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Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been
developed. Its built-in frozen-in equation makes is optimal for studying current sheet formation. We
use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D
plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium
solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that
is non-differentiable. Unlike previous studies that examine the current density output, we identify
a singular current sheet from the fluid mapping. These results are benchmarked with a constrained
Grad-Shafranov solver. The same signature of current singularity can be found in other cases with

more complex magnetic topology.

Introduction. Current sheet formation has long been
an issue of interest in plasma physics. In toroidal fusion
plasmas, closed field lines exist at rational surfaces. It
is believed that current singularities are inevitable when
these surfaces are subject to resonant perturbations [1-
10], which jeopardizes the existence of 3D equilibria with
nested flux surfaces. In the solar corona, field lines are
tied into the boundaries and do not close on themselves.
Yet Parker [11, 12] argued that there would still be cur-
rent sheets forming frequently, and the subsequent field
line reconnections can lead to substantial heating. This
theory has stayed controversial to this day [13-26].

Albeit inherently a dynamical problem, current sheet
formation is usually treated by examining magnetostatic
equilibria for simplicity. The justification is, if the final
equilibrium that an initially smooth magnetic field re-
laxes to contains current sheets, they must have formed
during the relaxation. Here the plasma is supposed to
be perfectly-conducting, so the equilibrium needs to pre-
serve the magnetic topology of the initial field. This topo-
logical constraint is difficult to explicitly describe and at-
tach to the magnetostatic equilibrium equation, and to
enforce it is a major challenge for studying current sheet
formation, either analytically or numerically.

It turns out this difficulty can be overcome by adopt-
ing Lagrangian labeling, where the frozen-in equation
is built-in to the equilibrium equation, instead of the
commonly used Eulerian labeling. Analytically this was
first shown by Zweibel and Li (ZL) [14]. Numerically, a
Lagrangian relaxation scheme has been developed using
conventional finite difference [27], and extensively used
to study current sheet formation [22-26, 28]. It has later
been found that its current density output can violate
charge conservation (V - j = 0), and mimetic discretiza-
tion has been applied to fix it [29, 30].

Recently, a variational integrator for ideal magneto-
hydrodynamics (MHD) in Lagrangian labeling [31] has
been developed using discrete exterior calculus [32]. It
is derived in a geometric and field-theoretic manner such

that many of the conservation laws of ideal MHD, includ-
ing charge conservation, are naturally inherited. Here we
present the first results of applying this novel scheme to
studying current sheet formation.

We consider a problem first proposed by Taylor and
studied by Hahm and Kulsrud (the HKT problem from
here on), where a 2D plasma in a sheared magnetic field
is subject to sinusoidal boundary forcing [3]. It was orig-
inally designed to study forced magnetic reconnection in-
duced by resonant perturbation on a rational surface. In
the context of studying current sheet formation, we refer
to finding a topologically constrained equilibrium solu-
tion to it as the ideal HKT problem. ZL’s linear solution
to this problem [14] contains a current sheet but also a
discontinuous displacement which is unphysical. It has
remained unclear whether the nonlinear solution to it is
ultimately singular or smooth.

We study how the nonlinear numerical solution to the
ideal HK'T problem converges with increasing spatial res-
olution, and find the fluid mapping along the neutral line
non-differentiable. Unlike previous studies that depend
heavily on the current density diagnostic that is more vul-
nerable to numerical inaccuracies [22-26, 28], we identify
a singular current sheet from the quadratic fluid mapping
normal to the neutral line. Prompted by these results, we
employ a Grad-Shafranov solver where the equilibrium
guide field is not prescribed a priori but constrained by
flux conservation [19] to independently verify the accu-
racy of our Lagrangian method.

The HKT problem. The HKT problem [3] originally
considers a 2D incompressible plasma magnetized by an
equilibrium field B, = ex with constant shear e. The
boundaries at = £a are then subject to sinusoidal per-
turbations so that z = £(a—0 cos ky). One branch of the
perturbed equilibrium solutions with no magnetic islands
along the neutral line x = 0 reads

B, = €[z + sgn(x)kad cosh kx cos ky/sinh ka]. (1)

Note that the sign function sgn(x) introduces a jump in



By, namely a current sheet at the neutral line. However,
it can be shown that this solution introduces residual is-
lands with width of O(d) on both sides of the neutral line
[7, 8]. Its magnetic topology is therefore different from
that of the initial field, which makes it not a topologically
constrained equilibrium.

This is not surprising since solution (1) is obtained by
solving the magnetostatic equilibrium equation,

(VxB)xB=Vp, (2)

where p is the pressure. A given set of boundary condi-
tions usually allows for more than one solutions to this
equation, and additional information is needed to identify
a specific one. Often it is prescribed to the equilibrium,
such as the pressure and guide field profiles in the Grad-
Shafranov equation [1]. Yet the information distinguish-
ing a topologically constrained solution from others is the
very constraint to preserve the initial magnetic topology,
which is mathematically challenging to explicitly attach
to Eq. (2) and its solutions [20, 21].

However, this topological constraint can be naturally
enforced if one adopts Lagrangian labeling, which traces
the motion of the fluid elements in terms of a continu-
ous mapping from the initial position xg to the current
position x(xg, t). In this formulation, the advection (con-
tinuity, adiabatic, and frozen-in) equations are [33]

pd3z = poddzo = p = po/J, (3a)
p/p" =po/pg = p="po/J7, (3b)
Bi dSl = BOi dSOl = Bi = ,TijBoj/J, (3C)

where x;; = 0x;/0z0j, J = det(z;;) is the Jacobian,
the adiabatic index, pg = p(xg, 0) the initial mass density,
and the same goes for py and Bg. They reflect the fact
that in ideal MHD, mass, entropy, and magnetic flux are
advected by the motion of the fluid elements. They are
built into the ideal MHD Lagrangian and the subsequent
Euler-Lagrange equation [33],
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This is the momentum equation, the only ideal MHD
equation in Lagrangian labeling.

Without time dependence, Eq. (4) becomes an equilib-
rium equation. Its solutions will satisfy not only Eq. (2),
but automatically the topological constraint in studying
current sheet formation, since the initial field configura-
tion By is built-in. In contrast, not all solutions to Eq. (2)
can necessarily be mapped from given initial conditions.
Thus the equilibrium equation in Lagrangian labeling of-
fers a more natural and mathematically explicit descrip-
tion for the problem of current sheet formation, which
simply becomes whether there exist singular solutions to

such equation, given smooth initial and boundary condi-
tions. If the initial field By is smooth, any singularity in
the equilibrium field B should trace back to that in the
fluid mapping x(xp).

ZL first used the advantageous Lagrangian labeling to
study current sheet formation [14]. Their linear solution
to the ideal HKT problem reads

(6> &) = (f (o) cos kyo, — [f'(w0) /K] sinkyo) . (5)

where f = —sgn(xg)ad sinh kxo/(x¢sinh ka) and € is the
displacement. It agrees with Eq. (1) linearly and contains
also a current sheet at the neutral line, but discontinuity
in &, as well which is not physically permissible. The fail-
ure at the neutral line is expected from the linear solution
since the linear assumption breaks down there. Similar
discontinuity in the displacement also appears in a linear
analysis of the internal kink instability [2].

It is worth noting that instead of enforcing incompress-
ibility (J = 1), ZL used a guide field By, = /1 — €223 so
that the unperturbed equilibrium is force-free. Their so-
lution (5) turns out to be linearly incompressible (V-& =
0). Even near the neutral line, the plasma should still be
rather incompressible because the guide field dominates
there. Therefore the physics of the ideal HKT problem
will not be affected by such alteration in setup, which we
shall adopt in our numerical studies.

Numerical results. The numerical scheme we use is a
recently developed variational integrator for ideal MHD
[31]. Tt is obtained by discretizing Newcomb’s Lagrangian
for ideal MHD in Lagrangian labeling [33] on a moving
mesh. Using discrete exterior calculus [32], the momen-
tum equation (4) is spatially discretized into a conserva-
tive many-body form M;%X; = —90V/0x;, where M; and
x; are the mass and position of the ith vertex respec-
tively, and V' is a spatially discretized potential energy.
When the system is integrated in time, friction may be
introduced to dynamically relax it to an equilibrium with
minimal V. The scheme inherits built-in advection equa-
tions from the continuous formulation, and thus avoids
the error and dissipation associated with solving them. It
has been shown that the scheme can handle prescribed
singular current sheets without suffering from artificial
field line reconnection. Such capability of preserving the
magnetic topology makes it an optimal tool for studying
current sheet formation.

For the ideal HKT problem, we use a structured trian-
gular mesh. Thanks to the symmetry in this problem, we
can simulate only a quarter of the domain, [0, a] x [0, 7/k].
At o = a it is constrained that z = a — dcosky. The
vertices are allowed to move tangentially along but not
normally to the boundaries. These boundary conditions
are exactly consistent with the original HKT setup. The
parameters we choose are e =1, pg = 1, a = 0.5, k = 27,
and 6 = 0.1. We use a large perturbation so that the non-
linear effect is more significant and easier to resolve. The
vertices are distributed uniformly in y but non-uniformly
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FIG. 1. Equilibrium field line configuration in the vicinity of
the neutral line, and the entire domain (inset). The field lines
appear equally spaced along y = 0 near the neutral line.

in z in order to devote more resolution to the region near
the neutral line. The system starts from a smoothly per-
turbed configuration consistent with the boundary con-
ditions and relaxes to equilibrium. In Fig.1 we plot the
field line configuration of the equilibrium.

An observation from Fig. 1 is that B, (z,0) becomes a
finite constant near the neutral line. To better illustrate
the origin of such tangential discontinuity, we review a
simple yet instructive 1D problem [28] with an exact non-
linear solution with current sheet available. Consider the
same sheared field By, = exg as in the HK'T problem, but
the plasma is compressible, with no guide field or pres-
sure present. The boundaries at o = *a are perfectly
conducting walls. The system is not in equilibrium and
will collapse towards a topologically constrained one with
a quadratic fluid mapping x = x¢|xo|/a. The Jacobian
J = 2|xg|/a is zero at the neutral line, where the equi-
librium field B, = By, /J = easgn(x)/2 yields a current
sheet. As we shall show next, the current sheet in the
ideal HKT problem develops from the same ingredients,
sheared initial field and quadratic fluid mapping.

We check how the equilibrium solutions converge with
increasing spatial resolutions, from 642 to 1282, 2562, and
5122. For solutions with higher resolutions, we only show
the part in the vicinity of the neutral line, since they
converge very well away from it. In Fig. 2(a), we plot the
equilibrium fluid mapping normal to the neutral line at
yo = 0, namely z(z0,0). For the part of the converged
solutions near xo = 0, quadratic power law z ~ x3 can
be observed. As discussed in the 1D case above, together
with a sheared field By, ~ xo, such a mapping leads to a
magnetic field B, = By, /(0z/0x) ~ sgn(zo) (note that
J = (0x/0x0)(y/dyo) at yo = 0) which is discontinuous
at o = 0, as plotted in the inset of Fig. 2(a).
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FIG. 2. Numerical solutions of z(xo,0) (a), By(x,0) (inset of
a) and 0y/0yo|(z,,0) (b) for different resolutions (dotted lines).
The converged parts agree with the results obtained with a
constrained Grad-Shafranov solver (dashed lines). Near the
neutral line, z(zo, 0) and 0y/0yo|(z,,0) sShow zg and x5 " power
laws respectively, while By(x,0) approaches a finite constant.
The solutions do not converge for the few vertices closest the
neutral line. In the inset of (b), the final versus initial distance
to (0, 0.5) for the vertices on the neutral line, i.e. 0.5—y(0,yo)
vs. 0.5 —1ypo for different resolutions are shown to not converge.
Solutions with higher resolutions are shown in part.

Despite the remarkable resemblance on the mechanism
of current sheet formation, there is a key distinction be-
tween the 1D collapse and the ideal HKT problem. For
the former, the plasma is infinitely compressible at the
neutral line, and the equilibrium fluid mapping is con-
tinuous and differentiable. If there is guide field or pres-
sure, no matter how small, to supply finite compressibil-
ity that prevents the Jacobian from reaching zero, the
topologically constrained equilibrium would be smooth
with no current sheet [28]. In the ideal HKT problem,



the plasma is (close to) incompressible. This is confirmed
by our numerical solutions which show J ~ 1+ O(§?).
As a result, the equilibrium fluid mapping turns out to
be non-differentiable.

At yo = 0, the converged power law x ~ 3 suggests
that dx/0xg ~ xo would vanish as xy approaches 0. To
ensure incompressibility, there should be dy/dyo ~ zg !
which would diverge at zy = 0. This is shown in Fig. 2(b).
Physically, this means the fluid elements on the neutral
line are infinitely compressed in the normal direction (z),
while infinitely stretched in the tangential direction (y).

However, it is difficult to numerically resolve a diverg-
ing z ! power law at zo = 0. Therefore the numerical so-
lutions z(20,0) and dy/dyol(z,,0) both deviate from the
converged power law for the few vertices closest to the
neutral line. This deviation reduces but does not disap-
pear with increasing resolutions. The inset of Fig.2(b)
shows that the vertices on the neutral line become more
packed at (0,0.5) as the resolution increases, suggesting
that the solutions do not converge on the neutral line.

These numerical results are benchmarked with the so-
lutions from a constrained Grad-Shafranov (GS) solver.
In this solver the equilibrium guide field is determined
self-consistently with a constraint to preserve its flux at
each flux surface [19], unlike conventional ones where it
is prescribed as a flux function. Without this feature the
solver would not be capable for studying the ideal HKT
problem. As shown in Fig. 2, the GS results are in excel-
lent agreement with the converged part of those obtained
with the Lagrangian scheme. Since the fluid mapping is
inferred rather than directly solved for, the GS solver is
able to achieve better agreement with the xy L power law
shown in Fig.2(b). However, it should be pointed out
that the applicability of the GS solver is limited to 2D
problems with nested flux surfaces, while the Lagrangian
scheme can be readily generalized to problems with com-
plex magnetic topology or to 3D. In fact, we identify the
same signature of current singularity as shown in Fig. 2
when studying the coalescence instability of magnetic is-
lands [34, 35] with the Lagrangian scheme.

Discussion. A straightforward conclusion we can draw
from the numerical solutions to the ideal HKT problem
is that there exists no smooth equilibrium fluid mapping.
Nonetheless, this does not necessarily leads to the con-
clusion that there is a genuine current singularity. In the
context of studying current sheet formation, one needs to
take the further step of differentiating the mapping and
confirm the existence of a possible current sheet. This is
exactly what we have done in this paper.

In previous studies that use similar Lagrangian relax-
ation methods [22-26, 28], current singularities are iden-
tified by examining whether the peak current density di-
verges with increasing spatial resolutions. However, in-
volving second-derivatives, the output of current density
is generally less reliable than that of the fluid mapping,
especially at a current sheet where the mesh can be highly

distorted. Since any singularity in the current density
should trace back to that in the more fundamental fluid
mapping, we choose to identify current singularities by
examining the latter. In this paper, the current sheet we
find originates from the quadratic fluid mapping normal
to the neutral line. In this sense, we consider our numer-
ical evidence for current sheet formation in 2D to be the
strongest in the extant literature.

It is also worthwhile to compare our result with the re-
cent work of Loizu et al. that also studies the ideal HKT
problem [10], but in the context of finding well-defined
ideal MHD equilibria with nested flux surfaces. For the
original HKT setup, they find no such equilibrium. Then
they introduce an alternate formulation to the problem,
which in our terminology is equivalent to making the ini-
tial magnetic field discontinuous, By, = €[z +sgn(zo)a],
where « is a positive constant. Analytically, this would
make the linear solution (5) continuous, such that smooth
equilibrium fluid mapping becomes possible. We are able
to get converged numerical solutions as well when such
formulation is adopted. However, the results in this pa-
per differ from those of Ref. [10] in that we begin with a
smooth initial condition, rather than one with disconti-
nuity, so as to observe the emergence of a current sheet.

ZL [14] studied the ideal HKT problem as a variation of
Parker’s original model where a uniform field in 3D line-
tied configuration is subject to footpoint motions [11].
Since a sheared field can be realized from a uniform field
by sheared footpoint motion, it is more closely related to
Parker’s model than other variations that involve more
complex field topology such as magnetic-nulls [24-26].
The dynamics also stay simple since there are no vio-
lent instabilities like the coalescence instability [15]. Now
that we have confirmed that there is a current singular-
ity in the 2D problem, naturally our next step is to find
out whether it survives in 3D line-tined configuration.
In fact, in Ref. [14] it is conjectured that current sheets
would not form in the 3D ideal HKT problem.
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