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Interfacial wave dynamics of a drop with an embedded bubble

S. Bhattacharya1

1Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA

This article describes how an embedded bubble changes the surface wave of a suspended liquid
drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically
opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for
natural oscillation and the deformation for acoustically induced forced vibration. The theory shows
that the embedded cavity causes major shifts in the frequency and amplitude values as well as
twofold increase in number of natural modes indicating multi-facetted utility of the results in process
diagnostics, material characterizations and combustion technology.

PACS numbers: 47.35.Pq, 47.55.D-, 68.03.Hj, 68.03.Kn

I. INTRODUCTION

Wave dynamics at the surface of a drop first studied by
Lord Rayleigh [1] has been a popular topic in physics due
to its relevance in fields ranging from stellar dynamics [2]
to nuclear collision [3]. Interestingly, presence of a bubble
inside the droplet causes major changes in its interfacial
oscillation not only by altering frequencies and ampli-
tudes of vibration but also by introducing entirely new
natural modes. Our analysis describes such phenomena
by predicting natural frequencies, deformed shapes and
resonance features of the bubble-drop system undergoing
either free or sonically induced forced vibration.

Surprisingly, these important effects have never been
mathematically analyzed despite century-long research
[4–9] on this subject. For example, many past papers
have described dynamics of compound drops where one
medium is surrounded by another. Such works either in-
vestigated vibration of thin liquid shells [10, 11], or used
numerical simulations to compute temporal evolution of
interfaces with axisymmetric perturbation [12, 13], or ap-
proximated flow solutions to infer on stability features
[14]. None of these, however, produced exact mathe-
matical results for natural frequencies of the two-phase
droplet assuming appropriate physical conditions.

Advent of high-speed camera as well as new scopes
in combustion and manufacturing technologies assure
multi-facetted impact of the aforementioned findings on
several branches of contemporary science. Changes in in-
terfacial oscillation recorded by an optical device can be
exploited to detect bubbles or solid particles in typically
opaque interior of a drop. Such ability is especially useful
for understanding and improving novel combustive and
manufacturing systems. For example, our recent high-
speed imaging [15] described dynamics of spark-ignited
nano Aluminum in an unpublished work. The observa-
tion reveals initial detachment, subsequent pulsation, oc-
casional fragmentation and eventual explosion of metallic
droplets. There, an anomalous pulsation frequency indi-
cated presence of gas filled cavities in the detached liquid
leading to proper explanation of the entire process where
the gaseous voids promote internal oxidation and excess
deformation causing the final explosive display. In-depth
study of surface wave in bubble- or particle-laden drop
can provide similar crucial insights into spraying tech-

niques [16], particle depositions [17], fuel combustion [18],
and material processing [19].
Added utility of our theory comes from its ability to

describe resonance characteristics of a bubble-laden drop
forced to vibrate in an acoustic field. If proper reso-
nance occurs, sound waves can facilitate fragmentation
of droplets [20]. In a combustive environment, such phe-
nomenon can cause orders of magnitude increase in burn
rate leading to significantly enhanced efficiency and ex-
plosive power [21]. Moreover, better understanding of
acoustic interactions with an interface may lead to a new
sonoluminescent system [22] in mesoscopic drops where
the small size enhances the role of capillary effect typi-
cally absent in macroscopic bulk. The resultant hot spots
created by ultrasonic excitation can be used as a self-
ignition mechanism for liquid fuels. Also, the introduced
matrix formulation can be generalized for solid bodies
so that their interior defects [23] can be conveniently re-
vealed by forced vibration at their surface. Similarly,
it can be used to explain vibrational dynamics of foams
which remained the topic of interest in many past and
contemporary studies [24, 25].
This paper is organized in the following way. In sec-

tion II, we outline the flow-analysis for free oscillation of a
bubble-laden drop where a quantum mechanical matrix
formalism predicts the natural frequencies. The corre-
sponding interfacial configurations for Eigen modes are
illustrated in section III. Then, the deformation ampli-
tude and the resonance characteristics for acoustically
induced forced vibration of the droplet are described in
section IV. Finally, the article is concluded in section V
explaining how the findings can be used for in-vivo diag-
nostics and other technological purposes.

II. NATURAL MODES FOR INTERFACIAL

WAVES

In our analysis, a bubble of radius a1 resides inside a
drop of radius a0 where density of the surrounding atmo-
sphere and the gas trapped in the cavity is approximated
to be very small. The viscosity, density and surface ten-
sion coeffiecient of the liquid are denoted by µ, ρ and
γ, respectively. Our first goal is to express the natu-
ral frequencies of the surface wave as functions of the
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FIG. 1: Schematic picture for the unperturbed drop with em-
bedded bubble.

size-ratio ã = a1/a0 so that the influence of the cavity
on interfacial dynamics can be quantified. To highlight
the desired effect in the simplest way, a spherically sym-
metric geometry of the unperturbed system is assumed.
The theory can be generalized in the future for an ec-
centrically placed void in the liquid by using appropriate
transformations [27–30] between flow solutions centered
around the respective misaligned spheres. For this arti-
cle, however, the undeformed liquid domain is confined
between two concentric interfaces as shown in Fig.1.
The characteristic amplitude As for the deformation

at the boundary of the liquid domain is considered to be
small compared to a0. The corresponding velocity-scale
is given by As

√

γ/(ρa30) for which the ratio between con-
vective and temporal accelerations becomes As/a0 — a
small quantity compared to unity. Hence, flow equations
remain linear due to insignificant contribution from con-
vective inertia. For such systems, the ratio of viscous and
interfacial forces is given by capillary number Ca which is
µAs/

√

γρa30. Similarly, the Bond number Bo = gρa20/γ
represents the relative importance of gravity g compared
to surface tension. For milimeter size water droplets, Bo
is around 0.1 whereas Ca becomes of similar order when
As/a0 is less than 0.1. For metallic liquids, these values
are even lower. Our analysis presumes the dimensional
parameters to be such that both Ca and Bo are small. As
a result, effects of viscous dissipation and gravity are ne-
glected in the formulation as long as ã does not approach
to 0 or 1. For ã→0, the dynamics is dictated by an addi-
tional dimension in the form of a1 beside the usual scale
a0, where a second capillary number with a0 replaced by
a1 in Ca is also relevant. Similarly, when ã → 1, the
thickness of the liquid shell (a0−a1) plays a crucial role

with effective Ca modified to As

√

γ/[ρa20(a0−a1)]. In
such limiting cases, viscous dissipation can be neglected
only if all involved capillary numbers are small.
If the capillary and Bond numbers are small, the fol-

lowing momentum and continuity equations correspond-
ing to an incompressible liquid relate pressure (p) and
displacement (s) fields:

ρ
∂2

s

∂t2
= −∇p and ∇2p = 0, (1)

where t is time. If viscous effect is small, boundary con-
ditions at two free surfaces become

@ r=ai p = −γ[2s · ni/a
2
i +∇2

s(s · ni)]. (2)

Here, the subscript i can be 0 or 1 so that interfaces are
defined when radial coordinate r is a0 or a1. The unit
normal vector pointing away from the liquid domain at
the i-th surface is ni, whereas ∇s represents gradient on
a spherical surface.
The fields p and s are solved as expansions of spherical

harmonics Ylm(θ, φ) in angular coordinates θ and φ:

p = ρ
∑

lm

[

Ylm

{

(r/a0)
lα̈+

lm+(a0/r)
l+1α̈−

lm

}]

, (3)

and
s = −∇

∑

lm

[

Ylm

{

(r/a0)
l
α+
lm+(a0/r)

l+1
α−

lm

}]

. (4)

In eqs.3 and 4, dot denotes time derivatives while un-
known unsteady amplitudes of regular and singular har-
monics with indices l and m are α+

lm(t) and α−

lm(t). The
index l can be any natural number like 1, 2, 3 . . ., whereas
m takes integer values varying from −l to l.
For spherically symmetric unperturbed geometries,

terms with different indices l and m are not coupled due
to the separable form of the solutions. Moreover, for
such configuration, the dynamic equation for a harmonic
mode remains invariant of m, as neither eqs.1 and 2 nor
the radial variation in fields involve m explicitly. These
facts assure that if eqs.1 and 2 are converted to a ma-
trix form, it will be block diagonal in l and degenerative
in m. Thus, modes can be first analyzed for individ-
ual l, and then superposed to describe the surface wave.
Accordingly, pressure and radial displacement at two in-
terfaces induced by a specific harmonic mode Ylm can be
expressed by time-dependent Dirac’s vectors |plm〉 and
|slm〉 with two components being respective amplitudes
at r = a0 and r = a1. We also consider another column
|αlm〉 which is {α+

lm α−

lm}T. The natural frequency for
the dynamic phenomenon can be obtained from the ma-
trix relations among |plm〉, |slm〉 and |αlm〉.
Three matrix operators relate |plm〉, |slm〉 and |αlm〉 to

each other. Firstly, if eq.2 is expanded in spherical har-
monics, equality between expansion terms at both sides

of the equation ensures |plm〉 = (γ/a20)(l
2+ l−2)B̂|slm〉.

Here, the l-dependent scalar prefactor appears as the
eigen value of the operator (−2−a2i∇

2
s) acting on its eigen

function Ylm. The diagonal matrix B̂ distinguishes the
difference in radii at the outer and inner spheres

B̂=

[

1 0
0 −ã−2

]

. (5)

Moreover, if r is replaced by a0 or a1 in eqs.3 and 4, the
expansion of pressure and radial displacement at the in-
terfaces can be obtained. The resulting expressions from
the individual terms are, then, recast into two additional

equalities: |plm〉 = ρF̂l|α̈lm〉 and |slm〉 = −(1/a0)Ĥl|αlm〉
where the coupling coefficients are given by

F̂l=

[

1 1
ãl ã−l−1

]

Ĥl=

[

l −(l + 1)
lãl−1 −(l + 1)ã−l−2

]

. (6)

We use the relations involving B̂ and Ĥl to substitute
|plm〉 and |αlm〉 in terms of |slm〉 in matrix equation with

F̂l. Then rearranging one finds



3

|s̈lm〉 = −(l2 + l − 2)
γ

ρa30
M̂l|slm〉, (7)

where M̂l= ĤlF̂
−1
l B̂ is a symmetric matrix — an expected

artifact due to Sturm-Liouville symmetry of eq.1. For
l ≥ 1, it remains positive definite making the dynamics
restorative corresponding to an oscillatory phenomenon.
It is to be noted that the factor (l2+l−2) in eq.7 makes

|s̈lm〉=0 in eq.7 for l=1. This happens because harmonic
modes with l=1 only induce translation, not surface de-
formations. There can be two such perturbations — 1)
an overall displacement of the entire body, or 2) a relative
off-centering of the cavity with respect to the liquid mass.
The former induces a neutral stability for all conditions.
In contrast, the latter can exhibit gradual departure from
the concentric configuration depending on the initial rela-
tive velocity between two spherical interfaces. In absence
of any viscous effect, the system would tend to maintain
the same relative velocity as long as the bubble is not far
away from the center of the drop. However, when the
relative position becomes highly eccentric, it is not easy
to predict whether the void would accelerate, or it would
slow down to an intermediate equilibrium configuration.
Our future work on the generalized geometry will explain
this phenomenon precisely.
When l is natural numbers like 1, 2, 3, . . ., the interfa-

cial deformation ensures fixed volumes for both the drop
and the bubble. In contrast, if l = 0, eq.7 represents a
volumetric change in the domain. In that case, the ma-

trix M̂l becomes negative definite indicating an unphys-
ical situation where either the bubble disappears or the
outer surface explodes to infinity over time. Such unre-
alistic behavior is understandable, because fluctuation in
volume is dependent on consideration of thermodynamic
states which is not accounted for in the present analysis.

For l > 0, both Eigen values λ±

l of M̂l (referred as
plus and minus spectral modes from now on) are related
to the natural frequencies ω±

l implying existence of two
such values for each l. In absence of a void inside, each l
yields only one frequency indicating a twofold increase in
number of natural modes for bubble-laden drop. Figure
2 presents normalized ω±

l for l=2, 3 as functions of ã.

We define ω̃±

l =ω±

l /
√

γ/(ρa30)=
√

(l2+l−2)λ±

l to rep-

resent dimensionless frequency. Then, we find asymp-

totic expressions ω̃a+
l =

√

(l+2)(l2−1)/[ã3 − ã(l+7)/2] and

ω̃a−
l =

√

(l3+l2−2l)[1−ã(l+1)/2] for both ω̃±

l by exploit-

ing the exact forms of B̂, F̂l and Ĥl. These limiting results
are constructed in such a way that ω̃a±

l become the fre-
quencies simultaneously for two cases ã→ 0 and ã→ 1.
Such dual validity is achieved by including two terms
with two different exponents of ã in the relations describ-
ing ω̃a±

l . As a result, it is seen that the plus mode varies

as a−31 for diminishing bubble size and as (a0 − a1)
−1 for

thin liquid shell. In contrast, the minus mode would be
always dictated by the nominal length-scale a0.
The ratios of ω̃±

l and corresponding asymptotic val-
ues are plotted in Fig.2 for 0 ≤ ã ≤ 1 where the curves
converge to 1 at both ends. Rayleigh’s classical analysis
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FIG. 2: Normalized natural frequencies for plus (solid lines)
and minus (dashed lines) spectral modes are plotted as func-
tions of size-ratio when l=2(thick lines) and l=3(thin lines).

predicts ω̃a−
l with ã→0 to be the natural frequency of a

continuous drop. Our results for ω̃−

l show how the finite
size of the bubble modifies it. Moreover, the additional
mode ω̃+

l scales approximately as inverse square-root of
the volume fraction of the cavity, and causes extra com-
plexity in the dynamics.

III. SURFACE CONTOURS FOR EIGEN

MODES

Study of interfacial shapes formed in representative
natural modes can explain the dynamics better. This
needs computing deformations at r = a0 and r = a1 for

certain l and Eigen vectors of M̂l. As M̂l is a symmetric
operator, its Eigen vectors |e±l 〉 associated to Eigen val-

ues λ±

l are orthogonal implying |e±l 〉={±η±1
l 1}T , where

ηl is a parameter dependent on ã and l. Construction of
surface contours requires ηl as it shows relative radial
perturbations at the droplet and the embedded bubble.
In Fig.3, we present ηl as function of ã for l=2, 3. For

ã→0, the limiting value of ηl is η
a
l =(2l+1)ãl+2/(l+1).

A ratio of ηl and ηal is plotted in Fig.3 so that all curves
start at a value 1 for ã=0. As a result, one can construct
Eigen vectors |e±l 〉 for any geometry. Thus, we can find
how much the outer surface of the drop would deform for
given perturbation at the bubble surface if the harmonic
and spectral modes are specified.
In Figs.4 and 5, we present two intrinsically different

classes of interfacial configurations of a bubble-laden drop
with volume fraction of the void being 0.3 — a nearly typ-
ical value expected in combustion of porous solid fuels
like nano Aluminum. In both figures, we present inter-
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FIG. 3: Normalized component ratio vs. size-ratio for l = 2
(thick line) and l=3 (thin line).
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FIG. 4: Longitudinal section of the axisymmetric interfacial
shape with m=0 and l=2 (Fig.4a at left) or l=3 (Fig.4b at
right). The outer surface of the deformed drop is described for
plus (dash-dot lines) and minus (dashed lines) spectral modes
with given perturbation of the deformed bubble (solid lines).
The faint dotted lines represent both unperturbed interfaces.

facial configurations for l = 2, 3 as well as for plus and
minus spectral modes. However, the difference between
Figs.4 and 5 is in the geometric symmetries. The first
one describes axisymmetric cases with m=0, where the
shape can be observed in any longitudinal section defined
by cylindrical radius rc and axial coordinate z. In con-
trast, Fig.5 shows the modes with m = ±l, where the
fields have only x-y variation, though the contours of
initially spherical interfaces would require two sectional
views for visualization. Hence Fig.5 includes both x-y
and x-z views for complete depiction of the systems.

For l = 2, an initially spherical geometry deforms to
an approximate ellipse. For l = 3, in contrast, the fi-
nal contours become triplon-like structures [26]. In both
cases, the relative orientation of deformations at inner
and outer surfaces would be different for plus and mi-
nus spectral modes because of the orthogonality between
Eigen vectors |e±l 〉.

To highlight the distinction between the plus and mi-
nus modes, Figs.4 and 5 ensure the inner bubble has exact
same perturbation for both spectral modes. For exam-
ple, when l=2, the deformed void is always represented
by an ellipse with horizontal major axis along the x-axis.
Then, the external interface of the droplet also deforms
to ellipsoidal shape, but its orientation differs for |e−2〉 and
|e+2〉. In case of the minus mode, the major axis for the
outer periphery becomes vertical, so that the engulfing
drop and the embedded bubble become perpendicularly
placed. In contrast, for |e+2〉, two interfaces reach to per-
fect alignment with both of their elongated dimension
coinciding along the x-axis. Additionally, the amount
of eccentricity at the exterior is more for |e−2〉 compared
to |e+2〉. Similar distinction can be observed for triplon
contours with l=3 also. This means the lower frequency
nearer to the Rayleigh’s prediction happens when two in-
terfaces are not aligned, whereas the extra higher value
appears when the configurations are in sync. It can be
concluded that the former can instigate disintegration of
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FIG. 5: Vertical x-z (top row with Figs.5a,b) and horizontal
x-y (bottom row with Figs.5c,d) sections of the interfaces with
m=±l and l=2 (left panel with Figs.5a,c) or l=3 (right panel
with Figs.5b,d). The configurations for the droplet and the
bubble surfaces are denoted by the similar line types as in
Fig.3.

the drop quicker, as the misaligned more deformed bub-
ble approaches closer to the outer periphery.

IV. FORCED VIBRATION OF THE DROPLET

Acoustically induced forced vibration of a bubble-laden
drop can be analyzed by introducing a forcing term in
eq.7. If a pressure wave with frequency Ω excites the
outer surface of the drop, one has to modify eq.2 for
i=0. Consequently, eq.7 alters to the following form:

|s̈lm〉+
(l2+l−2)

ρa30/γ
M̂l|slm〉 =

pexlm
ρa0

ĤlF̂
−1
l |iex〉 sin(Ωt). (8)

Here |iex〉= {1 0}T is a unit vector indicating only con-
tribution at the external interface, and pexlm is the ampli-
tude of the pressure wave expanded in Ylm at r=a0. In
real situation, any arbitrary pressure fluctuation would
involve a number of modes with different l and m su-
perposed to represent the actual spatial variation of the
field. Our analysis would be applicable to each of these
individual modes.
Solution of eq.8 is |slm〉 = (pexlma20/γ) sin(Ωt)|ζl〉 where

|ζl〉= N̂l|i
ex〉 and N̂l = [(l2+l−2)B̂−Ω̃2

F̂lĤ
−1
l ]−1 with Ω̃ be-

ing dimension-less forcing frequency Ω/
√

γ/(ρa30). The
drop vibration by acoustic excitation can be character-
ized by the ratio of deformation to pressure amplitudes.
This quantity given by (a20/γ)|ζl〉 is termed as mode de-
formability which is normalized by a20/γ and represented
by |ζl〉 in non-dimensional form. Its first and second com-
ponents quantify deformations at the outer and inner in-
terfaces per unit harmonic amplitude of forcing pressure
field. These are referred as ζexl and ζ inl , respectively.
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FIG. 6: Mode deformability at outer (top, Fig.6a) and inner
(bottom, Fig.6b) interfaces vs. acoustic excitation frequency
for l=2 (thick lines) or l=3 (thin lines) where bubble-to-drop
volume fraction is 0.1 (dashed), 0.3 (dash-dot) and 0.5(solid).

In Fig.6, ζexl and ζ inl are presented as functions of non-

dimensional excitation frequency Ω̃ for three geometries
and two harmonic modes. For each case, magnitudes
of both quantities approach to infinity twice in the plot
when Ω̃ coincides with either ω̃+

l or ω̃−

l . In presence of
finite viscous damping, the mode deformabilities would
reach to finite maximum values under resonating condi-
tions instead of aproaching infinity. Such characterisitics
will be quantified in our future work.

V. SUMMARY AND CONCLUDING REMARKS

There are three key results of this study. Firstly, the
shifts in natural frequencies due to presence of an embed-
ded bubble are quantified. Then, deformation amplitudes
for forced vibration are estimated. Finally and most im-
portantly, we find extra natural frequencies termed as
plus mode. The last findings can help in detection of
voids inside opaque droplets if its radial deformation sex

at outer surface is recorded as a series of two-dimensional
pictures taken in subsequent time intervals. Such data
provides sex as function of time and cylindrical angle β
at the viewing plane. Accordingly, a dual Fourier trans-
form Cν(ω) is defined as

Cν(ω) =
∫

sex(t, β) eiνβeiωtdβ dt. (9)

Complete spectral description of the dynamics requires
Cν to be evaluated as function of ω for ν = 0,1. Con-
sequently, spectral plots of Cν in frequency domain will
show several spikes, where all natural frequencies for even
and odd l’s would be revealed by C0 and C1, respectively.
These values can be used to predict the size of the cav-
ity inside the drop by matching the observation with the
theoretical predictions.

We also describe the interfacial contours for the natural
modes to illustrate the relative deformation of the embed-
ded bubble and the engulfing drop. These results can be
coupled with the resonance features seen in the analysis
of forced vibration to manipulate acoustically accelerated
break-up of droplets. Such inference can be drawn from
a linear stability analysis in presence of viscous effects.
Then one can conclude whether the resonating system
would stabilize or diverge to an unstable state. We plan
to address this problem in the near future.

The matrix formulation can be generalized for viscous
systems where decay characteristics of amplitudes are ex-
pected along with the oscillatory behavior. Also one can
modify the theory for an embedded particle instead of a
bubble inside the drop. Such alterations would signifi-
cantly increase the scope of the presented analysis.

The theory can be extended to many-bubble or
many-particle systems inside a drop. This needs use
of recently developed basis transformation method
[27–30] to enforce boundary conditions at disconnected
dissimilar surfaces. Then, the matrix structure would
be non-degenerative in m causing finer structures in
a spectral plot of Cν as observed in atomic spec-
troscopy. Thus, specific locations of the finer natural
modes in ω-domain can detect all required informa-
tion about the interior of the drop for in-vivo diagnostics.
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