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In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In the
Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field. Ear-
lier, in [Phillips, et al. PRE 91 (2), 023311] we introduced a method for extracting vortices from the discretized
complex order parameter field generated by a large-scale simulation of vortex matter. With this method, at a
fixed time step, each vortex (simplistically, a 1D curve in 3D space) can be represented as a connected graph
extracted from the discretized field. Here we extend this method as a function of time as well. A vortex now
corresponds to a 2D space-time sheet embedded in 4D space-time that can be represented as a connected graph
extracted from the discretized field over both space and time. Vortices that interact by merging or splitting cor-
respond to disappearance and appearance of holes in the connected graph in the time direction. This method of
tracking vortices, which makes no assumptions about the scale or behavior of the vortices, can track the vortices
with a resolution as good as the discretization of the temporally evolving complex scalar field. Additionally,
even details of the trajectory between time steps can be reconstructed from the connected graph. With this form
of vortex tracking, the details of vortex dynamics in a model of a superconducting materials can be understood

in greater detail than previously possible.

I. INTRODUCTION

Many phenomena in nature can be described by the be-
havior of complex scalar functions or vector fields, ranging
from electromagnetic fields to director fields in liquid crystals,
spins in magnets, and complex order parameters in superfluids
and superconductors. Topological defects in those functions
or fields represent important features of the underlying phys-
ical system: Examples are (zero-dimensional) point defects
or monopoles, (one-dimensional) defect lines or strings, and
(two-dimensional) domain walls. Here we concentrate on de-
fect lines, which in the case of a complex scalar field are de-
fined by one-dimensional manifolds, where the phase of the
complex function is undefined. These topological singulari-
ties or defects are typically associated with circulations in the
phase gradient and are referred to simply as vortices. Sub-
stantial work has been invested in studying the dynamics of
vortices in different contexts, such as crossing and reconnec-
tion and the formation of knots in superfluid vortices [1, 2], in
light waves [3], and in fluid flows [4], as well as their evolu-
tion in more mathematically generalized contexts [5].

In type-II superconductors, an externally applied magnetic
field penetrates the system above the first critical field in the
form of flux tubes (vortices), which carry integer numbers of
flux quanta (typically one flux quantum). The magnetic flux
in the vortex core is screened by a circular superconducting
current around it. The behavior of vortices carrying magnetic
flux determines the material’s ability to sustain the dissipa-
tionless or superconducting state. When vortices move, the
system becomes dissipative, and a finite voltage drop across
the system is observed. In the Ginzburg-Landau theory of su-
perconductivity, the local superconducting properties of the
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material are described by a spatially dependent complex or-
der parameter v, and vortices correspond to topological phase
singularities of y accompanied by a suppression of its mag-
nitude. Using the time-dependent Ginzburg-Landau (TDGL)
equations, coupled partial differential equations evolving the
scalar y field in time, one can find steady-state solutions of
the superconductor in the presence of external magnetic fields
and applied currents.

FIG. 1: (Color online) Two time-step images of three vortices
interacting with two pinning sites. The upper left vortex
experiences no events across the time interval. The bottom
two vortices cut and reconnect or merge and split into two
new vortices.

In the dissipative regions of a superconductor, vortices are
dynamic objects that can nucleate and annihilate; they can also
cut each other and reconnect (Fig. 1). In static situations, vor-
tices can be pinned by material defects inside the supercon-
ductor. Recently, to study the collective dynamics of many
vortices, researchers have begun conducting large, computa-
tionally intensive 3D simulations where macroscale phenom-
ena can be observed [6, 7]. These simulation have been used
to examine the dynamics of flux cutting, where two vortices
move through each other [8—10], to study the impact of distri-



butions of defects, and to optimize the pinning of vortices by
spherical nano particles [11].

As the scale of simulations increases, visualizing and quan-
tifying the behavior of a large collection of vortices requires
the codesign of analysis techniques that can scale with the
application and even improve the resolution with which dy-
namics are observed. In Ref. [12], a method for extracting
the topological defect lines from a large data set of complex
scalars defined over a mesh at a single time step was intro-
duced that permits details of vortex interactions to be under-
stood in fine detail. In order to understand the relationship be-
tween dissipation and the dynamics of the vortices, however,
the details of vortex interactions need to be understood over
time as well as space. Specifically, in order to describe an
event, such as two vortices recombining, the individual vor-
tices participating in the event and isolated at an initial time
step must be tracked over subsequent time steps.

Here we show how the method for numerically extracting a
vortex from a complex order parameter field can be extended
to work over time as well as space. This analysis is parameter-
less and makes no assumptions about the shape, velocity, or
behavior of a vortex. It assumes only that the simulation data
changes smoothly as a function of time. As such, this method
represents the highest resolution interpretation of the identity
and dynamics of a vortex over time that is possible given the
resolution of the simulation data set.

This analysis has applications to data sets of discretized
complex fields containing topological defects as long as the
field evolves smoothly in time. Examples of complex fields
containing topological defects include optical vortices in elec-
tromagnetic fields as well as other problems described by
the complex Ginzburg-Landau equations such as screw dis-
locations [13] cosmic strings [14], superfluidity, and Bose-
Einstein condensation; strings in field theory [15]; topological
defects in liquid crystals [16]; and models of fluid dynamics
with complicated nonlinear dynamics [17].

In Section II we provide background information on vor-
tex extraction and tracking. In Section III we first review how
topological defects are extracted as a graph structure from a
field discretized over space, and we then extend this method
to a space-time field. In Section IV we discuss how events
can be interpreted from the behavior of this graph structure.
In Section V we show how this graph extraction can be im-
plemented in an algorithm that is a simple extension of the al-
gorithm presented for extracting a vortex from a spatial mesh,
and we consider the scaling of the algorithm. In Section VI
we present examples of this algorithm applied to simulation
data. In Section VII, we provide concluding remarks about
the current and potential benefits of the method.

II. BACKGROUND

Feature tracking is widely studied in various computer sci-
ence research directions, such as computer vision, image pro-
cessing, and visualization, and is often applied to scientific
data sets. In general, the definition of a feature depends on
the nature of the data. Most tracking methods are based on a

correspondence analysis that determines what feature in one
time frame corresponds to what feature in the next frame [38].
For example, feature correspondence can be determined by
the overlap of feature volumes or by attribute similarities in
adjacent frames. In some data sets, features can also appear,
disappear, or interact with each other over time.

For type-1I superconductors, the feature of interest are the
magnetic flux vortices. In numerical studies of type-II super-
conductors, many different model types have been proposed to
capture vortex interactions. By treating the vortices as inter-
acting elastic strings [18, 19], it is possible to study the equi-
librium states [20-22] and dynamics [23, 24] of many vor-
tices. Tracking vortices modeled as elastic strings is trivial,
as the set of vortices are explicit objects being evolved by the
simulation. However, such systems treat interactions between
vortices and interactions between vortices and pinning sites
only approximately and cannot capture vortex cutting and re-
connection, and therefore are only suitable for small magnetic
fields.

By instead modeling the dynamics of a superconducting or-
der parameter Y, where vortices appear spontaneously as sin-
gularities of the order parameter, more realistic descriptions
of vortex matter can be constructed [25-33]. Now defined as
topological defect lines in the field, vortices are implicit fea-
tures in the data that need to be extracted. Vortices can be
identified by examining the contour plots of |y/| in 2D [34-
36] (or the isosurfaces of |y| in 3D [37]). Alternately, vor-
tices can be extracted by using discretized contour integrals
to find defect points in the phase field of the order parameter.
For 3D data sets, the points can be linked together to form
vortex lines [12, 28-31]. As the scale of simulations increase
[6], the details of the implementation of the vortex extraction
algorithm and the final representation of a set of vortices be-
come important considerations for vortex extraction to keep
pace with vortex simulation [12]. From here forward in this
article, all references to vortices in a superconductor will as-
sume they are singularities of an order parameter defined over
a field, not elastic strings.

Tracking vortices is only meaningful for simulations that
reproduce dynamics. It is not relevant, for example, to simu-
lations that use a Monte Carlo method for relaxing the order
parameter [27-31] that generate data sets of statistically in-
dependent 3D snapshots that can be arranged in any order.
In contrast, the data sets generated by TDGL simulations are
proper 4D data sets describing vortex matter evolving over
time. To investigate vortex dynamics in such a data set, vor-
tices need to be extracted from 3D slices and then also tracked
over the time dimension of the data set. Using a correspon-
dence analysis based on attribute similarity is not applicable
to these simulations as vortices have no attributes, (e.g. shape,
length) that are guaranteed to be stable over time (except chi-
rality). In fact, a vortex only has a conserved identity between
its birth, death, and interactions with other vortices.

Vortex tracking in a superconductor is closely related to
vortex tracking in fluid flows, which is an established topic
in scientific visualization [39]. Whereas magnetic flux vor-
tices have a single mathematical definition, fluid vortices can
be characterized by multiple criterion, such as vorticity mag-



nitude and A, [40]. For different applications and definitions,
vortices in fluids are extracted and tracked as vortex regions or
vortex core lines. Vortex regions can be located by applying a
criteria with a threshold to a data set, and vortex core lines can
be extracted and tracked with techniques such as the parallel
vector operators [41] and feature flow fields [42] frameworks,
respectively.

In this paper, we propose a graph-based algorithm for track-
ing vortices in a superconductor at the same resolution as the
data discretization. Compared with the methods used for fluid
flows, this method provides a more straightforward and effi-
cient way to track vortices in a superconductor by taking ad-
vantage of the structure and easily extracted local properties
of the data. Earlier [12], we demonstrated how, by exploit-
ing the mathematical definition of topological singularity, a
vortex can be traced in space. Here we show that by extend-
ing our definition of a vortex as a topological singularity in
a field that is continuous over space and time, a vortex can
be extracted from the field as a quantized object defined in
space and time. Thus a vortex can be traced over time as well.
This method represents the most information about the vortex
structure that can be extracted directly from the simulation
data, against which any computationally cheaper method us-
ing approximations must be compared.

III. TOPOLOGICAL SINGULARITIES EVOLVING OVER
TIME

In this section, we first review how topological singularities
are extracted as a graph structure from a spatial mesh. We then
extend the method to a space-time mesh.

A. Topological singularities in a spatial mesh

The spatially and temporally discretized field that we con-
sider here results from TDGL equations solved over a struc-
tured or unstructured mesh, as introduced in Ref. [6]. The
TDGL equations solve for the complex-valued order parame-
ter y = |yle'?, and vortices are equivalent to topological sin-
gularities in the phase field of 6. Given a set of complex val-
ues Y that have been calculated at each point of a mesh, vortex
lines can be localized by calculating the integral
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around the closed contour ¢’. Assuming that the closed path is
sufficiently small so as not to enclose multiple vortices, then
when the vorticity n is a nonzero integer (usually 1), the path
encircles a vortex line, and the sign of n indicates the chiral-
ity of the vortex with respect to the direction of integration.
In general, we will construct these closed paths around mesh
element faces.

For this analysis, a convenient way to represent the mesh
is as its dual graph. In the dual graph, mesh elements are
nodes, and an edge connects two nodes if the corresponding
mesh elements share a face. For illustration, the nodes of this

dual graph can be located in the center of each mesh element.
In a structured mesh of hexahedral elements, which for sim-
plicity we will refer to as cubes, each node has six undirected
edges, one to each of six neighboring nodes. A vortex, then,
embedded in the field described over a mesh corresponds to a
set of punctured mesh element faces, that is, faces whose con-
tour integral per Eq. (1) has a nonzero value. Equivalently, a
vortex can be described as a set of nodes and directed edges
that constitute a connected subgraph of the dual graph of the
mesh. The direction of an edge in this subgraph is determined
by and corresponds to the chirality of the vortex. Since most
— indeed, nearly all — of the nodes of the subgraph have con-
nectivity two, the one-dimensional curve describing a given
vortex can be constructed by beginning at one node and trac-
ing through the graph, generating an ordered set of spatial
points. Rare nodes can have connectivity greater than two;
these nodes correspond to locations in the mesh where multi-
ple vortices puncture the same mesh element. By using chiral-
ity information, vortices can be disentangled in a nonunique
way to support subsequent statistical analyses. We have found
that by dividing a hexahedral element into tetrahedral subele-
ments, these vortices can be uniquely disentangled. For com-
putational convenience, however, such vortices may be left in
an unresolved connected state.

In Ref. [12], a vortex object was defined as a reduced math-
ematical representation of a set of one-dimensional curves
that usually corresponds to individual vortices, and less com-
monly two or more entangled vortices, in a discretized com-
plex scalar field. Constructing a vortex object requires only
one constraint on the data: at most only one vortex can punc-
ture a given mesh element face. In general, the length scales
of the mesh in a well-behaved simulation have already been
selected so that this constraint should hold. However, if a
coarser description of the mesh than the simulation mesh is
used to trace the vortices — for example, a closed path is con-
structed around multiple mesh faces — then this can be a prob-
lem.

This graph representation of a vortex (or multiple entangled
vortices) works equally well for both structured and unstruc-
tured meshes. However, for reasons of algorithmic efficiency
related to how unstructured mesh libraries store mesh data,
sometimes it is more convenient to transform the directed sub-
graph even further into its corresponding line digraph, or a
edge-to-vertex dual, as discussed in Ref. [43], and perform all
analysis in this paradigm instead. In this new graph interpre-
tation, edges of the directed subgraph, which were punctured
faces of the mesh, are reinterpreted as nodes; and nodes of the
directed subgraph, which were punctured mesh elements, are
split into a set of directed edges, one for each path through the
mesh element. For the purpose of this paper, we stay in the
directed subgraph paradigm and not the edge-to-vertex dual
paradigm.

B. Topological singularities in a space-time mesh

In the TDGL equations, Y is evolved over time and is
therefore both a spatially and temporally dependent field, dis-



cretized spatially over the mesh and temporally over time
steps. A smooth evolution of y over time leads to the genera-
tion of a topological defects in planes oriented in time as well
as in space, which is discussed in more depth in the appendix
of Ref. [43]. In the model for a superconducting material de-
scribed in Ref. [6], the magnetic field and applied supercon-
ducting current can also be varied over time. For a small re-
formulation of Eq. (1) to account for the varying fields, topo-
logical defects can be detected in closed paths around planes
oriented in time as well. Details are provided in Appendix B.
To trace a vortex in time, we now consider a structured
mesh defined over time as well as space. The discretized tem-
poral evolution of a spatially discretized field defined over a
2D or 3D structured mesh corresponds to a 3D or 4D space-
time structured mesh, respectively. We start by describing the
2D structured mesh in space corresponding to 3D structured
space-time mesh initially, where the properties of the mesh
and the graph derived from the mesh are easier to visualize.

1. 2D structured spatial mesh, 3D structured space-time mesh

For a 2D structured spatial mesh, the space-time mesh is
composed of three-dimensional cubic mesh elements. Each
cube corresponds to a face in the 2D spatial mesh extended
over a time interval between two time steps. Each cube has
six neighboring cubes. It shares a face with each neighbor.
These faces can be space faces, that is, a face defined by four
spatial coordinates at a fixed time, or time faces, that is, a
face that corresponds to a one edge in the 2D spatial mesh ex-
tended over the time interval. A 3D space-time mesh element
is connected to a space-time mesh element over the previous
time interval but at the same location in space by a space face.
A 3D space-time mesh element is connected to a space-time
mesh element over the same time interval but neighboring in
space by a time face.

We can speak of a 3D space-time mesh element as be-
ing punctured by a topological defect, which is now a one-
dimensional space-time curve. A 3D structured space-time
mesh element punctured by an isolated topological defect, that
is, one not entangled with another topological defect inside the
mesh element, has two punctured faces.

In the dual graph of this 3D space-time mesh, nodes corre-
spond to space-time mesh elements. For illustration, we place
the nodes of this dual graph in the center of the 3D space-time
mesh element. Each node in the dual graph has six edges,
corresponding to six faces connecting it to its six neighboring
3D mesh elements. A vortex evolving over time is a subgraph
of this dual graph. A vortex is a connected set of nodes and
edges, where nodes correspond to punctured mesh elements
and edges correspond to punctured faces. The connected set
of nodes and edges is constructed by testing space and time
faces to see whether they are punctured. Each punctured face
will “activate” a single edge of this vortex subgraph. Only
nodes with connectivity > 0 are part of the subgraph.

Unlike the subgraph described in section III A for a 3D spa-
tial mesh, the edges in this graph are treated as undirected.
The direction of an edge for the subgraph of a 3D spatial mesh

comes from the chirality of the puncture point, as determined
by whether n = 41 relative to the direction of the contour in-
tegral. For these subgraphs, chirality information can be used
to disambiguate the vortex structures inside the rare punctured
cube with more than two punctured faces. While the chiral-
ity of the puncture point for a time face is still well defined,
the chirality information provides marginal extra information.
For the tracking method described here, this chirality infor-
mation is not used in constructing the connected set of nodes
and edges or in any subsequent analysis.

Figures 2 and 3 illustrate how a time evolution of a point
vortex in a 2D mesh corresponds to a space-time curve em-
bedded in a 3D space-time mesh, which can be represented
as a subgraph of the dual graph of the 3D space-time mesh.
We use the following notation to label nodes in the graph. If a
node corresponds to the 3D mesh element that spans the inter-
val (ny,ny+1), (ny,ny+1), and (n;,n; + 1), where ny,ny,n;
are the discretized position and time coordinates of a mesh
point, then the corresponding node of the dual graph has the
label [ny,ny,ny].

In Fig. 2(a) a point vortex stays inside a mesh face from
t =0tot = 1. Its trajectory through the 3D space-time mesh
element is shown in Fig. 2(b). Two space faces, the top and
bottom of the mesh element, are punctured. In Fig. 2(c) a
dual graph is shown for the mesh element. The node [0,0,0] is
connected by edges to its six neighbors. In Fig. 2(d), the sub-
graph of the dual graph is shown. Only edges corresponding
to punctured faces and nodes that have at least connectivity
one are contained in the dual graph. Edges are labeled by the
label of their corresponding punctured faces.

In Fig. 3(a) a point vortex exits the mesh face at some time
between t+ = 0 and t = 1 and enters a neighboring face. Its
trajectory through the 3D space-time mesh elements is shown
in Fig. 3(b). Now two space faces and one time face are punc-
tured. Figure 3(c) shows the resultant subgraph of the dual
graph (not shown). The three edges of the subgraph corre-
spond to the three punctured faces of the 3D space-time mesh
elements.

2. 3D structured spatial mesh, 4D structured space-time mesh

For a 3D structured spatial mesh, the space-time mesh
is composed of four-dimensional hypercubic mesh elements.
Each hypercube corresponds to a cube in the 3D spatial mesh
extended over a time interval between two time steps. Each
hypercube has eight neighboring hypercubes. It shares a vol-
ume, or cube, with each neighbor. The faces of these cubes
can be space faces or time faces. A space-time mesh element
is connected to the space-time mesh element at the same lo-
cation in space but spanning the prior time interval by a cube
with six space faces. This cube is defined at the time step
they share and therefore corresponds to a mesh element of a
3D structured mesh at a single time step. A space-time mesh
element is connected to a space-time mesh element over the
same time interval but neighboring in space by a space-time
cube. This cube has two space faces, which is the same face
at two bounding time steps, and four time faces, correspond-
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FIG. 2: (Color online) (a) Single mesh element of a 2D mesh
punctured at t=0 and t=1. (b) Trajectory of the (point) vortex
shown as a curve inside the single 3D space-time mesh
element. (c) Dual graph of the mesh element. (d) Subgraph
generated by puncture points A and B. Only space faces were
punctured.

ing to the four edges of the space face extended over the time
interval.

Every face is shared by four cubes. A space face is shared
by two space cubes, a space-time cube spanning the previ-
ous time interval, and a space-time cube spanning the subse-
quent time interval. A time face is shared by four space-time
cubes spanning the same time interval, corresponding to the
four mesh elements of the spatial mesh that share the spatial
edge. We note that if two 4D mesh elements share only a
single face and not a cube, they are not neighbors, according
to our definition, just as two diagonal 3D mesh elements that
share an edge but not a face are not neighbors.

As before, we can speak of a 4D space-time mesh element
as being punctured by a topological defect, which is now a
two-dimensional space-time sheet. A 3D structured mesh ele-
ment punctured by an isolated topological defect, that is, one
not entangled with another topological defect inside the mesh
element, has two punctured faces. Likewise a 4D mesh el-
ement punctured by an isolated topological defect has four
punctured cubes. Again, each punctured cube has two punc-
tured faces; that is, the vortex enters and exits each cube. Each
punctured face is shared by two of the cubes.

In the dual graph of this 4D mesh, nodes correspond to
space-time mesh elements. If a node corresponds to the 4D
mesh element that spans the interval (ny,n.+ 1), (ny,n, +
1), (nz,n;+1) and (n,n; + 1), where ny,ny,n;,n; are the
discretized position and time coordinates of a mesh point,
then the corresponding node of the dual graph has the label
[ny,ny,nz,n;]. Each node in the dual graph has eight edges,

t=0 t=1

(a) [1,0,1]

FIG. 3: (Color online) (a) Two mesh elements of a 2D mesh.
The left element is punctured at t=0, and the right element is
punctured at t=1. (b) Trajectory of the (point) vortex shown
as a curve inside the two 3D space-time mesh element. A
time face is punctured. (c) Subgraph generated by puncture
points A, B, and T.

corresponding to eight cubic volumes connecting it to its eight
neighboring 4D mesh elements. It will be useful to think of
each edge of this dual graph as corresponding to the bundle of
six faces corresponding to the connecting cube, as illustrated
in Fig. 4.

[0.0.0.11  [nynyn, n =10,0,0,0]
[0,-1,0,0] [0,0,1,0]
© ©
[-1,0,0,0] [1,0,0,0]
[0,0,-1,0] [0,1,0,0]

bundle of - - not punctured punctured

[0,0,0,-1] six faces == punctured cube

FIG. 4: (Color online) A node in the dual graph of the 4D
space-time mesh connected to 8 neighbors. The indices of
the node indicate its position in discretized space and time
and the indices of its spatial and temporal neighbors. Each
edge corresponds to a connecting cube that corresponds to a
bundle of faces. In the vortex subgraph, two of the faces are
punctured. The two punctured faces create a punctured cube,
which creates a single undirected edge connecting the two
nodes.

Again, a vortex evolving over time corresponds to a sub-
graph of this dual graph. A vortex is a connected set of nodes
and edges, where nodes correspond to punctured 4D mesh el-
ements and edges correspond to punctured cubes. As before,
the connected set of nodes and edges is constructed by testing
space and time faces to see whether they are punctured. How-
ever, now each punctured face indicates four punctured cubes



and thus will “activate” four separate edges of the vortex sub-
graph.

In general, the nodes of a subgraph that correspond to a
vortex have connectivity greater than or equal to two. For
example, a spatial vortex can have end points only at the non-
periodic boundaries of the system. A point vortex in a 2D
space evolving over time can have an end point only when
it is born or dies. In a 4D mesh, almost all punctured cubes
contain two punctured faces, one corresponding to in and a
second corresponding to out. However, the analysis described
here works equally well for data where the topological defect
described has end points (e.g., birth and death or spatial end
points not at boundaries).

(a)

(b) 1,0,1,1]

te[1,2]
[0,0,0,1] D [1,0,0,1]
0,0,-1,1] D
clP a
T_~Yoo10 T E 1,0,1,0]
te[o,1] |[° B D L
C~"10.,0,0,0] T [1,0,0,0]
A B
0,0-1,0] |B
A
A /9[0,0,1,-1]
[0,0,0,-1]

te [-1 70] /
[0,0,-1,-1]

FIG. 5: (Color online) (a) Top part of a vortex moving over
one face from t=0 to t=1. The punctured faces are labeled A,
B, C, D, E, and T. (b) Resultant vortex graph structure. Nodes

in each highlighted region correspond to the same time
interval. Each edge corresponds to a punctured cube and is
labeled by the puncture faces of the cube. The graph structure
att € [0, 1] is connected to the graph structure at t € [—1,0]
and to the graph structure at t€ [1,2] by the vertical edges.

Analogous to the spatially defined mesh, tracing a vortex
object over time requires only one constraint on the data: at
most only one vortex can puncture a given mesh element time
face or space face. In general, both the discretization of the
length scale and the time scale of data from a well-behaved
simulation should be such that this constraint should hold.
However, if a coarser length scale or time step than the sim-
ulation length scale or time step is used when analyzing the
data, then this can be a problem. Also, if a single space-time

mesh element is punctured by more than one vortex space-
time sheet, we do not disentangle them. The two vortex sheets
are considered connected within our ability to resolve them.

Figures 5 and 6 illustrate how a time evolution of a line vor-
tex in a 3D mesh corresponds to a space-time sheet embedded
in a 4D space time mesh, which can be represented as a sub-
graph of the dual graph of the 4D space-time mesh. In Fig. 5,
a section of a line vortex is initially in a single 3D spatial mesh
element. From r = 0 to t = 1, the top half of the vortex slides
over to a neighboring 3D spatial mesh element. As a result,
five space faces (A, B, C, D, and E) and one time face (T) are
punctured. Dashed lines assist visualization of the time faces.
At the bottom of Figure 5, the activated nodes and edges of
the dual graph are shown. Each edge is labeled by the punc-
tured face or faces that activated it. Parts of the graph that
correspond to the time interval ¢ € [-1,0], [0,1], and [1,2] are
highlighted.

In Fig. 6, we show how the constructed graph can identify
that a vortex at t+ = O is the same as the vortex at ¢t = 1, de-
spite the two vortices sharing no common punctured face in
the two 3D meshes. In Fig. 6(a), a section of a line vortex
moves through multiple 3D spatial mesh elements from ¢ = 0
to t = 1. The punctured time faces due to its movement are
shown in Fig. 6(b). As a result of the movement, four space
faces (A, B, C, and D) and four time faces (T1, T2, T3, and
T4) are punctured. Nodes and edges are labeled the same as
in Fig. 5; again, parts of the graph that correspond to common
time intervals are highlighted. The nodes and edges activated
by the T1, T2, T3, and T4 punctured faces connect the nodes
and edges activated by the space faces. Thus the vortices em-
bedded in the 3D mesh # =0 and # = 1 correspond to a single
connected subgraph of the dual graph of the 4D mesh, and
therefore are the same vortex.

Our analysis relies on two assumptions. First, the contour
integral performed over mesh faces correctly identifies punc-
tured faces; that is, edges are correctly identified. For exam-
ple, the contour integral calculation can produce an incorrect
result if two vortices puncture the same face or if the phase
changes by more than 7 along an edge of mesh. Second,
the analysis assumes that two distinct vortices do not cross
through the same region over the elapsed time interval. Both
these assumptions typically hold if the analysis is based on the
smallest space and time intervals available from the discretiza-
tion of the simulation data. However, these assumptions can
also hold for significant coarsening of the data if the vortices
are dilute and move slowly.

In Appendix A, we show how the dual graph paradigm can
be converted to the line digraph paradigm, using the graphs of
Figs. 5 and 6 as examples.

IV. INTERPRETING EVENTS FROM ANALYSIS OF THE
SPACE-TIME VORTEX GRAPH

Interpreting events does not require storing and then ana-
lyzing the entire space-time graph generated over an entire
simulation. Rather it involves interpreting how the structure
of the graph evolves from time step to time step.
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FIG. 6: (Color online) (a) Vortex moving multiple cells from right to left between t=0 and t=1. (b) Four punctured time faces
(T1, T2, T3, and T4) resulting from the movement. (¢) Connected graph structure at t€ [0, 1], which is connected to the graph
structure at t€ [—1,0] and t€ [1,2] by vertical edges. Each edge corresponds to a punctured cube and is labeled by the
punctured faces of the cube.

Given that individual vortices correspond to connected More complex events can occur by combining the events
graphs in the subgraph, we now can define the following above.
events.

e Birth-Split (Pair Production) — Two vortices of opposite
o ) ] chirality spontaneously appear. This corresponds to a
o Continuity — (a nonevent) A single vortex at one time connected subgraph at a time interval that is connected

step is mapped to a single vortex in another. This corre-
sponds to a connected graph at one time interval that is
connected to a single connected graph at a subsequent
time interval.

e Birth — A vortex in a time step was not present in the
previous time step. It has spontaneously appeared, for
example, emitted from a boundary. This corresponds to
a connected graph at one time interval that is not con-
nected to any connected graph in the prior time interval.

e Death — A vortex in a time step is not present in the sub-
sequent time step. It has, for example, been absorbed
into a boundary. This corresponds to a connected graph
at a time interval that is not connected to any connected
graph in the subsequent time interval.

e Merge — Two or more vortices join into a single struc-
ture. This corresponds to two (or more) connected
graphs at one time interval that are connected to a single
connected graph in the subsequent time interval.

e Split — A vortex breaks into two or more vortices. This
corresponds to a connected graph at one time interval
that is connected to two (or more) connected graphs at
a subsequent time interval.

to no subgraph in the prior time interval and two sub-
graphs in the subsequent time interval.

e Merge-Death (Annihilation) — Two vortices of opposite
chirality can annihilate each other in a simulation. This
will appear as a merge followed by a death. An anni-
hilation is equivalent to a pair production reversed in
time.

e Merge-Split (Vortex Cutting/Recombination) — Two
vortices can approach each other, touch at a point, and
then separate. This may be an event where one vortex
can be interpreted as moving through the other (cutting,
crossing, and then reconnecting) or an event where the
two vortices swap parts when they touch (recombina-
tion, as observed in Refs. [8-10]). Both events will
appear as a merge followed by a split.

With respect to a merge-split, graph analysis by itself can-
not distinguish a cut/reconnect from a recombination. To tell
one event from the other, one must analyze the most likely
path individual points along each vortices have traced through.
This analysis requires choosing a mapping function to map
individual points on a vortex in one time step to the points
on the same vortex in the subsequent time step, and then as-
sessing whether the points associated with a given vortex be-
fore the merge/split have mapped onto a single vortex after



the merge/split or have distributed across two vortices. While
such a mapping function could be built on an analysis of the
connected graph structures (e.g., shortest graph path connect-
ing a space face puncture point in one time step to a space
face puncture point in the subsequent time step), other map-
ping functions based on, for example, connecting points with
the shortest displacements or using normals to the curve are
equally legitimate and yet may map points to slightly differ-
ent subsequent points.

In simulations with periodic boundary conditions, the in-
terpretation of events can depend on how one divides a vortex
with respect to the boundary conditions. The periodic bound-
ary condition allows a single vortex to wrap through the sim-
ulation box multiple times, and each wrapping is commonly
interpreted as an independent vortex. The interpretation of an
event can depend on how the wrapped vortex is divided into
pieces. For example, if one wrapping of a vortex merges with
another wrapping, this will be interpreted as continuity, not a
merge, unless different wrappings of the vortex are treated as
independent vortices.

Here, we are interested only in events that correspond to
changes in the connected components of the space-time graph.
That is, the method described here does not detect events such
as the pinning of a vortex on an inclusion or the change in
internal topology of a vortex such as the splintering of a gi-
ant vortex into multiple vortices [44]). Detecting these types
of events requires additional analysis of individually tracked
vortices.

V. ALGORITHM

In this section we describe an algorithm for constructing,
traversing, and interpreting the graph of Section IV that can
be easily integrated with the algorithm described in Ref. [12]
for extracting the vortex objects from a single time step.

Interpreting the events that occur across a time interval does
not require constructing a full time-interval subgraph based on
a 4D mesh; it can be achieved by constructing and performing
operations on three subgraphs: (1) the subgraph for the 3D
spatial mesh at time step (2) the subgraph for the 3D spatial
mesh at the next spatial time step, and (3) the subgraph for the
time interval mesh connecting the two time steps. Since the
last mesh contains only one time interval, it can be projected
into a 3D mesh. Thus, only minimal extensions to the data
structures and algorithms introduced in Ref. [12] are required.

We subsequently refer to the subgraph constructed in Ref.
[12] as a time step graph, or TS graph. The output of analyz-
ing this graph is the set of connected components correspond-
ing to a set of vortices, which can be described by an ordered
set of points or splines. We refer to the TS graph from the be-
ginning and end of the time interval as the current TS graph,
T'Scurrent » and next TS graph, T'S,.x:, respectively. The current
and next TS graphs are connected by a time interval graph, or
TI graph. A TI graph is the graph structure spanning a single
time interval between two time steps, or only the nodes and
edges fully inside one of the highlighted regions of Figs. 5
and 6.

TABLE I: Variables Used in Tracking Algorithm

Weurrent Order parameter mesh data of current
time step

Whext Order parameter mesh data of next time
step

Ceurrent Connected components of the current
TS graph

Chext Connected components of the next TS
graph

Leurrent Set of labels {/cyrrent } assigned to each
connected component of T'Scyyrent

Lext Set of labels {ln.y} assigned to each
connected component of 7S¢

Luew Set of new labels {/ne }

B Binary association matrix Aeyprens X
Neurrents Where Reyprens 18 the size of
Lcurrent

F :lpext — {1, 1p,...} |[Mapping of each label lyexy € Lyex to
labels I; € Leurrent U Lyew

A TI graph has edges activated by both punctured time
faces and space faces. Thus, an important step in constructing
the TI graph is lifting the current TS graph into the TI graph.
We observe that each node in a TS graph corresponds to an
edge in the full dual graph to the 4D mesh, namely, the ver-
tical edges spanning the highlighted regions in Figs. 5 and
6. Thus each node in the TS graph directly “activates” a sin-
gle node in the following (or preceding) TI graph. Similarly
each edge of the TS graph corresponds to one bundle in the
TI graph and so “activates” a single edge in the TI graph. Al-
though the meaning of the nodes and edges changes slightly
when the TS graph is lifted to a TI graph, the graph structure is
the same except for direction of the edges. Thus, the first step
in constructing the TI graph is simply to make a copy of the
current TS graph, while making each edge unidirectional. The
rest of the nodes and edges of the TI graph are added by find-
ing punctured time faces. Connected components are found
in the TI graph by a queue-based flood-fill algorithm that also
tracks when the flooding operation finds a differently labeled
node. As a final step, the TI graph is compared with the lifted
next TS graph.

Below we provide the algorithmic steps in detail for con-
structing the two TS graphs, their TI graph and interpreting
events. The variables used below are defined in table 1.

1. TScurrens and T'Syexr are constructed by performing con-
tour integrals over all faces of the 3D meshes for Wy rens
and Y,.y. A connected component analysis is used to
find the set of connected components Ceyrenr and Cexy .
Each connected component in Cgyren; and Chey, is given
a unique label, leyrrent € Leurrent and lpext € Lyexs

2. An empty TI graph is created and initialized by lifting
the nodes and edges of T'S¢yen: and labeling each lifted
node leyrrent, Where leyrrens € Lewrrens 18 the label of its
connected component in Ceyyrens



3. By using Weyrrens and Wy, contour integrals are per-
formed around all time faces, one for each edge of the
spatial mesh. For each punctured time face, correspond-
ing edges and (unlabeled) nodes are added to TI graph.

4. A connected-component analysis of the TI graph is per-
formed by using a flood-fill algorithm from the labeled
nodes. If the graph traversal reaches a labeled node
with a different label, the binary association matrix is
updated. That is, if 7, j are the labels of the two compo-
nents, i, j € Leyrrens» set B(i, j) = B(j,i) = 1. Then, the
binary association matrix B is updated so that it is fully
associative. That is, if B(i, j) = 1 and B(j,k) = 1, then
B(i,k) = 1.

5. Unlabeled connected components in the TI graph are
births [type I in Fig.7(b)]. They are assigned a new label
Lnew € Lpew, and their nodes are labeled accordingly.

6. The mapping function F' is now constructed by iterating
over all nodes of the lifted T'S,., for a node labeled

lnext .

6.1. If the TI graph has an equivalent node with label
[, then add [ to the list [,y maps to. F : [y —
{..,1}. If, forany I’ #£ 1, B(I',1) = 1, then also add
I to the list [yeyy maps to. F : ey — {...,1'}.

6.2. Rarely (in 2D cases), the TI graph may not have
an equivalent node. This is also a birth [type II in
Fig. 7(b)] and should be handled analogously to
(5), that is, assigned a new label [, € Ly, and
added to the mapping F : Loy — {---, lnew }-

The data structures F' and B now contain all the information
necessary to determine what events occurred from the current
to the next time step.

1. Continuity: If, per F, for a given lyoy € Lyext, F : lnet —
{lcurrent}, where leyrrent € Leyrrens and no other [ € Lygy
also maps to leprens, then Iy, corresponds to a vortex
that has continued.

2. Births: If, per F, for a given lyey € Lyext, F : lpey —
{--- lwew---, }, where Lyey € Lyeyy, then ey is a birth.

3. Splits: If, per F, more than one [, maps to / €
Lecyrrent U Lyew, then [ has split.

4. Merges: If, per F, I,y maps to more than one [ €
Lcurrent U Lnew, then lnext isa merge.

5. Deaths: 1If, per F, 10 ljexy € Lyexy maps to leyprens €
Leurrent, then vortex Iyrens has died. If there is a
" # Leyrrens such that B(leyprens,!’) = 1 and I also died,
then a Merge-Death (Annihilation) has occurred.

This algorithm can be easily adapted so that it can be re-
peated over subsequent time steps by mapping each local label
to a globally unique label and assigning new globally unique
labels to vortices that are the result of births, merges, or splits.

In Figure 7, we illustrate the events of continuity [Fig.
7(a)], birth (type I and II) [Fig. 7(b)], death [Fig. 7(b)], birth-
split [Fig. 7(c)], split [Fig. 7(c)], merge [Fig. 7(d)], merge-
death [Fig. 7(e)], and merge-split [Fig. 7(f)], as they would
appear using the two lifted TS graphs and the TI graph. We
note that, in general, merges, merge-splits, and splits do not
occur in 2D meshes with point vortices but do occur for 3D
with line vortices where each vortex in a TS graph is com-
posed of many nodes and edges.

O Current time step D Next time step

(a) Continuation (d) Merge
(b) Birth/Death (e) Merge-Death
Birth |
Death
Birth Il
(c) Split (f) Merge-Split
Split
Birth-
Split

FIG. 7: (Color online) Events that can be detected in
simulation, shown for a 2D mesh. The lifted current and next
TS graphs (in 2D, a single nodes) are shown as a o and O,
respectively. The TI graph is shown as a set of nodes (filled
circles) and edges (red lines). Only the activated nodes and
edges of the dual graph are shown.



A. Scaling and Timing

In Ref. [12], the scaling of the vortex extraction algorithm
was characterized extensively with respect to increasing the
mesh size and increasing the number of vortices present in the
system. When extracting vortices from a single time step, the
following conclusions were drawn. In a dilute vortex state,
with a small, fixed number of vortices to find, the bulk of the
algorithm time is performing contour integrals around space
faces. In a dense vortex state, the bulk of the algorithm time is
spent tracing the vortices in the graph, interpolating the points
of the vortices on each face, and fitting curves to the vortices.
Tracking of vortices between two time steps adds three sig-
nificant computational steps, each directly analogous to cal-
culations performed for vortex extraction. The first is the cal-
culation of the contour integral around all time faces. Just
as in [12], the number of calculations performed is propor-
tional to the number of points in the mesh and will dominate
the computation for a dilute vortex state where the vortices
do not move much. The second and third additional compu-
tations are the construction of the TI graph and the flood-fill
of the TI graph. Here, the number of calculations performed
is proportional to the number of punctured time faces or the
total number of nodes in TI graph. In a dense vortex state,
or when the vortices have moved a large amount between the
two time steps, this calculation will dominate the algorithm
time. In comparison, detecting and recording events, which
are performed on a much smaller data structure than the mesh
and graph, are computationally negligible.

8r )
* Total gl
7 H * Build TI Graph

* Flood-Fill

61| * Contour Integrals

Extract Current/Next Vortic

time (sec)
D

0.5 1 15 2 2.5
Nodes of Tl Graph %x10%

FIG. 8: (Color online) Scaling of the tracking algorithm
shown with respect to increasing the size of the TI graph. A
larger TI graph corresponds to faster moving or larger
vortices.

In Figure 8, we show the computation time for the three
major computational steps of tracking as a function of the
number of nodes in the TI graph. This data was generated
for a structured mesh of size 256x128x32. By choosing time
steps progressively farther apart, the vortices present in the
system moved farther and thus generate a progressively larger
TI graph. Note that the minimum number of nodes of the TI
graph is always greater than zero, since the graph consists of
at least the same number of nodes as the first TS graph. Since
the size of the mesh is fixed, the time required to calculate
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FIG. 9: (Color online) Two time steps of a set of 64 vortices
in a two-dimensional simulation flowing downwards. The
vortices in the first and second time step are circles and
squares, respectively. Also shown are the black nodes of the
TI graph that connects the vortices from the two time steps.

the contour integrals is also fixed. Similarly, the time to ex-
tract the vortices from the first and second time steps is fixed
and is shown as a line. As the number of nodes of the TI graph
increases, the time to construct the TI graph and time to flood-
fill the TI graph increase linearly and eventually will dominate
the calculation.

We note that if the vortices have moved a small amount be-
tween the two time steps, the computational cost of tracking
a vortex between two time steps adds only a small amount of
overhead. However, if the time interval between the two time
steps is large enough that the vortices have moved a signifi-
cant amount, then constructing and flood-filling the TI graph
dominate the calculation. In general, using a large time in-
terval can compromise the accuracy of the tracking because,
when different vortices have moved through the same regions
over a time interval and therefore punctured the same faces of
the space-time mesh elements, tracking results may indicate
merges and splits rather than continuity. In a system where
vortices move at a roughly steady-state velocity, one can op-
timize the rate of tracking so as to continuously track vortices
for the least computational effort.

We conclude that the primary cost of tracking vortices in
simulation data is not the cost of tracking in addition to ex-
tracting the vortex but, rather, the frequency with which track-
ing calculations need to occur so as not to have too many
events combine over an elapsed time-interval such that se-
quence of events and identity of each vortex becomes unclear.
Optimizing the frequency of performing the tracking analysis
is a problem-dependent assessment.



VI. EXAMPLES OF VORTEX TRACKING

Using data from a 2D simulation of point vortices and a
3D simulation of line vortices, we will demonstrate how the
tracking algorithm can detect continuity and a merge-split.

A. Tracking vortices in 2D simulation

Figure 9 shows the tracking of a two-dimensional simula-
tion of vortices. All data was generated by using the TDGL
code described in Ref. [6]. Here, vortices are point defects
in the y phase field. An x-directed superconducting current
applies a Lorentz force on the vortices, causing them to flow
downwards. The simulation has periodic boundaries, so vor-
tices that exit the bottom of the simulation box appear at the
top. No events other than continuity occur over the simu-
lation, so the identity of each vortex is conserved. The 2D
mesh is of size 128x128. Each mesh element is 0.5 coherence
lengths (the unit of length in a TDGL simulation) on a side,
and the two time steps are separated by 9.9 dimensionless time
units, defined in Ref. [6]. This represents a coarsening of the
time discretization, since in the simulation the TDGL equa-
tions were solved over 99 time steps spanning this time in-
terval. The lifted vortices from the first time step and second
time step are open circles and squares, respectively. The nodes
of the TI graph are shown connected by red edges. Because
the vortices in the simulation are single points, they trace a
one-dimensional path in time and correspond to a connected
component where each node has connectivity one or two. The
point vortices have traveled sufficiently far over the time in-
terval that, if given only their positions at the two time steps,
it is difficult to determine which vortex maps to which vortex
without employing assumptions about how the vortices were
moving. In comparison, using the algorithm presented above,
no assumptions about how the vortices moved are needed in
order to map vortices from one time step to the next.

Additionally, we note that by indicating which edges, cor-
responding to punctured time faces, of the 2D spatial mesh
were crossed, the connected graph associated with each vor-
tex contains details about the trajectory of the vortex between
the two time steps. Some vortices in Fig. 9, for example, did
not travel in straight lines between the two time steps. By in-
terpolating within a time face, as was done for space faces in
Ref. [12], a trajectory can be reconstructed as a sequence of
(xi,yi,t;), where each f; corresponds to the approximate time
the vortex crossed an edge of the 2D mesh. This method was
used to construct the smooth trajectories shown in Fig. 12 of
Ref. [43].

B. Tracking vortices in 3D simulation

Figure 10 shows two vortices in a 3D TDGL simulation that
recombine to form two new vortices by a merge-split. All data
was generated by using the TDGL code described in Ref. [6].
Here vortices are 1D curves. In Figure 11, we show how the
TI graph constructed for this time interval indicates this is a
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merge-split event. The 3D mesh is of size 256 x 128 x 32, al-
though only a small portion of it is shown. Mesh elements are
0.5 coherence lengths on each side, and the two time steps are
separated by 9.0 dimensionless time units or 90 time steps of
the TDGL simulation spanning this time interval. The lifted
vortices from the first time step and second time step are open
circles and squares, respectively. The nodes of the TI graph
are shown connected by edges. The vortices sweep out a con-
nected fabric of nodes over the time interval. From the top
image of Fig. 11, one can infer that Vortex 3 is composed of
the right and left parts of Vortex 1 and Vortex 2, respectively,
and Vortex 4 is composed of the left and right parts of Vortex 1
and Vortex 2, respectively. In other words, in this merge-split
event, the two vortices swapped parts, rather than one vortex
cutting, crossing the other vortex, and reforming. In the bot-
tom of Fig. 11, the TI graph is shown from a side (and Vortex
1 and Vortex 2 are not shown) so that the connected TI graph
can be seen more clearly and it is apparent that Vortex 3 and
Vortex 4 do not intersect.

Xy plane view

FIG. 10: (Color online) (Top) Merge-split that occurs
between two vortices in a 3D mesh, viewed along the z-axis.
Vortex 1 and 2 in the first time step become Vortex 3 and 4, in

the second time step by cutting and recombining.

VII. CONCLUSION

In this paper we have presented a method that can track
topological defect lines from a data set of complex scalars de-
fined over a 4D space-time mesh at the scale of the discretiza-
tion. In our application, the topological defects correspond
to vortices in a TDGL simulation of a type II superconduc-
tor. Vortices are tracked by interpreting the set of topological
defects as a connected subgraph of the dual graph of the 4D
space-time mesh. Nodes and edges of this subgraph are con-
structed by performing integrals along closed paths on faces
of the mesh. By analyzing how the graph structure changes
from one time step to the next, events such as birth, death,
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FIG. 11: (Color online) (Top) The merge-split of Figure 10 shown as a TI graph. Vortex 1 and Vortex 2 in the first time step are
shown as solid green and sold blue lines, respectively. Vortex 3 and Vortex 4, in the second time step are shown as dashed green
and dashed blue, respectively. The lifted nodes are shown as circles and squares for the first and second time steps, respectively.
Also shown are the black nodes and red edges of the TI graph that connects the vortices from the two time steps. The 3D mesh
is not shown. (Bottom) Only Vortex 3 and Vortex 4, the TI graph, and the lifted second time step nodes are shown, viewed
along the y-axis. Vortex 3 and Vortex 4 are distinct because there is a gap between them along the z-axis.

continuity, merging, splitting, birth-splits, merge-deaths, and
merge-splits can be detected. These events correspond to vor-
tices spontaneously appearing or disappearing in a type-II su-
perconductor and interacting with other vortices. While the
implementation described here is for a regular structured mesh
that is aligned along the Cartesian axes, we have also general-
ized this method to an unstructured mesh, where the edge-to-
vertex dual of the subgraph is used instead [43].

Because vortices lack fixed features, length scale, move-
ment patterns, or even conserved identities, standard methods
of tracking objects can quickly fail under common circum-
stances. The tracking analysis presented here fails to track
vortices and correctly detect events only if the time interval
between time steps is too large. This tracking analysis per-
mits vortex interactions to be understood at a finer detail than
was previously possible and allows vortices to be tracked un-
ambiguously over time. This analysis also supports creating
areduced representation of the narrative of the vortex dynam-
ics. As TDGL simulations increase in size, in order to model
experimentally relevant mesoscale superconducting phenom-
ena, it will be important to be able to extract on the fly and
visualize the dynamical narrative of how the vortices behave;
otherwise the volume of simulation data will quickly over-
whelm storage resources.
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Appendix A: Converting to edge-to-vertex dual

Because of the available data structures used in some mesh
libraries, using the edge-to-vertex dual of the graph can be
more computationally efficient for tracking vortices. This is
the data structure used in Ref. [43]. With a simple procedure,
a dual graph for a 4D mesh can be converted to its edge-to-
vertex dual.

Concisely, in the dual graph described above, edges corre-
sponds to a bundle of punctured faces. In the edge-to-vertex
dual of this graph, each punctured face is a node; and if two
punctured faces are shared in a bundle, then an edge connects
their associated nodes. In Fig. 12, the edge-to-vertex dual of
the graphs in Fig. 5 and Fig. 6 are generated.
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FIG. 12: (Color online) Edge-to-vertex dual of the graph of
Fig. 5 (top) and Fig. 6 (bottom).

In the edge-to-vertex dual graph, edges between nodes that
belong the same time step can be treated as directed edges,
where the direction of the edge indicates the chirality of the
vortex puncturing the two face. The direction of the edge is
determined from the chirality of the punctured face (i.e., n =
+1) relative to the direction of the contour integral. We omit
indicating the direction of the edges in Fig. 12 since edge
directions are not used when tracking vortices.

Appendix B: Gauge-invariant vortex detection around space
and time contours with a varying magnetic field and current

For a superconductor described by the order parameter y =
|ye'?, the local vorticity is defined as

1
= dl-Vo Bl
n 27:%6» , (B1)

along a closed contour ¢ with ¢ = 0./ (<7 being the area
enclosed by contour %).

Whereas the magnitude of y is gauge-invariant, however,
the phase of y is not. In Ref. [12], the above line integral was
reformulated in a gauge-invariant manner as

1 R
n= _m( %)dl-(VG—kK(t)x—A)—%-/MB-da), (B2)
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where A is the magnetic vector potential, K(z) is the time-
varying time integral of the electric field in the x-direction,
and B is the magnetic field.

The contour integral in Eq. (B2) can be exactly calculated
over a set of connected segments {/;} forming a closed path,
where 0 is 6;_1 and 6; at the endpoints of segment /;, as long
as 6 does not change by more than 7 along any one segment.
That is,

L.
n=—s_ <;A9i,i1+/dB-da>, (B3)

where
Aé,'_],;l = mod(G,- — 6,1 (B4)
+(K(l)x/\f(A,’*Ai+1))‘l,’+gi’,’,1 (BS)
+7m,2n) — 7. (B6)

In the expression (B5), A; and A;_; are the magnetic vector
potential at the endpoints of /;. For completeness, we also
explicitly include the phase jump correction, 2;;_, for con-
tour segments that cross a quasiperiodic boundary; that is,
Z;i—1 = 0 unless /; crosses a quasiperiodic boundary. We
group the correction terms together as follows:

AB; ;i = mod(6; — 61 +Ci(x,y,2,l;,t) + 7,27m) — . (B7)

Since there is no gauge transformation or quasiperiodic
boundary conditions on time edges, C; = 0 on time edges,
I = ArF, of the mesh. We note, however, that for a given spatial
edge, C; changes as a function of time if the magnetic field B
or K () changes. When calculating Eq. (B3) around a rectan-
gular time face, that is, for a single spatial edge extended over
a time interval, instead of calculating a magnetic flux through
a face, a correction term is added to the summation that ac-
counts for the change in C; for the spatial segment / over the
time interval:

1 neo
n= <Zl,Aei,il AC:+1,1> , (B3)

where

ACiy 1 =mod(Ci(x,y,z,1,t +1) — Cy(x,y,z,1,t) + 7,27m) — 7.
(B9)

Again, if the magnetic field or K has not changed over the
time interval, AC;1; = 0.

In the large A-limit Ginzburg-Landau solver described in
Ref. [6], the vector potential A was defined as a linear func-
tion in either the x or in the y direction. Using the formu-
lation from Refs. [6] and [12], we can now explicitly write
the correction term Cy(x,y,z,1,¢) of Eq. (B7) for contour in-
tegrals with segments on a Cartesian mesh for different mag-
netic field configurations. For simplicity of notation we will
express Cy(x,y,z,1,t) as Cy(i, j,k,1,t), where x = hyi, y = h, j,
and z = h;k, where hy,hy, and h; are the lengths of the sides
of a mesh element.



For an xz magnetic field, B = [By, 0, B;]

[ =h&: (B10)
Ci(i, j,k,1,t) = B;(1)7(j) e + K (1)
I=hy:
Cl(iajak,lat) :‘Q(iajakalat)
I =hs:
Cl(iajakvlat) = —Bx(f)_)_)(j)hz7
where
(i, j k1 = hy$,t) = (B11)

(—LyB(t)hyi+ LyBy(t)h.k) O((j+ 1)hy — Ly)

and §(j) = hy(j— ). The Heaviside function ©(x) is 1 if
x >0, and O otherwise. The purpose of O is to apply the
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quasiperiodic phase jump correction only if the path segment
[ crosses a quasiperiodic boundary.
Similarly, for an yz magnetic field, B = [0, By, B;]

I=hd: (B12)
Cl(iajvkalvt) :K<t)hx+°@(i7j7k7l7t)
I=hyy:
Cl(i7jak7lat) = _BZ(I)X(i)h,V
l=hz
Cl(ivjakalat) = By(t)f(i)hm
where
D(i,j k.l = hy9,1) = (B13)

(LB 1)y — LiBy(1)hok) ©((i+ 1y — L)
and X(i) = h (i — %5).
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