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We test the ability of a general low-dimensional model for turbulence to predict geometry-
dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists
of stochastic ordinary differential equations, which are derived as a function of boundary geometry
from the Navier-Stokes equations [1, 2]. We test the model using Rayleigh-Bénard convection ex-
periments in a cubic container. The model predicts a mode in which the alignment of a convection
roll stochastically crosses a potential barrier to switch between diagonals. We observe this mode
with a measured switching rate within 30% of the prediction.

Large-scale coherent flow structures in turbulence –
such as convection rolls in the atmosphere – are ubiq-
uitous and can play a dominant role in heat and mass
transport. A particular challenge is to predict dynamical
states and their change with different boundary geome-
tries, for example in the way that convection rolls in the
atmosphere can be affected by topography such as moun-
tain ranges [3]. However, the Navier-Stokes equations
that describe flows are impractically difficult to solve for
turbulent flows, so low-dimensional models are desired.

It has long been recognized that the dynamical states
of large-scale coherent structures are similar to those
of low-dimensional dynamical systems models [4] and
stochastic ordinary differential equations [5–8]. However,
such models tend to be descriptive rather than predictive,
as parameters are typically fitted to observations, rather
than derived [9]. In particular, dynamical systems mod-
els tend to fail at quantitative predictions of new dynam-
ical states in regimes outside where they were parameter-
ized. In this paper we demonstrate a proof-of-principle
that a general low dimensional model can quantitatively
predict the different dynamical states of large-scale co-
herent structures in different geometries.

The model system is Rayleigh-Bénard convection, in
which a fluid is heated from below and cooled from
above to generate buoyancy-driven convection [10, 11].
This system exhibits robust large-scale coherent struc-
tures that retain the same organized flow structure over
long times. For example, in upright cylindrical containers
of aspect ratio 1, a large-scale circulation (LSC) forms.
This LSC consists of temperature and velocity fluctu-
ations which, when coarse-grain averaged, collectively
form a single convection roll in a vertical plane [12], as
shown in Fig. 1a. Various dynamics of the LSC have
been reported, including spontaneous meandering of the
orientation θ0 in a horizontal plane, and an advected os-
cillation which appears as a torsional or sloshing mode
[13–19]. As an example of different dynamical states in
different geometries, if instead the axis of the cylinder is
aligned horizontally, θ0 tends to align with the longest
diagonals of the cell, and oscillates periodically between
diagonals and around individual corners [20].

While there are several low-dimensional models for
LSC dynamics [21–24], only one by Brown & Ahlers
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FIG. 1. (a) A side view of the large-scale circulation (LSC),
indicated by the dashed line. Hot and cold features are filled
with red (online) and white, respectively. (b) Top view of a
horizontal cross-section at mid-height of the cubic container.
Thermistor locations on the side wall are indicated by small
circles. The orientation of the LSC is defined as the angle θ0
between the hot side of the circulation plane (thick solid line)
and the vertical dashed line. The length of the circulation
plane across a horizontal cross-section D(θ0) determines the
model potential.

has made predictions dependent on container geometry
[1, 2, 5]. The model consists of a pair of stochastic ordi-
nary differential equations, using the empirically known,
robust LSC structure as an approximate solution to the
Navier-Stokes equations. The resulting dynamical equa-
tion for θ0 is

θ̈0 = − θ̇0δ

τθ̇δ0
−∇Vg(θ0) + fθ̇(t) . (1)

The first term on the right is a damping term where τθ̇ is
a damping time scale. A separate stochastic ordinary dif-
ferential equation describes the fluctuations of δ around
its stable fixed point δ0 [1]. fθ̇ is a stochastic forcing
term representing the effect of small-scale turbulent fluc-
tuations and is modeled as Gaussian white noise with
diffusivity Dθ̇. This model is mathematically equivalent
to diffusion in a potential landscape Vg(θ0). The poten-
tial Vg represents the pressure of the sidewalls acting on
the LSC, and is given by

Vg(θ0) =

〈
3ω2

φH
2

4D(θ0)2

〉
γ

(2)
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FIG. 2. The model potential Vg(θ0) for a cubic cell (Eq. 2).
The vertical dashed lines indicate the location of the four
corners where the potential minima occur. Eq. 1 describes
diffusive fluctuations of θ0 in this potential, which can occa-
sionally cross the barriers ∆Vg to switch between corners.

where ωφ is the turnover frequency of the LSC, and H
is the height of the container [2]. This includes an up-
date to [2] of the numerical coefficient for aspect ra-
tio 1 containers [20]. The notation 〈...〉γ represents a
uniformly weighted smoothing of the potential over the
width γ = π/10 of the LSC [20]. D(θ0) is the distance
across a horizontal cross-section of the cell, as a function
of θ0, illustrated in Fig. 1b. Thus, D(θ0), and conse-
quently Vg and Eq. 1 can be predicted explicitly for any
system geometry, with the caveat that in this form of the
model the geometry must support a single-roll LSC.

This model and its extensions have successfully de-
scribed all of the known dynamics of the LSC [1, 2, 5, 18,
20, 25, 26]. Since the model is derived from the Navier-
Stokes equations, the model terms can be predicted and
are typically accurate within a factor of 2. The only
required fit parameter is Dθ̇ which can be fitted to in-
dependent measurements [1]. The model has described
dynamics dependent on the geometric potential Vg [20],
although in that case a correction was made to Vg for the
nonzero width of the LSC, and another parameter was
fitted to better describe data. Since the model was ad-
justed to describe results after they were observed, it has
not yet been shown that the model can predict geometry-
dependent dynamics before their observation.

In this paper, we test the model prediction of a switch-
ing of θ0 between potential wells corresponding to a
stochastic crossing of a potential barrier in θ0 [2]. While
it has been mentioned that a switching between corners
has been observed [27], no data has been published be-
fore, and thus no models have been tested. There are
also several possible different types of orientation switch-
ing that have been proposed in the literature, including
reversals [23], cessations [5], periodic oscillations between
corners [20], and stochastic crossing of a potential barrier
in θ0 [1], and it remains to be determined which occur in
a cubic cell. We test the model prediction of stochastic
switching in a cubic container which has 4 potential wells
and 4 potential barriers ∆Vg of equal height, shown in
Fig. 2 as calculated from Eq. 2. The cubic geometry pre-
vents a competing periodic oscillation mode, which could
occur if one potential barrier is smaller such that the
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FIG. 3. Normalized temperature profiles when θ0 = 1/8 rev.
(circles filled with red, online); and θ0 = 1/4 rev. (open dia-
monds). Line: cosine fitting function from which the normal-
ization parameters are obtained. The fits are equally good,
indicating the structure of the LSC is similar at both the po-
tential minimum (θ0 = 1/8 rev.) and potential maximum
(θ0 = 1/4 rev.).

system could oscillate in the wider well surrounding two
corners [20]. This is the first example of testing a quan-
titative prediction of a geometry-dependent mode of the
LSC (i.e. the existence and properties of a mode that did
not exist in other geometries studied) without any flexi-
bility or free parameters in the geometry-dependence of
the model.

I. METHODS

The cubic container is based on the design of [28].
It has dimensions H = 203.20 mm, L1 = 200.38 mm,
and L2 = 199.87 mm, illustrated in Fig. 1. The vari-
ation of the cell dimensions due to bowing of the side-
wall, epoxy to seal gaps and cover thermistors, and holes
for filling water are each less than 0.7 mm. The cell is
filled with degassed and deionized water at mean tem-
perature 23.0 oC, for a Prandtl number Pr ≡ ν/κ = 6.4
(κ is the thermal diffusivity, and ν is the kinematic vis-
cosity). We report measurements at Rayleigh number
Ra ≡ αg∆TH3/κν = 4.8 × 108 (∆T = 3.8 oC is the
temperature difference between top and bottom plate,
α is the isobaric thermal expansion coefficient, and g is
the acceleration of gravity). The standard deviation of
the plate temperature over space and time is 0.005∆T .
The cell is isolated from room temperature variations as
in [28]. The cell level is adjusted so that the probabil-
ity distributions of θ0 has 4 peaks at the 4 corners with
magnitudes within 50% of each other. We achieved this
for a cell within 0.03 degrees of level.

Fluid temperature is recorded by thermistors placed in
blind holes in the acrylic sidewall, within 0.5 mm of the
fluid surface [14]. Three rows of thermistors are located
at heights H/4, H/2, and 3H/4 above the bottom plate
as shown in Fig. 1a. They are equally spaced in angle θ as
shown in Fig. 1b, such that the four corners are located
at θ = 1

8 , 3
8 , 5

8 , and 7
8 rev. The relative error on thermis-
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FIG. 4. Typical time series of the strength δ and the orienta-
tion θ0 of the LSC in (a) and (b), respectively. The horizontal
dashed lines in (b) indicate the locations of the four corners
in the cubic container. Stochastic switching of θ0 between
corners is observed, as predicted [1].

tor measurements is 2.5 mK, which comes from a com-
bination of the standard deviation of recorded temper-
ature difference between thermistors during calibration
(0.7 mK), temperature non-uniformity in the cell during
calibration (1.2 mK), interpolation errors from fitting
calibration temperatures (0.6 mK), drift of the thermis-
tors between calibration runs (1.6 mK), and room tem-
perature variations during experiments (1.2 mK). The
LSC can be detected by the hot fluid it pulls up on one
side and the cold fluid it pulls down the other side, as
shown in Fig. 1a. The thermistor temperatures T are
fitted by T = T0 + δcos(θ− θ0) to obtain the LSC orien-
tation θ0, and half the horizontal temperature difference
δ which characterizes the strength of the LSC, as in [14].
Examples of this fit are shown in Fig. 3

II. RESULTS

A typical time series of the strength δ and orientation
θ0 of the LSC at mid-plane (H/2) is shown in Fig. 4.
Since θ0 from all three planes track each other, they are
always in the same potential well at the same time, which
is all that is needed to identify switching, so we only
present results from the mid-plane. θ0 meanders errat-
ically as in cylindrical containers [14, 15, 20]. θ0 also
prefers to align with the corners (dashed lines in Fig. 4b),
which is different from upright cylindrical containers, and
similar to previous measurements in rectangular contain-
ers [27, 29–33] and horizontal cylinders [20]. Such pref-
erence is expected since corners correspond to potential

minima (Fig. 2).

We also observe that θ0 switches between corners, ap-
parently randomly. The LSC samples all four corners in
an irregular pattern, not just oscillating back and forth
between two corners as observed by Song et al. [20].
We also observe that θ0 does not tend to change by 1/2
rev. during events, which would correspond to reversals;
rather there is a strong preference for a change by ±1/4
rev. with each event. In previous studies it was found
that θ0 could reorient quickly due to cessation and ref-
ormation of the LSC, which is characterized by a drop
of the LSC strength δ to effectively zero [34]. In the
present study, δ fluctuates around its stable fixed point
value δ0 = 0.124 K without dropping below 0.46δ0, which
indicates the switching observed here occurs without ces-
sation. Fig. 3 shows a comparison of temperature profiles
for θ0 = 1/8 rev and θ0 = 1/4 rev., which correspond to
a minimum and maximum of the potential, respectively.
The fits are equally good in both cases. Averaged over
the entire time series, the standard deviation between the
measured temperature and the fit is 37 mK for the range
θ0 = 1/8 ± 1/40 rev. (near a potential minimum) and
41 mK for the range θ = 1/4 ± 1/40 rev. (near a po-
tential maximum). This indicates that the LSC structure
does not change much during the switching events. These
qualitative observations are all consistent with the model
prediction of stochastic switching across potential barri-
ers, and inconsistent with the other proposed switching
mechanisms [5, 20, 23].

To characterize the randomness of the switching, we
measure the distribution of the time intervals τ1 between
switching events. When counting switching events we
want to avoid counting extraneous events due to the jitter
of θ0 around a potential maximum or minimum. Thus,
an event is not counted as soon as θ0 crosses a poten-
tial maximum. Rather, for an event to be counted, θ0
must not only cross a potential maximum, but also cross
the orientation of the potential minimum of a well adja-
cent to the previous well an event was counted at. The
probability distribution P (τ1/〈τ1〉) is shown in Fig. 5,
where 〈τ1〉 is the average time interval between switch-
ing. The fractional error on each point is equal to the
inverse square root of the number of events in each bin.
Notably, there is no peak for τ1 > 0, confirming that
the switching is not periodic as observed in Song et al.
[20]. The data are consistent with the exponential func-
tion P (τ1/〈τ1〉) = exp(−τ1/〈τ1〉) shown as the line in
Fig. 5, which represents Poisson statistics, i.e. randomly
distributed events in time, as predicted for the model of
overdamped diffusion across a potential barrier [2].

For a quantitative prediction, the rate of switching
between corners can be modeled as a fluctuation-driven
crossing of a potential barrier. This was done previously
[1] by simplifying Eq. 1 to the one solved by Kramers
[35] by approximating δ = δ0, which is valid if the fluc-
tuations of δ around its stable fixed point δ0 are small.
In the overdamped limit, the number of switching events
per unit time is given by
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FIG. 5. The probability distribution P (τ1/〈τ1〉) of the time
intervals between switching of θ0 from one corner to another.
Solid line: the function P (τ1/〈τ1〉) = exp(−τ1/〈τ1〉) repre-
senting a Poisson (random) distribution.

ω =

√
cmincmaxτθ̇

2π
exp

(
− ∆Vg
Dθ̇τθ̇

)
. (3)

cmin = 15ω2
φ/π and cmax = 3ω2

φ/2 are the curva-

tures |d2Vg/dθ2| at the minimum and maximum of the
potential, respectively. The potential barrier ∆Vg =
3
8 (1 − γ

2 )ω2
φ is calculated from Eq. 2 [20]. The damp-

ing time scale τθ̇=17.5 ± 0.5 s and the diffusivity Dθ̇ =
(2.37± 0.07)× 10−6 rad2/s3 are fitted independently to

the mean-square change in θ̇0 over time as in [1]. The
circulation rate ωφ=0.022 ± 0.003 s−1 is obtained by
first calculating the speed of the LSC as the distance
H/4 between 2 vertically separated thermistors in the
path of the LSC, divided by the time of peak correla-
tion between their signals (16.6 ± 0.7 s), and further
divided by the path length of the LSC, which is assumed
to be between a rectangular path along a diagonal of
length 2(1+

√
2)H and a nearly ellipsoidal path of length

π(1 +
√

2)H/2. With these parameter values and Eq. 3,
the predicted switching rate ω = (0.9± 0.6)× 10−4 s−1.
This prediction is smaller than the measured switching
rate ω̄ = 1.3× 10−4 s−1 (251 events measured over 21.7
days) by 40%, while consistent within error.

Alternatively, we can predict the parameter value τθ̇ =
26.9 s from the Navier-Stokes equations [1]. This value is
higher than the independently measured value by 54%,
increasing the predicted ω by 460%. This example indi-
cates that the prediction of ω is very sensitive to param-
eter values, due to the exponential term in Eq. 3. This
sensitivity means that the agreement within 40% for ω
implies much better accuracy of 9% for individual model
parameters. For our variation of cell dimensions of 0.7
mm (0.35%), ∆Vg could change by 0.95%, causing the
predicted ω to change by 3.5%. This confirms our cell
is still uniform enough to compare to predictions for a
cubic cell.

To provide a stricter test of the model, we extend
the prediction of switching rate ω to be a function of
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FIG. 6. The switching rate ω(δ). Circles: measurements.
Dashed line: model prediction from Eq. 4.

δ while still using the dynamics of δ from that original
model. In principle, the fluctuations of δ around the sta-
ble fixed point δ0 can affect both the damping and poten-
tial terms in Eq. 1. To account for this, we remove the
model approximation of a fixed δ = δ0 used in the orig-
inal calculation of ω (Eq. 3) [1]. We can explicitly write
the δ-dependence into the model since δ varies slowly,
i.e. the timescale τδ that governs δ is much larger than
the timescale τθ̇ that governs θ0 [1]. Thus, the damping
timescale τθ̇ in Eq. 3 can be replaced with τθ̇δ0/δ as in
Eq. 1. In addition, since ωφ was assumed to be propor-
tional to δ in the original model [1], but Eq. 2 was orig-
inally written with the implicit approximation δ = δ0,

∆Vg can be generalized to ∆Vg(δ) = 3
8

(
1− γ

2

) (ωφδ
δ0

)2
.

Using the same overdamped Kramers solution for the
barrier crossing problem as in Eq. 3, the switching rate
becomes

ω(δ) =

√
cmincmaxτθ̇δ0

2πδ
exp

(
−

3ω2
φδ

3

8Dθ̇τθ̇δ
3
0

(
1− γ

2

))
.

(4)
This expression represents the rate of switching per unit
time at each value of δ.

To compare this prediction with measurements, we cal-
culate the corresponding measured value of ω(δ) from
ω(δ) = ω̄Ps(δ)/P (δ), where P (δ) is the probability dis-
tribution of δ during an entire data set, and Ps(δ) is
the distribution of δ during switching events. For each
switching event, we use the value of δ the last time that
θ0 crosses the potential maximum.

Figure 6 shows a comparison of the measured δ-
dependent switching rate ω(δ) and the model prediction
from Eq. 4. The trend of the data is captured well by the
model, as the root-mean-square difference between mea-
sured and predicted ω(δ) is 50% over 3 decades of ω. The
δ-dependence in ω(δ) leads to a modified prediction of the
average switching rate:

∫
ω(δ)P (δ)dδ = (1.7±1.1)×10−4

s−1, which is consistent with, and within 30% of the mea-
sured switching rate ω̄ = 1.3 × 10−4 s−1. However, this
level of accuracy in ω̄ is better than we should expect,
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since predictions of this model are typically only accurate
within a factor of 2 or 3 due to the approximations made
to obtain Eq. 1 [1], unless model parameters are fitted to
data in non-independent measurements [36]. Regardless,
the agreement between the predicted and measured ω(δ)
is exceptionally good for a low-dimensional model, con-
sidering parameter values τθ̇, Dθ̇, and ωφ are determined
from independent measurements and the geometry de-
pendence has no adjustable parameters.

The increase of the switching rate ω as δ decreases can
be understood in terms of Eqs. 1 and 4. Small δ means
a weaker LSC which leads to both smaller damping in
Eq. 1 and potential barriers in Eq. 4. Both of these effects
allow fluctuations to drive the system over the potential
barriers more easily, resulting in a higher ω.

One notable advantage of this low dimensional model
is its ability to get useful information about long-term
dynamics from simulations. The parameters τθ̇, Dθ̇, ωφ,
can be fitted by data from short-term simulations of only
a few turnover times [1]. Once these parameters are ob-
tained from short-term measurements, one could predict
with high accuracy the statistics of rare events that occur
once in ∼ 100 turnover times, such as stochastic switch-
ing from Eq. 3 or cessations [5], without performing long-
term simulations.

III. CONCLUSIONS

To summarize, we observe that LSC orientation θ0
switches between corners by crossing potential barriers
in θ0 as a Poisson process, as predicted [1]. The pre-
diction of the average switching rate ω̄ is 30% above the
measured value, within error, while the prediction of ω(δ)
captures the trend in δ with a root-mean-square differ-
ence of only 50% over three decades of ω (Fig. 6). The

switching can be understood as a turbulent-fluctuation-
driven crossing of a potential barrier, where the potential
is predicted from the shape of the sidewall. The switch-
ing is more likely to happen when δ is smaller, due to the
decrease in both the potential barrier and damping.

In the bigger picture, the success of the prediction
demonstrates that a low-dimensional turbulence model
can quantitatively predict the existence and properties
of a dynamical mode that did not exist in other geome-
tries studied, without any flexibility or free parameters in
the geometry-dependence of the model. The geometry-
dependence of the model could be predicted without ad-
justable parameters because the low-dimensional model
is derived from the Navier-Stokes equations. The key in-
sight that allowed this derivation was that the robustness
of the LSC allows it to be plugged in as an approximate
solution. The remaining barrier to making predictions of
the full model without any adjustable parameters is to
predict the diffusivities that represent turbulent fluctua-
tions – it remains an open question as to whether a gen-
eral form for the stochastic term can be predicted based
on turbulence statistics. This methodology can in prin-
ciple be applied to other flows dominated by large-scale
coherent structures. In other systems, the geometry-
dependent term would have a different functional form,
which we have shown can be predicted explicitly, and ad-
ditional forcing terms would be different, so the dynami-
cal equations and corresponding solutions would also be
different, but the approach is one that potentially could
lead to general, low dimensional turbulence models.
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