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Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and
link connectivity on networks. When studying interconnected networks it is useful to consider
a multiplex model, where the component networks operate together with inter-layer links among
them. In order to have a well-connected multilayer structure, it is necessary to optimally design
these inter-layer links considering realistic constraints. In this work, we solve the problem of finding
an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show
that for the special multiplex configurations with identical layers, the uniform weight distribution is
always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals
the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of
the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is
constant on each layer. Increasing the budget past the threshold, the optimal weight distribution
can be non-uniform. The interesting consequence of this result is that there is no need to solve
the optimization problem when the available budget is less than the threshold, which can be easily
found analytically.

Real-world networks are often connected together and
therefore influence each other [1]. Robust design of in-
terdependent networks is critical to allow uninterrupted
flow of information, power, and goods in spite of possible
errors and attacks [2–4]. The second eigenvalue of the
Laplacian matrix, λ2(L), is a good measure of network
robustness [5]. Fiedler shows that algebraic connectivity
increases by adding links [6]. Moreover, it is harder to
bisect a network with higher algebraic connectivity [7].
The second eigenvalue of the Laplacian matrix is also a
measure of the speed of mixing for a Markov process on
a network [8]. Boyd et al. maximize the mixing rate by
assigning optimum link weights in the setting of a single
layer ([9] and [10]).

For multiplex networks (see Fig. 1), a natural question
is the following. Given fixed network layers, how should
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FIG. 1. A schematic of a multiplex network G with two layers
G1, G2, connecting through an inter-layer one-to-one structure
G3.
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the weights be assigned to inter-layer links in order to
maximize algebraic connectivity?

The behavior of λ2, in the case of identical weights, i.e.,
with a fixed coupling weight p for every inter-layer link,
has been studied recently. For instance, Gomez et al.
observe that λ2(L) grows linearly with p up to a critical
p∗, and then has a non-linear behavior afterwards [11].
Sole-Ribalta et al. analyze the spectrum of multiplex
networks with perturbation theory on a decomposed–the
intra- and interlayer structure–version of Laplacian ma-
trix [12].

Radicchi and Arenas find bounds for this threshold
value p∗ [13]. Sahneh et al. compute the exact value
analytically [14].

Martin-Hernandez et al. analyze the algebraic connec-
tivity and Fiedler vector of multiplex structures, with
addition of a number of inter-layer links in two config-
urations; diagonal (one-to-one) and random [15]. They
show that for the first case, algebraic connectivity sat-
urates after adding a sufficient number of links. Li et
al. adopt a network flow approach to propose a heuristic
that improves robustness of large multiplex networks by
choosing from a set of inter-layer links with predefined
weights [16].

In this letter we remove the constraint of identical in-
terlinking weights and pose the problem of finding the
maximum algebraic connectivity for a one-to-one inter-
connected structure between different layers in the pres-
ence of limited resources. We show that up to the thresh-
old budget p∗N—where p∗ is the same threshold studied
in [11], [13], and [14]—the uniform distribution of iden-
tical weights is actually optimal. For larger budgets, the
optimal distribution of weights is generally not uniform.

Let G = (V, E) represents a network and by V =
{1, . . . , N} and E ⊂ V × V, we denote the set of nodes
and links. For a link e between nodes u and v, i.e,
e : {u, v} ∈ E , we define a nonnegative value wuv as
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the weight of the link. The Laplacian matrix of G can be
defined as:

L =
∑
ij∈E

wijBij (1)

where Bij := (ei − ej)(ei − ej)T is the incidence matrix
for link ij, and ei is a vector with ith component one and
rest of its elements are zero.

For a multiplex network with two layers G1 = {V1, E1}
and G2 = {V2, E2} and |V1| = |V2|, we consider a bipartite
graph G3 = {V, E3} with E3 ⊆ V1 × V2. The multiplex
network G is composed from G1, G2, and G3 (Fig. 1).
We want to design optimal weights for G3 to improve
the algebraic connectivity of G as much as possible with
a limited budget, i.e.,

∑
wij = c. Using Eq. (1), the

Laplacian matrix of G (supra-Laplacian matrix), is:

L(w) =
∑

ij∈E2∪E3

Bij +
∑
ij∈E3

wijBij , (2)

where we use the notation L(w) to make explicit the
dependence of the Laplacian on the interlayer weights
w.

From Eq. (2), the Laplacian, L, of the combined net-
work takes the form

L(w) =

[
L1 0
0 L2

]
+

[
W −W
−W W

]
,

where L1 and L2 are the Laplacians of the individual
layers and W = diag(w) with w ≥ 0 the inter-layer link
weights satisfying the budget constraint wT1 = c. We
assume the two layers are connected independently, so
that λ3(L) > 0, for all choices of c and w.

The second eigenvalue can be characterized as the so-
lution to the optimization problem

λ2(L) = min
v 6=0

vT 1=0

vTLv

‖v‖2 . (3)

The optimal weight problem, then, can be phrased as
follows. Given a budget c ≥ 0, solve the problem

F (c) := max
w≥0

wT 1=c

λ2(L(w)). (4)

Since L is an affine function of w, and λ2 is a concave
function of L, it follows that (4) is a convex optimization
problem. In fact, it can be recast as a semi-definite pro-
gramming problem or SDP (see (17) in the Appendix)
and, thus, can be solved efficiently even for large net-
works using standard numerical methods.

Returning to (3), it is convenient to write v in compo-
nent form v = (vT1 , v

T
2 )T so that (3) implies

vT1 L1v1+vT2 L2v2 + (v1 − v2)TW (v1 − v2)

− λ2(L)
(
‖v1‖2 + ‖v2‖2

)
≥ 0 ∀ vT1 1 = −vT2 1.

(5)

Since v must satisfy vT1 1 = −vT2 1, we use the following
substitution for v1 and v2 to separate the 1 subspace and
its orthogonal counterpart ui:

v1 = α1 + u1, v2 = −α1 + u2, (6)

where ui ∈ RN , such that uT1 1 = uT2 1 = 0, and α is some
constant. Rewriting the terms in (5), we observe that

(v1 − v2)TW (v1 − v2)

= (2α1 + u1 − u2)TW (2α1 + u1 − u2)

= 4α2c+ 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)

and that

‖vi‖2 = ‖α1‖2 + ‖ui‖2 = α2N + ‖ui‖2 for i = 1, 2.

Thus, Eq. (5) implies that

uT1 L1u1 + uT2 L2u2 + 4α2c+ 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)−
λ2(L)

(
2α2N + ‖u1‖2 + ‖u2‖2

)
≥ 0

∀α, uT1 1 = uT2 1 = 0.

(7)

In particular, setting u1 = u2 = 0 in (7), then, gives the
inequality

4α2c− 2α2Nλ2(L) ≥ 0 ∀α

which can only be true if λ2(L) ≤ 2c
N . Thus for the two-

layer problem described above, we have the bound

F (c) ≤ 2c

N
. (8)

Now we turn our attention to the question of attain-
ability of (8). This question is answered by the following
theorem.

Theorem 1. The inequality in (8) can only be satisfied
as equality if w = c

N 1.

Proof. Suppose the weights w are chosen such that the
Laplacian L satisfies λ2(L) = 2c

N . Then (7) simplifies to

uT1 L1u1 + uT2 L2u2 + 4αwT (u1 − u2)

+ (u1 − u2)TW (u1 − u2)

− 2c

N

(
‖u1‖2 + ‖u2‖2

)
≥ 0 ∀ α, uT1 1 = uT2 1 = 0.

This can only be true if the linear coefficient in α,
4wT (u1 − u2), vanishes for every choice of u1, u2 satis-
fying uT1 1 = uT2 1 = 0. This implies that w is parallel to
1 and, since wT1 = c, the theorem follows.

The previous theorem shows that when the bound (8)
is attained, it can only be attained by the uniform choice
of weights w = c

N 1. The next theorem characterizes
exactly the budgets for which the bound is attained.
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Theorem 2. For a given two-layer network, define the
constant

c∗ :=N min
uT
1 1=uT

2 1=0
u1+u2 6=0

uT1 L1u1 + uT2 L2u2
‖u1 + u2‖2 (9)

Then, for all budgets c ≥ 0, F (c) = 2c
N if and only if

c ≤ c∗.

Proof. By Theorem 1, the upper-bound 2c
N for F (c) can

be attained only in the case of uniform weights w = c
N 1.

In this case we write L = L(c). For all c ≥ 0, one can
check that 2c

N is always an eigenvalue of L(c), with eigen-

vector (1T ,−1T )T . Since L(c) is positive semi-definite
and λ1(L(c)) = 0, it follows that λ2(L(c)) ≤ 2c

N . Thus,

we have F (c) = 2c
N if and only if λ2(L(c)) ≥ 2c

N .

Recalling the variational characterization of λ2(c) in
(3), we observe that λ2(L(c)) ≥ 2c

N if and only if the
following inequality holds for every choice of v 6= 0, with
vT1 = 0 or, equivalently, for every choice of α, u1 and u2
according to the substitution (6):

0 ≤ vTLv − 2c

N
‖v‖2

= vT1 L1v1 + vT2 L2v2 +
c

N
‖v1 − v2‖2 −

2c

N

(
‖v1‖2 + ‖v2‖2

)
= uT1 L1u1 + uT2 L2u2 −

c

N
‖u1 + u2‖2.

This inequality holds for all uT1 1 = uT2 1 = 0 if and only
if c ≤ c∗ as defined in (9), completing the proof.

The threshold obtained by Eq. (9) is exactly equiva-
lent to the threshold found in [14] (see Theorem 3 in the
Appendex):

c∗ = Nλ2

((
L†1 + L†2

)†)
, (10)

where L† represents the Moore-Penrose pseudoinverse of
L. At the threshold a rough lower-bound for λ2(L) is

λ2(L) =
2

N
c∗ ≥ min{λ2(L1), λ2(L2)}. (11)

One way to see this is to observe that:

uT1 L1u1 + uT2 L2u2
‖u1 + u2‖2

≥ ‖u1‖
2 + ‖u2‖2

‖u1 + u2‖2
min{λ2(L1), λ2(L2)}.

Inequality (11) then follows from the parallelogram law
[17]. An upper bound for λ2(L) is given in [11]

λ2(L) ≤ 1

2
λ2(L1 + L2). (12)

In the special case of identical layers (L1 = L2) with
corresponding nodes connected, the bound in (12) is
attained with uniform weights at the threshold budget
c∗ [13]. This can be seen by combining (11) and (12).
Therefore, in this case, uniform weights are optimal for
budgets c ≤ c∗, and increasing the budget beyond c∗ can-
not increase the algebraic connectivity, regardless of the
weight allocation.

For general structures, it is possible to substantially
improve the algebraic connectivity by increasing the bud-
get beyond c∗ using an optimal weight distribution.
Figs. 2a and 2b compare the optimal value of λ2(L) to
the one obtained by the uniform distribution as the bud-
get c varies for two different network structures. In both
cases, the optimal distribution gives a higher algebraic
connectivity after the threshold.

In Fig. 2c, we plot the first five eigenvalues of L (omit-
ting the zero eigenvalue) for a multiplex with identical
weights on the inter-layer links. Because 2c

N is always an

eigenvalue and λ3(L) > 2c
N for c→ 0, increasing c, λ2(L)

and λ3(L) cross. For the same multiplex with optimal
distribution of inter-layer weights, we plot the eigenval-
ues in Fig. 2d. When increasing the budget beyond the
threshold; we observe that, in this example, the second
and third eigenvalues coalesce and are less than 2c

N . Since
(4) is a convex optimization problem, we know the op-
timal wi’s vary continously with c, and smooothly away
from the finite set of budgets where eigenvalue multiplic-
ities change.

When c ≤ c∗, the Fiedler vector is v = 1√
2N

[1,−1]

and the Fiedler cut distinguishes the layers [13–15]. For
c > c∗, due to the multiplicity of λ2(L), there is a cor-
responding Fiedler eigenspace. Therefore, the two layers
are not as easily recognizable as before.

In Fig. 2, we also observe that for c > c∗, λ2 increases
more slowly. Moreover, as Fig. 3 shows, for a multiplex of
two scale free network layers (more results in Fig. 4 in the
Appendix), we can have very non-uniform weights in this
case. These optimal weights represent the importance of
each link in improving the algebraic connectivity of the
whole network.

In summary, we have shown that before a threshold
budget, the largest possible algebraic connectivity is a
linear function of the budget and can only be attained
by the uniform weight distribution. Since the threshold
budget is always strictly positive, for low enough bud-
gets it is not necessary to solve (4). On the other hand,
for larger budgets, (4) can be solved with efficient semi-
definite programming solvers to find the optimal weights.
In particular, heuristic methods based solely on the infor-
mation of each layer are too blunt to notice this threshold
phenomenon.
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FIG. 2. (a) and (b) Plots of λ2(L) with different amount of available budget. The solid (red) line is for the optimal weights and
the dashed (black) line is for uniform weights. The threshold budget and upper-bound is shown with vertical (green) dotted
and horizontal (blue) dot-dashed lines respectively. The upper-bound is from Eq. (12) and the threshold is from Eq. (10). (a)
A structure of two Erdös-Renyi networks each with 30 nodes and (b) a structure of two scale-free networks each with 30 nodes.
(c) First five eigenvalues of Laplacian matrix of G considering a uniform distribution of weights for the multiplex in (b). (d)
First five eigenvalues of Laplacian matrix of G considering an optimal distribution of weights for the multiplex in (b).
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FIG. 3. Optimal weight distribution for different amount of budgets. The stucture of a multiplex with two scale free network
layers, with N = 100 nodes and |E1| = 196 and |E2| = 291. In (a) budget is lower than threshold and uniform distribution is
optimal. In this example, the threshold budget c∗ is 51.4.
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APPENDIX

We have defined the threshold budget c∗ as

c∗ = N min
uT
1 1=uT

2 1=0
u1+u2 6=0

uT1 L1u1 + uT2 L2u2
‖u1 + u2‖2

, (13)

where L1 and L2 are the Laplacian matrices for the two individual layers.

Theorem 3. The threshold budget c∗ defined in (13) satisfies

c∗

N
= λ2

((
L†1 + L†2

)†)
(14)

Proof. We begin by rewriting the minimization in (13):

min
uT
1 1=uT

2 1=0
u1+u2 6=0

uT1 L1u1 + uT2 L2u2
‖u1 + u2‖2

= min
uT 1=0
u6=0

min
uT
1 1=uT

2 1=0
u1+u2=u

uT1 L1u1 + uT2 L2u2
‖u‖2

= min
uT 1=0
u6=0

1

‖u‖2 min
uT
1 1=uT

2 1=0
u1+u2=u

(
uT1 L1u1 + uT2 L2u2

)
.

(15)

To solve the inner minimization problems, we introduce Lagrange multipliers to find that the minimizing u1 and
u2 satisfy

L1u1 = ν1 + µ, L2u2 = η1 + µ.

Taking an inner product of each of these with the 1 vector shows that

ν = η = −µ
T1

N
,

so that

u1 = L†1

(
µ− µT1

N

)
, u2 = L†2

(
µ− µT1

N

)
.

http://dx.doi.org/10.1103/PhysRevE.92.040801
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Thus, without loss of generality, µ can be taken to be orthogonal to 1. With this form, u1 and u2 are already orthongal
to 1 as well. In order to satisfy the constraint u1 + u2 = u, we must have(

L†1 + L†2

)
µ = u, i.e., µ =

(
L†1 + L†2

)†
u.

From this, we see that the minimizing u1 and u2 of the inner minimization problem in (15) satisfy

u1 = L†1

(
L†1 + L†2

)†
u, u2 = L†2

(
L†1 + L†2

)†
u,

giving a minimum value of

uT1 L1u1 + uT2 L2u2 = uT
(
L†1 + L†2

)†
L†1L1L

†
1

(
L†1 + L†2

)†
u+

uT
(
L†1 + L†2

)†
L†2L2L

†
2

(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)†
L†1

(
L†1 + L†2

)†
u+

uT
(
L†1 + L†2

)†
L†2

(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)† (
L†1 + L†2

)(
L†1 + L†2

)†
u

= uT
(
L†1 + L†2

)†
u.

(16)

Here, we have used the identity A†AA† = A†.
Substituting back into (15), we have

c∗

N
= min

uT 1=0
u6=0

uT
(
L†1 + L†2

)†
u

‖u‖2 .

Since L1 and L2 are positive semidefinite, so are L†1 and L†2 and, consequently, so are L†1 + L†2 and
(
L†1 + L†2

)†
.

Since the component networks are assumed connected, the nullspace of
(
L†1 + L†2

)†
is spanned by the vector 1. The

Rayleigh quotient in (16) is therefore minimized over the orthogonal complement of the eigenspace associated with

the first eigenvalue of
(
L†1 + L†2

)†
and the theorem follows.

SDP formulation of (4)

We can pose the problem of assigning weights to inter-layer edges with a limited budget c (similarly to the con-
struction in [10]:

maximize
wij

λ

subject to
∑
ij∈E3

wijBij + L0 + µeeT − λIn � 0

∑
ij∈E3

wij ≤ c

wij ≥ 0

(17)

where L0 =
∑

i,j∈E1∪E2 Bij . We know L � 0 and λ1 = 0. Due to this redundancy in Laplacian matrix, parameter µ
is employed to avoid the zero eigenvalue.

Problem (17) is a convex SDP [18] and can be efficiently solved for arbitrary large networks with applying sub-
gradient methods. Solution of (17) gives us the optimal algebraic connectivity, and optimal weights for interconnection
links. Investigating these results, reveals striking features for designing networks links. We consider the case of a
two-layer network with one-to-one interlayer links.
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FIG. 4. Optimal weight distribution for different amount of budgets. The stucture of a multiplex with two scale free network
layers, with N = 100 nodes and |E1| = 358 and |E2| = 362. In (a) budget is lower than threshold and uniform distribution is
optimal. In this example, the threshold budget c∗ is 64.

More results for optimal inter-layer weight distribution

In Figure 4, we plot the optimal weight distribution for a multiplex of two Erdös-Renyi network layers.
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