. We present
here a theoretical framework able to overcome such a limitation for the case of site percolation. Our
method is based on a message passing algorithm that discounts redundant paths along triangles in
the graph. We systematically test the approach on 98 real-world graphs and on synthetic networks.
We find excellent accuracy in the prediction of the whole percolation diagram, with significant
improvement with respect to the prediction obtained under the locally tree-like approximation.
Residual discrepancies between theory and simulations do not depend on clustering and can be
attributed to the presence of loops longer than three edges. We present also a method to account
for clustering in bond percolation, but the improvement with respect to the method based on the
tree-like approximation is much less apparent.

Percolation processes are often used to study resilience
properties of real networks [1–3], and play a fundamen-
tal role in the understanding of spreading phenomena in
real systems [4, 5]. Percolation has been intensely studied
in a multitude of network models [6–8], including sparse
tree-like graphs [2, 3, 9], as well as generative models
for random networks with triangles, cliques or arbitrary
subgraphs [10–15]. These studies shed light on funda-
mental physical mechanisms of percolation processes on
complex network topologies, but their importance in the
analysis of percolation on real-world graphs is limited, as
the topology of individual real networks often markedly
differs from the one of random network ensembles. Re-
cent works have attempted to overcome such a serious
limitation. Karrer et al. formulated a novel method
which takes as input the detailed topological structure
of a given network to predict the value of the percolation
strength (and other macroscopic observables) as a func-
tion of the bond occupation probability [16]. In particu-
lar, they demonstrated that the bond percolation thresh-
old of a given network is bounded from below by the
leading eigenvalue of its non-backtracking matrix [17].
An approach based on the same rationale was also used
by Hamilton and Pryadko to study site percolation in
isolated networks [18], and by Radicchi in the analysis
of bond and site percolation models in interdependent
networks [19]. These methods still suffer from a funda-
mental limitation: they are based on the locally tree-like
approximation [6–8], and as such they are potentially not
reliable for networks with nonnegligible density of trian-
gles, or short loops in general [20, 21].

In this paper, we make a step forward, by generalizing
the approach developed in [16, 18] to clustered networks.
Through a systematic analysis of about one hundred real-
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world networks as well as clustered synthetic ones, we
demonstrate that our framework provides excellent pre-
diction of the whole phase diagram for the site perco-
lation model. Furthermore, we present an approach im-
proving also the prediction of the bond percolation phase
diagram (though in a less satisfactory way) and under-
stand the origin of the differences between the two cases.

We start our analysis from the site percolation model.
We assume that the structure of a network with N nodes
and E edges is given by a one-zero adjacency matrix A
(i.e., the generic element Ai,j = 1 if vertices i and j are
connected, whereas Ai,j = 0 otherwise). We further as-
sume that the network is composed of a single connected
component. In the ordinary site percolation model, each
node is active or occupied with probability p. Two active
nodes belong to the same cluster if there exists at least
a path, passing only through active nodes, that connects
them. For p = 0, no nodes are active so that there are
no clusters. For p = 1, all nodes are active and belong to
a single cluster of size N . As p varies, the network un-
dergoes a structural phase transition, at the percolation
threshold pc, corresponding to the appearance of an ex-
tensive cluster. The transition can be monitored through
the so-called percolation strength S∞, defined as the rel-
ative size of the largest cluster with respect to the size of
the network. For p = 0, S∞ = 0; for p = 1, S∞ = 1. The
goal of the following approach is to estimate the expected
value of S∞ over an infinite number of realizations of the
percolation model for any given value of p. The proba-
bility si that node i belongs to the largest cluster can be
described by the equation

si = p[1−
∏

j∈Ni

(1− ti→j)] , (1)

where Ni is the set of neighbors of node i and ti→j quan-
tifies the probability that following the edge (i, j), in the
direction i → j, we find a node belonging to the largest
cluster. The quantity ti→j can be interpreted as a “mes-



2

sage” passed from node j to vertex i about belonging
to the largest cluster. Eq. (1) essentially states that the
probability that node i is part of the largest cluster equals
the product of the probabilities that (i) node i is active
and (ii) at least one of its neighbors is in the largest clus-
ter. For consistency, the probability ti→j is described by
the equation

ti→j = p[1−
∏

k∈Qi→j

(1− tj→k)] . (2)

The explanation of this equation is similar to the previous
one. The only difference here is that the product does
not run necessarily over all the neighbors of node j, but
only on the elements of the set Qi→j . We note that,
while Eq. (2) is in principle defined for every pair of node
indices i → j, only pairs of nodes connected by an edge
play a role in Eq. (1). We have therefore 2E equations
of the type (2) that can be solved by iteration. The
solutions of these equations are then plugged into the set
of N Eqs. (1) to determine the value of every si. Finally,
the percolation strength is computed as

S∞ =
1

N

∑

i

si . (3)

Since the entire operation can be repeated for any value
of the occupation probability p, Eqs. (1), (2) and (3)
allow to draw the entire phase diagram for a given net-
work. A linear expansion of the system of Eqs. (2) can
be used to obtain an eigenvalue/eigenvector equation of
the type ~t = pG~t, where ~t is a vector with 2E compo-
nents, and G is a 2E×2E one-zero matrix. A non trivial
solution exists only if 1/p is an eigenvalue of the operator
G. Thus the inverse of the largest eigenvalue of G (which
is real according to the Perron-Frobenius theorem) is the
percolation threshold pc of the network.

The form of G depends on the definition of the set
Qi→j in Eq. (2), which is crucial for the effectiveness of
the entire approach. We illustrate here three different,
and increasingly accurate, approximations (see Fig. 1a).
In the first approximation, we set Qi→j = Nj . Such
a choice makes Eq. (2) identical to Eq. (1), so that
ti→j = sj . The generic element of the matrix G is
Gi→j,`→k = δj,`, with δx,y the Kronecker symbol. This
matrix has the same eigenvalues of the adjacency ma-
trix [16]. Hence the percolation threshold under this ap-
proximation is given by the inverse of the leading eigen-
value of the adjacency matrix [23]. We refer to it as the
adjacency-matrix-based or, in short, A-based approxima-
tion. In this approximation, the variable tj→i is on the
r.h.s. of Eq. (2), so that ti→j grows as tj→i increases. In
turn, the value of tj→i is also increased by the growth
of ti→j . The possibility for a message to pass back and
forth on the same edge causes an “echo chamber” effect
in the equations that leads to an overestimation of the
correct values of the variables t and hence of the perco-
lation strength. To suppress this effect, a more precise
approximation prescribes Qi→j = Nj \ {i}. The moti-
vation of this choice is simple: the exclusion of vertex i
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Figure 1: (a) Illustration of the different ways of defining
Qi→j in Eq. (2). The A-based approximation is obtained by
setting Qi→j = Nj , so all edges departing from j are included
in the equation. If backtracking walks are excluded, that is
Qi→j = Nj \ {i}, the message passing equation will not in-
clude the green edge. we refer to this approximation as the
M -based approximation. If Qi→j = Nj \ [{i} ∪ (Nj ∩Ni)] so
one can only move away from node i, also walking to node k
is avoided and the only terms appearing in the equation are
given by those corresponding to the blue arrows. This cor-
responds to the W -based approximation. (b) Phase diagram
for the site percolation model applied to co-authorship graph
among network scientists [22]. The black line denotes the re-
sults of numerical simulations of the model. The other curves
represent results obtained through the numerical solution of
Eqs. (1), (2) and (3) with different definitions of Qi→j .

from the product on the r.h.s. of Eq. (2) does not allow
for backtracking messages, and the variable tj→i does not
appear anymore on the r.h.s. of Eq. (2). Under this ap-
proximation, G coincides with M , the non-backtracking
matrix of the graph [16], whose generic element is

Mi→j,`→k = δj,`(1− δi,k) . (4)

The percolation threshold is estimated as the inverse of
the principal eigenvalue of the non-backtracking matrix
of the graph [16, 19]. The M -based approximation is
exact in networks with locally tree-like structure. How-
ever, if loops are present in the network, echo chamber
effects still persist. This undesirable effect can be once
more discounted by excluding redundant paths caused by
triangles, that is using the following approximation

Qi→j = Nj \ [{i} ∪ (Nj ∩Ni)] . (5)

The rationale behind Eq. (5) is again intuitive. If we are
looking at the network from vertex i, we should disregard
the path i → j → k if we already considered the edge
i → k, otherwise vertex i would receive twice the same
message from node k. The importance of this correction
is apparent in Fig. 1b, where the results of simulations
for the site percolation model [see Supplemental Material
(SM) for details] are compared with the numerical solu-
tions of Eqs. (1), (2) and (3) adopting the three different
definitions of Qi→j illustrated above. The network an-
alyzed in Fig. 1b is a graph of scientific co-authorships
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characterized by a very high value of the clustering coef-
ficient (C = 0.7412) [22]. As in the cases of the first two
approximations, also the last, new approximation allows
for the computation of the percolation threshold through
the linearization of Eqs. (2). The critical value of the oc-
cupation probability is given by the inverse of the leading
eigenvalue of the matrix G = W , defined as

Wi→j,`→k = δj,` (1− δi,k)(1−Ai,k) . (6)

The definition of the matrix W is very similar to the
one of the non-backtracking matrix appearing in Eq. (4).
The only difference is the additional term (1−Ai,k), that
excludes connections among edges that are part of a tri-
angle. In the matrix W , the directed edges i → j and
` → k are connected only if j = `, and node k is at dis-
tance two from vertex i. Mathematical arguments anal-
ogous to those presented by Karrer et al. [16] (see SM)
show that the percolation threshold predicted using the
W -based approximation is always larger than or equal
to the one predicted using the M -based method (with
the equality sign valid when no triangles are present),
and always smaller than or equal to the true percolation
threshold. Both these inequalities are validated in all nu-
merical experiments on both real and synthetic networks.
For the network of Fig. 1b, the A-based approximation

predicts p
(A)
c = 0.0964; the approximation based on the

M matrix gives p
(M)
c = 0.1148; the approximation based

on W provides instead p
(W )
c = 0.4436. Those predic-

tions compared to the best estimate pc = 0.6300 from
numerical simulations have associated relative errors re-
spectively equal to r(A) = 0.8470, r(M) = 0.8178 and
r(W ) = 0.2959. These correspond to an improvement of
roughly 3% from the A-based to the M -based approx-
imation, and more than 50% from the M -based to the
W -based approximation. The situation is qualitatively
and quantitatively similar in all other real networks we
consider in this study (see SM). We can conclude that the
inverse of the largest eigenvalue of the matrix W repre-
sents a tighter lower-bound of the true site percolation
threshold than the analogous quantity computed using
the M matrix.

The W -based approximation is able to reproduce with
impressive accuracy the whole percolation diagram of al-
most all the 98 real networks we analyzed [19]. The only
exceptions are spatially embedded networks and a few
others, where the W -based approximation greatly out-
performs the other approximations but still differs sig-
nificantly from the numerical simulations. The results of
our analysis are summarized in Fig. 2a, where relative
errors in the estimates of the percolation threshold are
plotted against the average clustering coefficients of the
networks. 1 We quantify the performance of the various

1 The rather large values of the errors in Fig. 2a are also an effect
of the difficulties in the numerical estimate of the threshold for
small networks. See SM for details.

approximations also in terms of the global error mea-

sure [24]
∫ 1

0
dp|S∞(p) − S(α)

∞ (p)|, with α = A,M or W
(Fig. 2b). We remark that the discrepancy between the
W -based approximation and simulations is essentially in-
dependent of the clustering coefficient C. This happens
because the W -based approximation becomes exact in
the infinite size limit for site percolation on networks
containing only short loops of length three (see SM),
such as two important classes of random network models
with large clustering [12–15]. The residual discrepancies
in Fig. 2 depend only on the presence of longer loops,
which do not contribute to the value of C. In the SM
we also show that the W -based approximation can be in
principle further improved to account for loops of length
longer than three, but that a systematic approach be-
comes practically unfeasible already for loops of length
four.
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Figure 2: (a) Relative error associated to the estimation
of the site percolation threshold for 98 real networks. For
the α-based approximation, the relative error is measured

as (pc − p(α)c )/pc, with p
(α)
c best estimate of the percolation

threshold for the α-based approximation [α = A,M or W ],
and pc value of the occupation probability corresponding to
the peak of the susceptibility. The relative error is plotted
against the average clustering coefficient of the network. Dif-
ferent colors and symbols correspond to different orders of
the approximation. Full lines indicate average values of the
relative error for networks with similar values of clustering co-
efficient. They are generated according to the following pro-
cedure. We divide the range of possible values of C in seven
equally spaced bins. We then estimate the average value of
the error in each bin, and the average value of the cluster co-
efficient within each bin. The lines are obtained connecting
these points. (b) Same as in panel a, but for the global error

measure
∫ 1

0
dp|S∞(p)− S(α)

∞ (p)|.

Next, we consider ordinary bond percolation on a given
network. In this model, every edge is present or active
with probability p. Clusters are formed by nodes con-
nected by at least one path composed of active edges.
The order parameter used to monitor the percolation
transition, from the disconnected configuration at p = 0
to the globally connected configuration for p = 1, is still
given by the relative size of the largest connected clus-
ter, namely B∞. The message passing equations valid
for the approximations based on the adjacency and on
the non-backtracking matrices are identical to those al-
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ready written for the site percolation model, with the
only difference of a factor p [25]. The order parameters
are related by B∞ = p−1 S∞, and the percolation thresh-
olds predicted by the equations are identical in the two
models [16, 18, 25]. Writing an improved approximation
able to fully take into account triangles, such as the W -
based approximation for site percolation, is in this case
impossible (see SM). However, one can still write a simi-
lar approach which improves with respect to the two old
methods. In the bond percolation model, a triangle is
effectively present only if all its edges are simultaneously
active, leading to the following self-consistent equations

bi = 1−
∏

j∈Ni

(1− p ci→j) , (7)

and

ci→j = 1−∏
k∈Nj\[{i}∪(Nj∩Ni)]

(1− pcj→k)∏
k∈Nj∩Ni

[1− pcj→k(1− p+ pci→k)]
. (8)

Here, bi and ci→j have, in the bond percolation model,
the same meaning that si and ti→j have in site perco-
lation. The second equation explicitly imposes coher-
ence of messages within triangles. The message from
node k can in fact arrive to node i in two ways. (i)
Along the path k → j → i if the edge (i, k) is not ac-
tive but the edge (i, j) is active. This possibility hap-
pens with probability pcj→k(1 − p). (ii) Simultaneously
along the paths k → j → i and k → i if both edges
(i, k) and (i, j) are active. The latter possibility happens
with probability p2cj→kci→k. In the absence of trian-
gles, that means Nj ∩ Ni = ∅ for all edges (i, j), we
recover the M -based approximation. In the presence of
triangles instead, the additional correction term reduces
the estimated values of the variables c. The system of
Eqs. (8) can be solved by iteration. Its solutions can be
then plugged into Eqs. (7), and the values of the variables
bi can finally be used to compute the bond percolation
strength as B∞ = N−1

∑
i bi. In Fig. 3a, we compare

the performance of the approximations in reproducing
the results of numerical simulations in the same network
analyzed in Fig. 1b. The improvement in the prediction
of the percolation strength from the adjacency matrix-
based up to the W -based approximation is not as signif-
icant as the one we found for site percolation. The same
qualitative observation can be made for the other real
networks we analyzed (see SM). The linearization of the
system of Eqs. (8) leads to the following vectorial equa-
tion for the determination of the percolation threshold

~c = pcW~c+ pc(1− pc)(M −W )~c . (9)

The solution of this equation can be efficiently obtained
by means of a power-iteration algorithm combined with
a binary search. As already done for site percolation,
we systematically test the performance of the various
approximations in 98 real networks in Figs. 3b and 3c.
In general, accounting in this way for triangles improves
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Figure 3: (a) Phase diagram for the bond percolation model
applied to co-authorship graph among network scientists [22].
The black line denotes the results of numerical simulations
of the model. The other curves represent results obtained
through the numerical solution of the equations using differ-
ent approximations. (b) Relative error of the various approx-
imations in the estimation of the bond percolation threshold.
The figure represents the analogue of Fig. 2a for bond perco-
lation. (c) Same as Fig. 2b but for bond percolation.

only slightly the accuracy of predictions with respect to
the M -based approximation.

In summary, our novel approximation goes, in a rela-
tively straightforward manner, beyond the locally tree-
like ansatz. The analysis carried out on real and syn-
thetic networks allows to conclude that the W -based ap-
proximation greatly outperforms the M -based approxi-
mation for the site percolation process, leading in almost
all cases to an impressive agreement with numerical re-
sults. For bond percolation instead the improvement is
less satisfactory and calls for further work. Systematic
approximations to account for loops longer than three
face severe intrinsic difficulties (see SM). It would be in-
teresting to explore differences between the M -based and
the W -based approximations in the context of ordinary
percolation processes in interdependent networks [19] as
well in optimal percolation problems in isolated ones [26].
As a final remark, we stress that the improvement in the
prediction of the percolation threshold comes at a price.
Whereas the computational complexity of the algorithm
is the same in both M - and W -based approximations,
the determination of pc in the W -based approximation
requires to deal with a larger matrix. The Ihara-Bass de-
terminant formula is able to reduce the computation of
the largest eigenvalue of the 2E × 2E non-backtracking
matrix M to the largest eigenvalue of a 2N × 2N ma-
trix [27]. The quest for a similar formula for the matrix
W is an interesting challenge for future research.

This work is partially supported by the National Sci-
ence Foundation (Grant CMMI-1552487).
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