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The Yukawa one-component plasma (OCP) is a paradigm model for describing plasmas that
contain one component of interest and one or more other components that can be treated as a
neutralizing, screening background. In appropriately scaled units, interactions are characterized
entirely by a screening parameter, κ. As a result, systems of similar κ show the same dynamics,
regardless of the underlying parameters (e.g., density and temperature). We demonstrate this
behavior using ultracold neutral plasmas (UNP) created by photoionizing a cold (T ≤ 10mK) gas.
The ions in UNP systems are well described by the Yukawa model, with the electrons providing the
screening. Creation of the plasma through photoionization can be thought of as a rapid quench of the
interaction potential from κ = ∞ to a final κ value set by the electron density and temperature. We
demonstrate experimentally that the post-quench dynamics are universal in κ over a factor of 30 in
density and an order of magnitude in temperature. Results are compared with molecular dynamics
simulations. We also demonstrate that features of the post-quench kinetic energy evolution, such
as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma
density and the electron temperature.

I. INTRODUCTION

The Yukawa one-component-plasma (OCP) model, in
which particles interact through a screened, repulsive 1/r
potential (Eq. 1), is used to describe systems such as the
cores of white dwarf stars [1] and Jovian planets [2, 3],
plasmas produced during inertial confinement fusion [4],
dusty plasmas consisting of highly charged dust particles
[5, 6], charge-stabilized colloidal systems such as latex
spheres in a polar solvent [7, 8], and ions in ultracold
neutral plasmas (UNPs) [9, 10], which are the focus of
this work. Such systems contain one species of interest
(e.g. ions) and at least one other species (e.g. electrons,
polar molecules) that acts to screen interactions between
particles of the species of interest. In addition to describ-
ing many real systems, this model is also used in molecu-
lar dynamics studies of strongly coupled plasmas [11–13],
and for research on phase transitions [8]. Interactions in
the Yukawa model take the form:

Vij(ri, rj) =
U0

rij
exp

(

− rij
λD

)

(1)

where rij = |~ri − ~rj |, U0 is a measure of the interaction
strength, and λD is known as the Debye screening length.
One important feature of the Yukawa model is that, in

suitably normalized units, dynamics depend solely on the

screening parameter, κ = λD/a, where a = [3/ (4πn)]
1/3

is the Wigner-Seitz radius and n is the density. This uni-
versal scaling follows from the classical scaling invariance
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for a system of charged particles, and it allows for com-
parisons to be made between systems with different n,
U0, and T , where T is the temperature.

In this paper, we demonstrate universal scaling in
the ion component of UNPs created by photoionizing
a laser cooled (T ≤ 10mK) magneto-optically trapped
gas [9, 10]. Ion interactions in UNPs are well described
by the Yukawa model, with U0 = e2/(4πǫ0). Electrons
serve as a neutralizing and screening background, with
Debye screening length λD =

√

kBTeǫ0/(ne2). This
leads to the normalized units chosen here of energy E →
E/(e2/(4πǫ0a)), position r → r/a, and time t → ωpit,
where the time scaling factor is the ion plasma oscilla-
tion frequency ωpi =

√

ne2/(ǫ0mi).

Universal scaling is demonstrated by measuring the
evolution of the ion kinetic energy after photoionization,
which can be thought of as a rapid quench of the interac-
tion potential from κ = ∞ (i.e. the non-interacting gas)
to a final κ value that is an experimental parameter (see
Sec. II). We verify that, in appropriately scaled units, the
post-quench kinetic energy evolution in plasmas with the
same value of κ are identical even if the density is varied
over a factor of 30 (n ∼ 3 × 1014 − 9 × 1015m−3) and
the electron temperature is varied over an order of mag-
nitude (Te = 49− 440K). We compare all of our results
to molecular dynamics (MD) simulations. In addition to
the specific application to laser-produced plasmas [13],
this work exploits the Yukawa OCP as a paradigm model
to explore the dynamics of many-body systems far from
equilibrium, which is of interest in many areas of science.
The scaling of the dynamics of three-body recombina-
tion in an ultracold neutral plasma was investigated with
molecular dynamics simulations in [14].

One interesting feature of UNPs is that the photoion-
ization process automatically results in a strongly cou-
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pled plasma (SCP) [9]. Coupling is parameterized by the
ratio of the average nearest neighbor Coulomb interac-
tion energy to the kinetic energy

Γs =
e2/ (4πǫ0a)

kBTs
, (2)

where the ratio Γs is the Coulomb coupling parameter
for species s at temperature Ts. For strong coupling,
Γ >∼ 1. UNPs equilibrate with Γi = 2 − 4. The electrons
remain weakly coupled with Γe ≤ 0.1 [15]. The cores of
white dwarf stars (Γ = 10 − 200), the cores of Jovian
planets (Γ = 20 − 50), and plasmas produced in laser-
implosion experiments, such as those designed to pro-
duce inertial confinement fusion (ICF) can also be near
or in the strongly coupled regime [16]. This definition of
the coupling parameter arises naturally in our rescaled
units as an inverse temperature. We avoid the use of
an effective Coulomb coupling parameter (often defined
as Γ∗ = Γexp [−κ]) [17], and paramterize the Yukawa
system in terms of Γ and κ [11].
We note useful relations between parameters describ-

ing the electrons: Γe = κ2/3, and the number of electrons
per Debye sphere is ND = κ−3. Thus, for the plasmas
described here κ ≤ 0.55 and ND ≥ 6. For the remainder
of the paper, we will only refer to Coulomb coupling pa-
rameters for the ions, and we will drop the subscript on
Γ.
The rest of the paper is structured as follows: In Sec. II

we discuss prior studies of UNPs. In Sec. III we provide
details of our experiment and MD simulation. In Sec. IV
we discuss the results of the joint experimental and nu-
merical study.

II. ULTRACOLD NEUTRAL PLASMAS

UNPs can be generated by laser photoionization of
either laser-cooled, magneto-optically-trapped gases of
atoms [9, 10] or molecular beams [18], or by spontaneous
avalanche ionization in a dense gas of highly excited Ry-
dberg atoms [19–21]. Typical UNP densities range from
n = 1014 m−3 to 1017 m−3. The ion temperatures, Ti, in
UNPs can be as low as ∼ 100mK [22]. The electron tem-
perature, Te, in UNPs generated by the photoionization
process is determined by the excess photon energy above
the photoionization threshold [10]. The photon energy is
a controllable parameter, granting control over Te and,
consequently, κ.
The UNP dynamics after photoionization can be de-

scribed by a sequence of events that take place on sub-
stantially different timescales. First, on a timescale
ω−1
pe =

√

ǫ0me/(ne2) ∼ 10 ps−1 ns, where ωpe is the
electron plasma frequency, the electrons equilibrate to
close to a thermal distribution [10]. If κ >∼ 0.55, addi-
tional phenomena occur, such as three-body recombina-
tion (TBR) [15], which can cause deviations from the sim-
ple description of UNP dynamics and from the Yukawa

OCP model. For this reason, we restrict ourselves to
κ <∼ 0.55 in this work.

As the electrons equilibrate, the ions retain the kinetic
energy distribution of the ∼ 10mK atoms. If the ions
were to equilibrate to this temperature, they would be
deep into the SCP regime (for example, Γ = 580 for typ-
ical values n = 1016m−3 and Ti = 10mK). However, a
heating process known as disorder-induced heating (DIH)
reduces the achieved coupling to Γ = 2 − 4 after equili-
bration.

A. Disorder-Induced Heating and Kinetic-Energy

Oscillations

After the electron equilibration, the ions undergo DIH
on a timescale ω−1

pi ∼ 100 ns−1µs, which defines the

natural time scale for the ion dynamics [17, 23, 24].
During DIH, the ion kinetic energy first increases dra-
matically, then subsequently undergoes damped oscil-
lations known as “kinetic energy oscillations” (KEOs),
which occur at frequency ∼ 2ωpi. Figure 1 shows a
DIH curve plotted in natural units, with time scaled by
2π/ωpi and approximate average one-dimensional kinetic
energy per ion (〈KE〉fit) scaled by the nearest neigh-
bor Coulomb energy, Ec = e2/(4πǫ0a), which yields
the inverse of an effective Coulomb coupling parameter,
Γ−1
fit = 2〈KE〉fit/Ec. We will describe in Sec. III how

this approximate measure of the kinetic energy is derived
from the data.
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FIG. 1. (Color online) Experimental DIH curve plotted in
scaled units for average one-dimensional kinetic energy per ion
〈KE〉fit and time t. Curve taken at κ = 0.14, n = 1015 m−3,
and Te = 440K, which yields Ec/kB = 2.7K and 2π/ωpi =
1.4µs
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DIH results from the fact that, before photoionization,
the equilibrium positions of the atoms are uncorrelated.
After plasma creation, however, strong Coulomb interac-
tions make close pairs of ions energetically unfavorable.
Spatial correlations develop as the ions move to reduce
their potential energy. By conservation of energy, this
increases the average kinetic energy per ion, leading to
an elevated temperature and reduced Γ in equilibrium.
We model this process as equilibration of a Yukawa OCP
after a quench of interactions from κ = ∞ to the value
of κ determined by electron density and temperature.
DIH was predicted [25] soon after the first UNP exper-

iments [10]. The magnitude of the resulting heating can
be calculated by using the pair correlation function, g(r),
to determine the change in interaction energy. The pair
correlation function reflects how the local density near
any particle (taken to be at the origin) is modified by
correlations: nlocal(r) = g(r)n (e.g., in an uncorrelated
system, g(r) = 1).
At equilibrium, g(r) is solely determined by Γ and κ

[11, 25, 26]. The change in kinetic energy by the end
of the equilibration is equivalent to the negative of the
change in interaction energy, and therefore:

kB(Tf − Ti)

N
= −∆Uc

N
=

n

2

∫

Vij(r) [1− g(r,Γ, κ)] d3~r

(3)
By taking advantage of the isotropy of the Yukawa in-
teraction and expressing quantities in normalized units
(r̃ = r/a), and setting the initial temperature Ti ≈ 0,
this takes the simpler form:

kBTf

e2/(4πǫ0a)
= Γ−1(κ) =

∫

∞

0

r̃ exp[−κr̃] [1− g(r̃,Γ, κ)] dr̃

(4)
where Γ(κ) is the Coulomb coupling parameter after equi-
libration, and Γ−1 can be viewed as a temperature or
kinetic energy in scaled units.
Already, we see evidence of universal scaling in the

equilibration process, since Eq. 4 can be solved for Γ as
a function of κ using MD simulation results for g(r̃,Γ, κ)
(see Fig. 2) [11]. Previous experiments have confirmed
that the Γ(κ) achieved after equilibration matches Eq. 4
[17, 23].
The KEOs, on the other hand, are not described by

an analytical expression [13, 23]. MD simulations have
shown that the frequency of these oscillations is approx-
imately 2ωpi. Increasing κ, however, softens the ion-
ion interaction and slows the oscillations slightly for the
experimentally accessible range of screening [24]. The
KEOs result from the exchange between kinetic energy
and interaction energy as g(r) relaxes towards equilib-
rium [13]. Oscillations at frequencies near ωpi are a com-
mon feature in dynamics of SCPs; for example, they are
observed in velocity auto-correlation functions [27–30].
However, the principle of universal scaling demands

that the entire curve, not just the frequency and the
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FIG. 2. (Color online) Γ(κ) from solving Eq. 4.

post-equilibration coupling, depend solely on κ. This de-
pendence is established in Sec. IV over a factor of 30 in
n and an order of magnitude in Te.

III. METHODS

A. Experiment

We create UNPs by photoionizing a gas of laser-cooled
88Sr atoms in a magneto-optical trap (MOT) [9]. We use
a two photon sequence to photoionize the gas: one 461 nm
photon from a pulsed-dye-amplified CW laser to excite
the 1S0 →1P1 transition and another tunable photon
(405-413nm) from a pulsed dye laser to ionize from the
1P1 state. We refer to the latter as the ionization laser.
Both systems are pumped by 10 ns, 355 nm pulses from
third harmonic generation of a pulsed Nd:YAG laser.
By tuning the wavelength of the ionization laser, we

adjust the plasma electron temperature in the range Te =
49−440K [15]. The plasma has a gaussian density profile,
n(r) = n0 exp

[

−r2/(2σ2
0)
]

with width σ0 = 1−2mm and

peak density n0 = 3× 1014 − 9× 1015m−3.
The kinetic energy and density of the ion compo-

nent are probed using laser induced fluorescence (LIF)
spectroscopy at λ = 422nm, corresponding to the
2S1/2 →2P1/2 Sr+ transition [31]. Fluorescence is ex-
cited in a 1mm thick sheet passing through the center of
the plasma. This ensures that fluorescence is excited in a
region with little density variation along the unresolvable
imaging axis (for our smallest width, σ0 = 1mm, density
varies by e−1/8 along the image axis). We define our
coordinate system such that the LIF laser lies in the x-
y plane, propagating along the x-axis, at approximately
z=0.
A fraction of the fluorescence emitted perpendicular to

the sheet is then collected and imaged via a 1:1 optical
relay onto an intensified charge coupled device (ICCD)
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with a 13µm pixel size. This allows for regional analysis
of small volumes of roughly constant density. The ICCD
can be gated with a 30 ns resolution, which allows for
time-resolved measurements of the DIH curve. The DIH
timescale is tDIH = 2π/ωpi ≥ 500ns for typical UNP
densities.
We scan f , the frequency detuning of the LIF laser

from resonance, to obtain a fluorescence spectrum. The
spectrum is a convolution of a lorentzian of width given
by the sum of the laser and natural linewidths (γl=6
MHz and γn=20 MHz respectively) with Doppler shifts
resulting from the velocity distribution, D(v, x, y), for
plasma at position (x,y):

S(x, y, f) = C(x, y)

∫

∞

−∞

dv′
D(v′, x, y)

γ2/4 + (f − v′

λ )
2

(5)

where γ = γl +
√
1 + s0γn is the lorentzian width with

power broadening taken into account, s0 is the saturation
parameter for the transition, and C(x, y) is proportional
to the local density at (x, y) and the overall photon de-
tection efficiency [31].
If we assume that the velocity distribution can

be described with a thermalized gaussian with width
σv(x, y) =

√

kBTfit(x, y)/mi, with Tfit(x, y) being the
local temperature, the signal can be expressed as:

S(x, y, f) =
C(x, y)

√

2πσv(x, y)

∫

∞

−∞

exp
[

− (v′
−v0(x))

2

2σv(x,y)2

]

dv′

γ2/4 + (f − v′

λ )
2

.

(6)
As we explain in Sec. III B, the assumption of a thermal-
ized plasma is not strictly valid during DIH; the velocity
distribution can differ slightly from a gaussian, especially
during the initial rise in kinetic energy. However, fitting
the velocity distribution to a gaussian and obtaining a
value of Tfit provides a well-defined method of charac-
terizing data from experiments and simulations, and it
serves as our primary analysis tool. While Tfit does not
always have a 1:1 correspondence to the average kinetic
energy, we will use it to define an approximate kinetic en-
ergy in scaled units as Γ−1

fit = kBTfit/Ec. In equilibrium,
Γfit = Γ.
Another source of complication is that Tfit(x, y) will

vary with density throughout the plasma during the DIH
process, as both the frequency of the KEOs and the over-
all energy scaling are both density dependent. Thus,
we restrict our analysis to a region of area 1mm×1mm
(80×80 pixels) centered on the center of the plasma as a
compromise between the desire to maximize signal and
the desire to keep the density relatively uniform over the
analysis region.
It is important to note that the plasma is unconfined,

and that after it is created the electron thermal pressure
causes it to expand radially. This will cause the average
velocity along the laser axis within a pixel to depend on x,
which we take into account by allowing for a bulk velocity

in each region, v0(x), in Eq. 6. The effect of expansion
is discussed in greater detail in previous papers [22, 31].
For the work discussed in this paper the effect is relatively
minor, as tDIH is shorter than τexp =

√

kBTeσ2
0/mi, the

timescale for expansion. For all experiments discussed in
this work, tDIH/τexp ≤ 0.1.
We divide the 80×80 pixel analysis region into 20 re-

gions of size 80× 4, with the short axis along x in order
to minimize spread in expansion velocity along x within
each region. The spectrum in each region is then fit to
Eq. 6, with C, v0, and σv as free parameters. We then
take the average of the temperatures derived from all 20
fits to σv. The density, n, can be determined from the
value of the amplitude, C, which is calibrated with ab-
sorption imaging measurements as described in [9]. The
effect on the DIH curve of averaging temperatures from
regions of differing density to determine Tfit is discussed
in detail in Sec. IVC and in the Appendix.

B. Molecular Dynamics Simulations

The MD simulations evolve a Yukawa OCP of N =
20000 particles in a cubic volume with periodic bound-
ary conditions using the minimum image convention [32]
and a leap-frog integrator [33] of Hamilton’s equations
of motion, expressed in natural units, with a timestep of
0.0035ωpit. Simulations were performed with κ ranging
from 0.12 to 0.55, with 50 runs conducted for each cho-
sen κ. The initial conditions for the particles are random
positions and zero kinetic energy.
Figure 3 shows velocity distributions (in normalized

units ṽ = v/(aωpi)) from the MD simulation (red) taken
at various times throughout the equilibration process
(the full set of velocity distribution data is available as
supplementary material [34]). The distribution is clearly
non-maxwellian for several plasma periods, as the real
distribution differs from that of a thermalized system
with equal total kinetic energy (gold), a feature that was
demonstrated in previous MD simulations [24]. This may
be due to the high velocity ions observed in the wings of
the spectrum (see Fig. 3) taking a long time to reach equi-
librium. This is somewhat expected because the ion-ion
collision rate scales with 1/v3 [37] (although, this scaling
is modified slightly in strongly coupled plasmas [28]).
The actual kinetic energy per particle at each timestep

can be determined by calculating the rms velocity, re-
gardless of whether or not the system is thermalized. The
scaled kinetic energy can then be parameterized by a gen-
eralized coupling parameter Γgen = EC/(2〈KE〉), which
becomes equal to Γ (Eq. 2) when the plasma is ther-
malized. The kinetic energy in natural units is simply
Γ−1
gen/2 (we plot Γ−1

gen instead of Γ−1
gen/2 for convenience).

Figure 4 shows the DIH curves Γ−1
gen vs ωpit/2π for the 11

different values of κ for which simulations were conducted
(each curve is an average over 50 runs). In general, the
oscillation frequency is roughly 2ωpi, and the equilibrium
temperature and oscillation amplitude decrease with κ,
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FIG. 3. (Color online) One-dimensional velocity distribution
for particles in a Yukawa OCP calculated with the MD sim-
ulation (red, solid) compared to maxwellian distribution of
equivalent energy (gold, dash-dot) and the maxwellian cor-
responding to the best fit to the distribution (blue, dashed)
for κ = 0.39. (a)-(d) ωpit/2π ={0.1, 0.25, 0.5, 3}. Inset: The
“wing” of the distribution, showing the relatively large pop-
ulations at high velocity in the distribution calculated with
MD.

while the damping increases with κ.
Experimentally, we do not have access to the complete

velocity distribution without some filtering, as it is con-
volved with a lorentzian by the LIF diagnostic process,
as explained in the previous section. With the signal-to-
noise ratio of our experimental data, we cannot unam-
biguously detect deviations from a maxwellian velocity
distribution during the DIH stage (compare the red and
blue curves in Fig. 3). Thus, in order to compare the sim-
ulation with the experiment, we run the distribution from
the simulation through the same convolution that occurs
for our experimental data. Specifically, we convert the
distribution to a doppler-broadened frequency distribu-
tion and then numerically convolve it with a lorentzian of
width γ. We then fit the result to Eq. 6 to determine Tfit,
which assumes that the real distribution is maxwellian.
This Tfit can then be directly compared to Tfit measured
in the experiment, or, equivalently, we can convert both
values of Tfit to Γ−1

fit. Γ−1
fit tends to slightly underesti-

mate the real kinetic energy of the system (see Fig. 5)
due to the insensitivity of the fit to high velocity ions in
the tail of the distribution (Fig. 3). But, Γfit provides
a well-defined prescription for analyzing our numerical
and experimental data. We note that Γfit introduces a
dependence on other parameters outside of the Yukawa
potential, such as

√

kBTfit/mi/(λγ). So, Γfit does not
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FIG. 4. (Color online) Scaled kinetic energy Γ−1

gen =
2〈KE〉/Ec, where 〈KE〉 is the one dimensional kinetic en-
ergy per particle and Ec = e2/(4πǫ0a) is the Coulomb energy
between nearest neighbors, vs scaled time ωpit/2π. Curves at
various κ are calculated using a MD simulation that propa-
gates the equations of motion (in scaled units) for a Yukawa
OCP with random initial positions and initial velocities all
set to zero.

rigorously scale with κ. However, utilizing the results
from the MD simulation, we have confirmed that the ef-
fect is not detectable within the current signal-to-noise
ratio of the experiment for our parameter range.
We also observe in Fig. 5 that full equilibration to the

expected value of Γ occurs over a relatively long time
scale. We discuss this further in Sec. IVB.

IV. RESULTS AND DISCUSSION

A. Examination of universality of DIH

In order to verify the universal scaling of DIH ex-
pected from the Yukawa model, we experimentally mea-
sured DIH curves for two conditions with approximately
equal κ: {n,Te,κ}={3 × 1014m−3, 105K, 0.23} and
{9 × 1015m−3, 440K, 0.20}, where n is measured from
the LIF image and Te is set by the wavelength of the
ionization laser. The results are shown in Fig. 6. Al-
though the two Tfit(t) curves differ dramatically, the

scaled Γ−1
fit(ωpit/2π) curves collapse onto the simulation

curves. This demonstrates the power of universal scaling
for Yukawa systems. Conversely, one could interpret this
as experimental evidence that ultracold neutral plasmas
are nearly perfect realizations of Yukawa OCPs.
Next, we took two sets of data where κ was varied;
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FIG. 5. (Color online) Comparison of Γgen and Γfit from
MD simulations to Γ(κ) (Eq. 4). Γgen = EC/(2〈KE〉) is the
generalized Coulomb coupling parameter calculated from the
averaged kinetic energy of the ions, while Γfit = EC/(kBTfit)
corresponds to the temperature extracted from fitting the ve-
locity distribution to a maxwellian. In the early stages of
the equilibration, Γfit falls below Γgen. As the system equili-
brates, both measurements of Γ slowly rise to Γ(κ).

one where we kept Te constant and varied n and another
where we kept n relatively constant and varied Te. The
results are shown in Figs. 7 and 8, respectively. In the
constant Te case, we observe that even changing the den-
sity by a factor of 10 is not enough to significantly change
the behavior of the scaled curves. This follows from κ
having a weak dependence on n (κ ∝ n1/6). In contrast,
when Te is varied by a factor of ∼ 7, we see clear differ-

ences between the scaled curves as κ ∝ T
−1/2
e . More-

over, the experimental results fall on the correspond-
ing MD curves, showing quantitative agreement between
data and simulation.

B. Equilibration to Γeq(κ)

From the MD simulations (Fig. 4 and Fig. 5), it is
evident that the average kinetic energy quickly rises to
roughly 95% of the final equilibration value (Γ(κ), Eq. 4)
within a time of roughly 2π/ωpi. However, the final ap-
proach to equilibrium as the KEOs damp occurs on a
timescale that is an order of magnitude longer. We con-
firmed that this behavior is not a numerical artifact by
checking convergence of the results with increasing parti-
cle number and decreasing time step. We also note that
energy is conserved over the course of the simulation to
better than a part in 105.
This suggests that equilibration of a Yukawa OCP af-
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FIG. 6. (Color online) Top: Tfit(t) for {n,Te,κ}={3 ×
1014m−3, 105K, 0.23} and {9× 1015m−3, 440K, 0.20}. Bot-
tom: Γ−1(ωpit/2π) for the same parameters. The collapse of
the curves in the top panel onto the nearly identical curves
matching the MD simulations in the bottom panel demon-
strates the universal scaling of DIH over a wide range of n
and Te.

ter a quench of the interaction might display prethermal-
ization dynamics, which has been discussed as a general
phenomenon of many-body systems far from equilibrium
[35] and recently observed in isolated quantum systems
[36].

Currently, we cannot confirm this behavior in our ex-
periment. This is because the timescale is long enough for
other temperature-changing dynamics, such as heating
from electron-ion collisions and expansion-induced adia-
batic cooling [22], to mask the effect.
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fit(ωpit/2π) for the same parameters. The scaled data is all
similar because κ varies slowly with plasma density

C. Application: Using DIH to measure density and

electron temperature

A typical challenge in UNP experiments is the precise
measurement of plasma density and electron tempera-
ture. As discussed and demonstrated in the previous
sections, an experimental DIH curve Tfit(t) taken at a

known n and Te will match the Γ−1
fit(ωpit, κ) from MD

simulations corresponding to κ(n, Te) after Tfit and t are

scaled by Ec/kB and ω−1
pi respectively. Conversely, one

could use a fitting routine to match an experimental DIH
curve to a simulated Tfit curve with density and electron
temperature as fit parameters.
To generate the simulated Tfit curve for a given n and

Te, we utilize a “library” of MD results. MD simulations
were conducted at 11 different values of κ (see Fig. 4). For
each simulation, we record the 1D velocity distribution,
D(ṽ), every 40 timesteps (0.14ωpit), where the natural

pi

0 0�� 1
0.2

0��

0��

0 0�� 1
0

1

2

� 0�!"# $ �%&!�'
-3, Te=440K

�=0.33, n=5e+15m-3, Te !(")

�=0.43, n=5e+15m-3, Te "*)

� 0��+# $ �%&!�'
-3, Te *0)

FIG. 8. (Color online) Top: Tfit(t) for n ∼ 5 × 1015m−3 at
various κ. Bottom: Γ−1

fit(ωpit/2π) for the same parameters.
Each experimental curve matches the appropriate simulation
curve.

velocity unit ṽ = v/(aωpi) (see Fig. 3). The velocity dis-
tributions for arbitrary 0.12 ≤ κ ≤ 0.55 determined by
the input n and Te can then be determined by interpo-
lating between the 11 acquired sets of distributions. The
simulated Tfit curve is then determined by first unscaling
the interpolated velocity distributions so that they are in
units of m/s, then convolving them with a lorentzian (as
in Eq. 5) and fitting the results to Eq. 6. Adjusting n and
Te to minimize the difference between this simulated Tfit

curve and the experimental Tfit data determines best fit
values and confidence intervals for both parameters.

We applied the fitting routine to 10 distinct Tfit(t)
curves; four are reproduced in Fig. 9. We also compared
the fitted density (nfit) and electron temperature (Te,fit)
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to the density determined from the LIF measurements
(ncam) and the electron temperature measured from the
wavelength of our pulsed dye laser (Te,dyeCal), as illus-
trated in Figures 10 and 11. The uncertainties in both
fit parameters are taken from the 95% confidence interval
of the fit routine. The uncertainty in ncam is systemati-
cally around 20% due mostly to imprecise knowledge of
the shape of the plasma along the axis of the absorp-
tion imaging beam, whereas the uncertainty in Te,dyeCal

is taken to be ±10K.
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FIG. 9. (Color online) Demonstration of effectiveness of fit-
ting DIH curves for n and Te. (a)-(b): Curve of best fit (blue)
with curves corresponding to +10% (red) and -10% (green)
variation in nfit. (c)-(d): Curve of best fit (blue) with curves
corresponding to +20% (purple) and -20% (gold) variation in
Te,fit.

We observe clear systematic deviations in the fit mea-
surements of both parameters; the fitted densities are
too high (Fig. 10) and the fitted electron temperatures
are too low (Fig. 11). These deviations can, at least in
part, be explained by additional dephasing in the DIH
curve caused by density fluctuations: Fluctuations arise
from shot-to-shot experimental variation and the inho-
mogeneous, gaussian density distribution of the plasma.
The measurement effectively averages oscillations of dif-
ferent frequencies due to the dependence of ωpi on n. The
additional dephasing mimics the damping that would re-
sult from increasing the screening parameter κ, therefore,
this dephasing should push Te,fit down with respect to

Te,dyeCal, as κ ∝ T
−1/2
e . However, a higher fitted κ value

also would reduce the expected DIH for a plasma of den-
sity ncam (see Fig. 2); nfit is therefore pushed higher
than ncam in order to increase the energy scaling param-
eter Ec enough to compensate for the reduction in DIH.
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-3

FIG. 10. (Color online) Comparison between ncam and nfit.
Uncertainty in ncam stems from from camera calibration
(±10%). Uncertainty in nfit is determined directly from the
confidence intervals (95% confidence) of the fit. The gold
curve shows the expected nfit for a plasma with additional
density variation as described in the text.

The difference between nfit and ncam has a negligible
effect on the fitted κ relative to the difference between
Te,fit and Te,dyeCal.
We simulate this effect using our MD library as dis-

cussed in further detail in the Appendix. By fitting the
simulated curves in the same way we fit experimental
Tfit(t) data, we acquired the gold curves in Figs. 10
and 11, which largely account for the observed devia-
tion in both n and Te. These curves correspond to a
20% shot-to-shot variation in density, which agrees with
the estimate of shot-to-shot density variation obtained
from images of individual plasmas. For both parameters,
the deviation of the fit value from the actual value varies
weakly with κ. But, this effect is small compared to the
size of the deviation (< 25% in our range). So, we ne-
glect it here, and show a single curve of the fit parameters
versus the actual plasma parameters to describe all the
κ values in our range.

V. CONCLUSION

This work represents a clear demonstration of the uni-
versal scaling of Yukawa OCP dynamics with respect to
κ. We have confirmed that plasma dynamics after a rapid
quench from κ = ∞ to κ(n, Te) are universal in κ over
nearly two orders of magnitude in n. This work expands
on prior studies of DIH in UNPs [17, 23, 24] by showing
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FIG. 11. (Color online) Te,fit vs Te,dyeCal Uncertainty in
Te,dyeCal stems from uncertainty in the dye laser frequency
(±10K). Uncertainty in Te,fit is determined from the con-
fidence intervals (95% confidence) of the fit. The gold curve
shows the expected Te,fit for a plasma with additional density
variation as described in the text.

with simulation and experiment that the universal scaling
holds over the entire equilibration period, encompassing
the initial disorder-induced heating phase, damped ki-
netic energy oscillations, and the slow approach to equi-
librium over several inverse plasma periods. We have
also demonstrated that universal scaling can be used as
a tool for measuring the plasma density and, to a lesser
degree, the electron temperature. Future work will focus
on the excitation and damping of collective modes during
equilibration, and the influence of κ on these phenomena.
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Appendix: Effect of Density Variation

Here we consider the effect of experimental density
variations on our analysis of DIH and the KEOs.
Density fluctuations arise in two ways in the experi-

ment. First, underlying each LIF spectrum are images
of ∼ 1000 plasmas, which is necessary for good statis-
tics. Ideally, all of those plasmas would have the same
size, density, electron temperature, etc. However, there
is natural shot to shot fluctuation in all of these param-
eters.
Second, plasmas inherit the gaussian spatial distribu-

tion of the MOT, i.e., they have non-uniform density.
The largest region that is used when measuring Tfit is
a 1σ × 1σ × 1σ region in the center of the plasma, se-
lected by the LIF laser beam and region of interest on
the camera. The variation in density within this region
forms another source of density variation.
The spread in κ andEc from density variations is small.

However, since the frequency of the KEOs depends on
density through ωpi, averaging curves corresponding to
different densities results in apparent increased damping
through dephasing. In Fig. 12, we examine the effect of
both sources of density fluctuations using the MD data.

-1
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FIG. 12. (Color online) Comparison between the uniform
density κ = 0.35 MD DIH curve (blue) and the curves with
regional and/or shot-to-shot density fluctuations taken into
account. The shot-to-shot fluctuations are the larger source
of dephasing, becoming significant when the fluctuations are
on the 20% level (green)

For a given peak density n0 and temperature Te, the
regional variation is described by dividing the 1σ×1σ×1σ
box into sub-boxes of size 0.05σ×0.05σ×0.05σ, with the
density in each sub-box calculated using the measured

gaussian density distribution ns = n0 exp
[

−x2+y2+z2

2σ2

]

,

where (x, y, z) are the sub-box coordinates. We then un-
scale MD DIH data for κ(ns, Te) in each sub-box (i.e., in
each sub-box we convert the MD Γ−1

fit(ωpit/2π) to Tfit(t)
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with the scaling factors determined by ns). Tfit(t) curves
are then averaged together and then rescaled back to Γfit

using n0. The shot-to-shot fluctuations are taken into
account by repeating that procedure for a set of 1000
values of n0 taken from a normal distribution with stan-
dard deviation of either 10% or 20%. Figure 12 shows
the effect of density variation. The regional variation of

density has a small effect on the fit parameters, but the
shot-to-shot fluctuations are significant. By fitting this
simulated data for n and Te in the same way we fit our
real experimental data, we determine that the fitted elec-
tron temperature is reduced, as the additional dephasing
is indistinguishable from a increase in κ, and thus a de-
crease in Te (see Fig. 11). The density measurement is
also increased (Fig. 10).
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