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The effects of flow and particle properties on margination of particles in RBC suspensions is in-
vestigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination
of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination
rate in non-dilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating par-
ticles in the RBC-filled region. We derive a scaling law for margination length in a straight channel.
Margination length increases cubically with channel height and is independent of shear rate. We
verified this scaling law for margination length by DNS of flowing RBCs and marginating particles.
We also showed that rigidity and size both lead to particle margination with rigidity having a more
significant effect compared to size within the range of parameters in this study.

I. INTRODUCTION

When a dense suspension of uniformly distributed par-
ticles flows under confinement, the particle-particle and
particle-wall interactions may lead to the development of
a nonuniform concentration profile. Flow of binary sus-
pensions under confinement may increase the concentra-
tion of one particle type at the wall. Mild segregation of
particles can occur in binary suspensions of rigid spheres
[1–4]. Segregation also occurs in liquid foams of bidis-
perse and polydisperse bubbles [5, 6]. In suspensions of
deformable particles, a high degree of segregation may
occur and result in several fold increase in concentration
of one particle type at the wall.
A physiologically relevant example of particle segrega-

tion in binary suspensions is margination of platelets in
blood flow. Blood is a complex fluid consisting of 40% red
blood cells (RBCs) by volume. Platelets are small blood
cells (with volume of ≈ 10 µm3) that form white clots
to stop blood loss upon injury to arterial walls. Under
arterial flow conditions, red blood cells (RBCs) migrate
away from the walls, and platelets marginate to the RBC-
free layer formed near the walls. Platelet margination
increases the near-wall platelet concentration compared
to the bulk platelet concentration [7–11]. This increased
platelet concentration may contribute to the rapid for-
mation of white clots which is essential for preventing
excessive blood loss. Platelet margination occurs in the
presence of RBCs (i.e., above a threshold hematocrit of
φ ≈ 0.07 [12]), and its rate increases with hematocrit
[7, 12–17] and RBC deformability [18–21]. In addition to
platelets, leukocytes [22, 23], stiff Malaria-infected RBCs
[24] and circulating cancer cells [25] may marginate under
blood flow conditions.
Due to the particulate nature of margination, numer-

ical investigation of this phenomenon requires a model
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that captures particle-particle and particle-fluid interac-
tions. With advances in computer hardware and high
performance computing, performing the direct numeri-
cal simulation (DNS) of the flow of suspensions of sev-
eral hundred particles is possible [26, 27]. Several recent
studies have investigated the mechanism of margination
in suspensions of deformable particles (for a recent review
see [19]). Crowl and Fogelson [28] investigated platelet
margination by performing two-dimensional simulations
of flow of RBC and platelet suspension. They estimated
platelet margination using a drift-diffusion equation sim-
ilar to the approach of Eckstein and Belgacem [29]. With
the drift and diffusion functions estimated from platelet
trajectories, the drift-diffusion model underestimated the
platelet margination rate by their cellular (DNS) blood
flow simulations. To recover the results of the DNS cel-
lular flow simulations, an additional drift term localized
at the edge of the RBC-free was required. The authors
hypothesized that the orientation angle of tank-treading
RBCs at the edge of RBC-free layer may influence the
motion of platelets at this region leading to a localized
drift.

Numerical studies of Crowl and Fogelson [28] and Zhao
et al. [30] suggest that, in contrast to blood flow in cap-
illaries, volume exclusion due to RBC migration is in-
sufficient for platelet margination in arterioles. Kumar
and Graham [18, 20] studied segregation by stiffness in
dilute suspensions of deformable capsules and suggested
that pair collisions between capsules of contrasting stiff-
ness contributes to the segregation in such suspensions.
In addition to stiffness, Kumar et al. [31] studied segre-
gation by capsule size in suspensions of dilute and semi-
dilute suspensions. To analyze their results, they used an
idealized master equation that included the effect of het-
erogeneous collisions and migration velocity from wall.
They found that in semi-dilute suspensions of capsules
of differing deformability, segregation is both due to the
differences in wall-induced migration velocity and het-
erogeneous collisions between such particles. In suspen-
sions of unequal-sized capsules, segregation was mainly
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attributed to differences in wall-induced migration ve-
locity. Both of these mechanisms may dominate parti-
cle migration across a large portion of the channel in
semi-dilute suspensions flowing in relatively small chan-
nels; however, these mechanisms may only affect the dy-
namics in the near-wall region in the flow of dense sus-
pensions in larger channels. Vahidkhah et al. [32] sug-
gested that platelet margination is due to formation of
local clusters and cavities in RBC distribution. They
proposed that once platelets enter these cavities, they
rapidly marginate towards the wall. Note that in [28],
[18], and [30] Poiseuille flow is considered; however, in
[20], [31] and [32], shear flow with linear velocity profile
is considered. The flow configuration may affect margina-
tion behavior. For example, the magnitude and profile of
particle migration velocity and the steady state position
of particles in Poiseuille flow differ from those in shear
flow [33, 34]. Also, note that [18], [20], [31] and [30] have
assumed a Reynolds number of Re = 0, while in [28] and
[32] non-zero Re has been assumed. Although, the values
of particle Reynolds number are small in the above stud-
ies, the inertia may still affect the results, see [33, 35].

In addition to investigating the mechanism of margina-
tion with model systems, numerical experiments using
DNS can help identify important parameters that affect
this process [36, 37]. Identifying parameters affecting
margination can help in design and optimization of de-
vices that employ margination for separation of particles
and cells from blood, such as Malaria-infected RBCs [24],
leukocytes [38], and circulating cancer cells [25]. Further-
more; identifying particle properties that affect margina-
tion are important for design of more effective vascular-
targeted nano- and micro-carriers [39–43].

In this study, we focus on margination of particles in
the flow of moderately dense suspensions of RBCs flow-
ing under strong to weak confinements. The wall-induced
lift force on RBCs and marginating particles strongly de-
pends on the properties of these particles particularly
their size and deformability. The difference in the wall-
induced lift force results in faster migration of RBCs com-
pared to marginating particles. In dilute and semi-dilute
suspensions flowing under strong confinements (i.e., with
high ratio of particle size to the channel size), this dif-
ference in wall migration velocity may strongly affect
margination rate. However, in flow of moderately dense
suspensions, RBC motions dominate the local hemody-
namics in the RBC-laden region and could screen the
effect of the wall on RBCs and marginating particles.
Thus, we hypothesize that margination rate is mainly
driven by the RBC-enhanced diffusion of marginating
particles in the RBC-laden region. Based on this hy-
pothesis, we derive a scaling law to identify important
parameters affecting margination length LD. We perform
DNS of flowing RBC and marginating particles to verify
our proposed scaling law for margination length. Also,
to investigate the margination mechanism, we identify
those properties of platelets that lead to their margina-
tion in blood flow. In particular, we investigate whether

platelets marginate because of their smaller size or less
deformability compared to RBCs. We also investigate the
effect of the shape of marginating particles on margina-
tion rate.

II. SCALING RELATION FOR MARGINATION
LENGTH

To obtain a scaling relation for margination length in
a suspension of RBCs and marginating particles, we fol-
low the analysis of Nott and Brady [44] who estimated
the development length of concentration profiles in sus-
pensions of rigid spheres. The scaling analysis is based
on the hypothesis that shear-induced diffusivity governs
particle margination rate. Shear-induced diffusion coef-
ficient in a monodispersed suspension of particles scales
as

Dyy = Kγ̇a2, (1)

where Dyy is shear-induced diffusion coefficient in the
lateral direction y, γ̇ is shear rate, a is particle radius,
and K is a nondimensional constant [45–47]. In suspen-
sions of rigid spheres, K is a function of suspension vol-
ume fraction, φ. In the binary suspensions of RBC and
marginating particles considered here, marginating parti-
cles often interact with RBCs because of their lower vol-
ume fraction compared to RBCs. Therefore, we use the
term RBC-enhanced shear-induced diffusion (RESID) to
describe the diffusion of marginating particles due to hy-
drodynamic effects. The value of diffusion constant K
for RESID coefficient depends on RBC volume fraction
φ, and both RBC and marginating particle properties
such as particle deformability and shape.
Assuming that RESID governs lateral displacement of

particles in the RBC-filled region, we can derive an ex-
pression for margination length scale

LD ∼ H3

12Ka2
(2)

in a suspension of RBCs and marginating particles flow-
ing between two parallel plates separation distance of H
(see the Appendix for a simple derivation). From this
scaling relation, margination length LD scales cubically
with channel height H and is not an explicit function
of shear rate γ̇. Margination length depends on γ̇ only
through the weak change of K with γ̇. In addition to H
and γ̇, (2) implies that margination rate depends on the
relative size of the marginating particles. We will test
the validity of the above scaling law in Section IV.

III. METHODS

The suspensions of RBCs and marginating parti-
cles are directly simulated with a coupled lattice-
Boltzmann/spectrin-link (LB-SL) method [36, 48]. In
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the LB-SL method, a lattice-Boltzmann (LB) solver for
the fluid phase (i.e., blood plasma and RBC cytoplasm)
is coupled to a coarse-grained spectrin-link (SL) model
for the RBC membranes and a rigid dynamic solver
for the platelets. Reasor et al. developed the LB-
SL method based on the on the initial hybrid lattice-
Boltzmann/finite element implementation of MacMeccan
et al. [49]. The SL method for modeling the dynamics of
the RBC membrane improves on the linear finite element
model of [49] by enabling simulation of larger deforma-
tions of RBC membrane at higher Capillary numbers at
no additional computational cost. In addition, the SL
method captures tank-treading dynamics. The LB-SL
solver is parallelized using the message interfacing proto-
col (MPI) to enabled simulation of O(105) particles [26].
The SL-LB method has been validated by comparison

of mechanical response of individual RBCs with experi-
ments and other computational approaches, such as the
deformation of RBC stretched by optical tweezers, defor-
mation of isolated RBCs under high shear, and parachut-
ing RBC in HagenPoiseuille flow [48]. The numerical
tests performed show good agreement with experimen-
tal results and use of less computational resources com-
pared to previous methods used for modeling suspen-
sions. In addition, the SL-LB method has been validated
for large scale simulations performed to predict the rhe-
ological properties of blood in unbounded shear condi-
tions showed good agreement with rotational viscometer
results from literature [50].

A. Lattice-Boltzmann method

The method used to solve for the fluid phase (i.e., blood
plasma and RBC cytoplasm) is based on the D3Q19
single-relaxation-time LB implementation of Aidun et al.

[51] and Ding and Aidun [52]. Using a Chapman–Enskog
expansion (e.g. see [53]), it can be shown that the LB
equations converge to the Navier-Stokes equations. The
LB method is favorable for simulating suspensions due
to several factors. The computational expense of this
method scales linearly with the number of particles since
particle interactions are propagated on time scales below
time scales of particle motions [54, 55]. In addition, the
time evolution of the fluid particle distribution at each
node only requires the knowledge of particle distribution
functions at neighboring nodes, making all calculations
localized in space which makes the LB method optimal
for parallel computing. Detailed description of the LB
method can be found in [53, 56, 57].
The LB method is a mesoscopic approach based on

discretization of Boltzmann equation in velocity space
in terms of a chosen set of velocity vectors, ei where
i = 1 · · ·Q. This chosen velocity vector set results in
a discrete lattice space denoted by x. Particle distribu-
tion function fi existing at each node can be thought of
as the density of mesoscopic particles restricted to flow
with velocities of ei. At each time step, the evolution

of fi is governed by the streaming and collision opera-
tors. Using the single-relaxation-time collision operator
of Bhatnagar-Gross-Krook [58], the time evolution of par-
ticle distribution function can be written as:

fi(x+ei, t+1) = fi(x, t)−
1

τ

[

fi(x, t)− f
(eq)
i (x, t)

]

(3)

where τ is the Bhatnagar-Gross-Krook relaxation time
parameter determining the rate of relaxation to a local

equilibrium distribution function f
(eq)
i . The macroscopic

flow kinematic viscosity, ν is related to the relaxation
time by ν = c2s(τ −1/2) where cs is the LB pseudo sound
speed. At low Mach numbers, i.e., small u/cs, the local
equilibrium distribution can be approximated in terms of
local macroscopic variables as

f
(eq)
i (x, t) =wiρ

×
[

1+
1

c2s
(ei ·u)+

1

2c4s
(ei ·u)2−

1

2c2s
(u·u)

]

(4)

where ρ and u are macroscopic density and velocity, and
wi denote lattice constants which depend on the LB sten-
cil used. For the D3Q19 stencil used in this study, wi are
1/3, 1/18, and 1/36 for the rest, non-diagonal and di-
agonal directions, respectively. The LB pseudo sound
speed is cs =

√

1/3. By definition, the first and second
momentum of the discrete distribution functions provide
the macroscopic density ρ(x, t) =

∑

i fi(x, t) and mo-
mentum ρ(x, t)u(x, t) =

∑

i fi(x, t)ei.

B. Coarse-Grained Spectrin Link RBC Membrane
Model

The SL model for deformable RBC membranes is in-
spired by the physiological construction of RBC mem-
brane itself which consists of a cytoskeleton mainly
formed by a network of spectrin proteins attached to the
RBC membrane lipid bilayer. In the SL approach, the
RBC membrane is modeled as a 2D triangular network
on the RBC surface. Modeling RBC membrane using
spectrin link lengths of ∼ O(100nm), i.e., on the order of
protein lengths in an actual RBC requires > 25, 000 ver-
tices per RBC triangulation [59, 60]. Such a high resolu-
tion for modeling each RBC is impractical for simulation
of blood flow with O(103) RBCs. Using a coarse-grained
SL approach developed by Pivkin and Karniadakis [61]
and further improved by Fedosov et al. [62, 63], the RBC
membrane can be modeled by a much smaller number
of nodes (250-300) while still accurately capturing the
membrane elastic response both at small and large de-
formations.
In the SL model used in this study, the RBC membrane

is modeled by a triangulated network. The vertices of the
mesh located at {xi}, i ∈ 1 · · ·Nv are connected with
Ns springs with lengths of li, i ∈ 1 · · ·Ns forming Nt

triangles with areas of Ak, k ∈ 1 · · ·Nt. The Helmholtz
free energy of the spectrin network, F , includes in-plane
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energy Fin-plane, bending energy Fκ, volume conservation
constraint FV and area conservation constraint FA

F ({xi}) = Fin-plane + Fκ + FV + FA. (5)

The in-plane free energy, Fin-plane, includes the contri-
butions of elastic energy stored in spectrin proteins and
hydrostatic elastic energy stored in the membrane

Fin-plane =
∑

i∈1···Ns

UWLC(li) +
∑

k∈1···Nt

Cq

Aq
k

. (6)

The first sum in (6) represents the elastic energy stored
in spectrin links described in terms of the wormlike chain
(WLC) model [64, 65]

UWLC(li) =
kBT lm
4p

3x2
i − 2x3

i

1− xi
(7)

where kB is the Boltzmann constant, T is absolute tem-
perature, p is persistence length and x = li/lm ∈ [0, 1)
where lm is the maximum length of the spectrin links.
The attractive potential from the WLC spring forces is
balanced by a repulsive potential represented by the sec-
ond sum in (6). This term represents the hydrostatic
energy in stored in the membrane patches. The constant
Cq can be derived applying virial theorem and setting
the obtained Cauchy stress to zero [62, 63, 66]

Cq =

√
3Aq+1

l0
kBT (4x

2
0 − 9x0 + 6)

4pqlm(1 − x0)2
(8)

where x0 = l0/lm, l0 is the average length of the links

at equilibrium and Al0 =
√
3l20/4. We use q = 1 in this

study.
The bending energy is defined as

Fκ =
∑

j∈1···Ns

κ̃[1− cos(θj − θ0)] (9)

where κ̃ is the discrete bending constant, θj is the instan-
taneous angle between adjacent triangles sharing the link
j, and θ0 is the spontaneous angle. The discrete bending
modulus κ̃ is related to the average bending modulus, κ,
by κ̃ = 2κ/

√
3 [63, 67].

Volume conservation constraint is a nonphysical energy
implemented to impose the incompressibility of RBC cy-
toplasm

FV =
kv(V − V t

0 )
2

2V t
0

(10)

where V is the instantaneous volume of RBC and V t
0 is

the total desired volume of RBC. Similarly, area conser-
vation constraint is a nonphysical energy implemented to
account for the membrane inextensibility

FA =
ka(A

t −At
0)

2

2At
0

(11)

whereAt is the total instantaneous area of the membrane,
At =

∑

i∈1···Nt
Ai and At

0 is the desired membrane area.
The forces on the network vertices resulting from the

above energies are derived by

f
m
i =

∂F ({xi})
∂xi

. (12)

The expressions for the force expressions can be derived
analytically (see Appendix A of [66]).
The location of each vertex xi is updated by applying

the total force f
t
i on each vertex

dxi

dt
= vi; f t

i = fm
i + f fs

i + fPP
i , (13)

where f fs
i is the force due to fluid-solid coupling, fPP

i is
the force due to particle-particle interactions. The cal-
culation of contact forces due to particle-particle inter-
actions are discussed in detail by MacMeccan et al. [49]
and Clausen et al. [68]. The location of the vertices are
updated via Newton’s equations of motion using a first-
order accurate forward Euler scheme.

C. Rigid particle model

Platelets are modeled as rigid particles. A triangular
mesh represents the surface of rigid particles. To update
the dynamics of rigid particles, the forces due to fluid-
solid and particle-particle interactions are calculated on
triangulur elements and nodes on the surface of the par-
ticles. The total force on each rigid particle is calculated
by summing the forces on the surface nodes

f t
p =

∑

i∈1···Nv

f fs
i + fPP

i . (14)

Similarly, the total torque on a rigid particle is calculated
via

T t
p =

∑

i∈1···Nv

(xp − xi)× (f fs
i + fPP

i ), (15)

where xp denotes the location of the center of mass of
the particle. With the total force and torque on a rigid
particle, the motion of the particle is solved via Newton’s
equations for translation

M
dvp

dt
= f t

p, (16)

and for rotation

I
dΩp

dt
+Ωp × (I ·Ω) = T t

p, (17)

where M is the mass, I is the the inertial tensor, vp is
the linear velocity, and Ωp is the angular velocity of the
rigid particle. The density of rigid particles is assumed
equal to the density of plasma, i.e., ρ = 1 gr/cm3 for
calculating M and I. The position and orientation of
rigid particles at each time step are updated by solving
(16) and (17) using a first-order accurate forward Euler
scheme.
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D. Fluid-Solid Coupling

The fluid-solid coupling is based on the bounce-back
method of Aidun et al. [51] and is described in detail
by MacMeccan et al. [49] and Clausen et al. [68]. In
this method, the momentum transfer at the fluid-solid
interface is accounted by applying the standard bounce
back scheme along lattice links that cross solid surfaces.
Using the bounce-back method, the no-slip condition is
enforced by adjusting the distributions of fluid nodes at
the endpoints of a link in the i direction via

fi′(x, t+ 1) = fi(x, t
+)− 6ρωiub · ei, (18)

where i′ is the direction opposite of i, fi(x, t
+) is the

post-collision distribution, and ub is the solid velocity at
the intersection point with the link. The fluid force on
the solid surface is determined by

f fs(x+
1

2
ei, t) = 2ei

[

fi(x, t
+) + 3ρωiub · ei′

]

. (19)

E. Calculation of RBC-enhanced diffusion of
platelets from DNS

The diffusivity of particles is estimated by analyzing
single particle trajectories from the DNS model. The
shear-induced diffusivity can be estimated from mean
square displacements of platelets as a function of time
(e.g. see [19, 28, 30, 69]). Here, we estimate diffusion co-
efficient from step sizes and wait times between successive
particle collisions from platelet trajectories. Calculating
the step size of particle jumps ∆y(y) and wait times be-
tween successive jumps τ(y) from particle trajectories,
the diffusivity in the y direction can be estimated as

Dyy(y) =
〈δy2(y)〉
2〈τ(y)〉 , (20)

where 〈δy2(y)〉 is the time average of variance of the jump
step sizes and 〈τ(y)〉 is the time average of wait times τ .
The calculated values of τ(y) and ∆y(y) depend on the
time step, ∆t, for resolving the particle trajectories. Re-
solving particle trajectories with a time step of the same
order as the DNS time step resolves the actual fluctu-
ations of the particles within the accuracy of the DNS
model. If the time step for particle trajectories, ∆t, is
much larger than the actual wait times between jumps,
τ , then the estimated 〈τ(y)〉 approaches the time step
used for resolving the trajectories. Therefore, if particle
trajectories are resolved with relatively large time steps,
calculating the diffusion coefficient from (20) is equivalent
to calculating it from a linear growth of mean square lat-
eral displacements of particles with time 〈y2(t)〉 = 2tDyy.
We used ∆t ∼ 1/γ̇ for resolving particle trajectories.

F. Setup

We consider the flow of RBC and platelet suspensions
between two parallel plates with distances of H = 40, 80
and 160 µm. The flow is driven by a constant body force
in the axial direction x. The direction normal to the
walls is denoted by y with walls located at y = 0 and y =
H . Periodic boundary conditions are applied in the flow
direction x and the z direction normal to both x and y
directions. A domain length of L = 80 µm was chosen for
the channels of heightH = 40 µm. For channels of height
H = 80 and 160 µm, domain length of L = 40 µm was
chosen to lower computation cost. We investigated the
effect of domain length L in the flow direction on RBC
migration and platelet margination rates. Comparison
of margination rates between domains of length L = 40
and 80 µm showed negligible differences for channels of
height H = 80 and 160 µm. In all cases, the channel
depth in the z direction was set to 40 µm.
The RBC membrane is resolved by a triangular mesh

with 6× 102 nodes. At equilibrium, the RBCs are bicon-
cave shaped with 8 µm in diameter. The ratio of RBC
cytoplasm to plasma viscosity is set to the physiological
viscosity ratio of λ = 5. The density of RBC cytoplasm
is assumed equal to the density of plasma, i.e., ρ = 1
gr/cm3. The mechanical properties of normal RBCs are
set as the following: The RBC membrane bending modu-
lus κ̃ = 4.7× 10−18J, the RBC membrane shear modulus
G = 6.3×10−6J/m2, the RBC area constraint coefficient
ka = 1.7 × 10−5J/m2, and the RBC volume constraint
coefficient kv = 50.9 J/m3. The above values of G and
λ lie within the range of experimentally measured values
of RBC mechanical properties [70]. In the spectrin-link
model, the volume and area constraints are applied to
ensure cytoplasm incompressibility and membrane inex-
tensibility and the exact values of kv and ka are unim-
portant [59, 63]. The bending modulus is about an order
of magnitude larger compared to the experimental con-
sensus values for κ̃. This relatively larger value for κ̃ is
needed for stabilizing the biconcave shape of the RBCs
at low shear rates [59].
Channel hematocrit, hereafter referred to as hemat-

ocrit, is defined by the volume fraction of RBCs in the
channel at any instant of time. Hematocrit, φ(y), as a
function of distance in the cross flow direction y is cal-
culated as the volume fraction of RBCs along the flow
direction x at any point y. The average hematocrit value

for a channel, φ̄, represents φ̄ =
∫ y=H

y=0
φ(y)dy/H . Dis-

charge hematocrit φd(y) is the RBC volume fraction in
blood flowing out of a channel. Under physiological con-
ditions, the value of the discharge hematocrit is close to
the systemic hematocrit. Due to migration of RBCs to
the channel center (Fahraeus effect), the average channel
hematocrit in micro channels is smaller than the aver-
age discharge hematocrit, φ̄d. We set the average chan-
nel hematocrit φ̄ = 0.20 in all simulations. The volume
fraction of marginating particles (0.018-0.037) is chosen
higher than physiological values for platelet volume frac-
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TABLE I. DNS parameters of test cases for studying the effect
of shear rate on margination. The domain size is 80× 40× 40
µm3, and the RBC volume fraction is φ = 0.20.

Simulation γ̇w (s−1) CaG Re ReRBC

1 103 0.23 1.6 0.004
2 5× 103 1.2 8 0.02
3 104 2.3 16 0.04
4 2× 104 4.7 32 0.09

tion in blood (∼ 0.002) to provide more samples for anal-
ysis of margination. To place RBCs and marginating
particles, initially, a large number of particles was dis-
tributed in the domain with random locations and ori-
entations. Marginating particles were selected from the
pool of particles such that they are distributed evenly in
the y direction (but not necessarily in the x and z direc-
tions). RBCs were randomly picked from the remaining
pool of particles.

IV. RESULTS

In this section, we report the effects of shear rate, chan-
nel size, particle size and deformability and particle as-
pect ratio on margination.

A. Effect of shear rate

We studied the effect of shear rate on platelet margina-
tion by simulating the flow of RBC and platelet suspen-
sions in channels of height H = 40 µm and varying γ̇w
from 103 s−1 to 2 × 104 s−1. From experimentally mea-
sured velocities in arterioles of diameter D ≈ 30–80 µm,
wall shear rate in small arterioles can be estimated as
γ̇w ≈ 2× 103–8× 103 [71–74].
The wall shear rates γ̇w are based on matching channel

Reynolds number, Re = ργ̇wH
2/µ, and RBC shear Cap-

illary number, CaG = aRBC
¯̇γµ/G, where ρ is plasma den-

sity, µ is plasma viscosity, G is the RBC membrane shear
modulus, and aRBC is the RBC effective radius (aRBC =
(0.75VRBC/π)

1/3, with VRBC is RBC volume). The RBC
Reynolds number is defined as ReRBC = ρ¯̇γa2RBC/µ. The
simulation parameter details are given in Table I. The
RBCs have an effective radius aRBC = 2.9 µm, result-
ing in a confinement ratio of 2aRBC/H = 0.145. A total
number of 240 RBCs results in φ = 0.20. The platelets
are modeled as rigid oblate spheroids with a major axis
of 2.3 µm and aspect ratio of 2.3. A total number of 100
platelets are used in each simulation. The initial ran-
domly distributed locations of RBCs and platelets are
identical in all cases.
Fig. 1 shows snapshots from simulations at γ̇w =

103 s−1 and 2 × 104 s−1 at average traveled distance
of x = 9 mm (i.e., x/H = 225). At both shear rates,

(a)

(b)

FIG. 1. Simulation snapshots of RBC and platelet suspen-
sions flowing in channels of height H = 40 µm at shear rates
of (a) γ̇w = 1, 000 s−1 and (b) γ̇w = 20, 000 s−1.

an RBC-free layer forms at wall and platelets concen-
tration increases in this region. At higher shear rate of
γ̇w = 2×104 s−1, RBCs are more stretched and elongated
along the flow direction compared to γ̇w = 1 × 103 s−1.
This larger deformation of RBCs and higher lift force
from the wall at γ̇w = 20 × 103 leads to larger RBC-
free layer δ compared to γ̇w = 1 × 103. To quan-
tify the effect of γ̇w on δ, we defined δ from the RBC
hematocrit profiles after reaching equilibrium such that
φ(δ) = 0.005 (Fig. 2). In channels of height H = 40 µm,
we found δ = 3.0, 3.8, 4.6 and 5.2 µm at wall shear rates
of γ̇w = 103, 5 × 103, 104 and 2 × 104 s−1, respectively.
The RBC-free layer thickness follows a power-law relation
of δ ∝ Ca

0.2
G . In vitro experiments of Kameneva et al. [75]

in 100 µm square channels, showed that the δ of RBC sus-
pensions with φ = 0.20 follows a similar power-law trend
over a range of shear rates of γ̇w ∼ 1.5× 103–7× 104 s−1.

To quantify the effect of γ̇w on margination length,
we calculated the average relative distance of platelets
from wall ∆w(t) = w(t) − w(0) where w(t) denotes
the average distance of marginating particles from wall
w(t) = H/2−|y(t)−H/2|. Fig. 3(a) shows ∆w as a func-
tion of time for various γ̇w values. The average distance
of platelets from wall decreases as they marginate to the
RBC-free layer. As expected, platelets approach the wall
faster with increasing shear rate. Plotting ∆w as a func-
tion of average distance traveled x (Fig. 3(b)), shows that
the variation of ∆w as a function of x is almost indepen-
dent of γ̇w. This result verifies the scaling relation for
margination length introduced in (2). At higher shear
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FIG. 2. Effect of wall shear rate on RBC-free layer thickness,
δ. (a) Profiles of hematocrit φ at wall shear rates of γ̇w = 103,
5×103, 104 and 2×104 s−1 in channels of height H = 40 µm.
Hematocrit profiles are plotted in the cross-channel direction,
y. The edge of the RBC-free layer is defined as φ(δ) = 0.005
(denoted by filled circles). (b) The thickness of the RBC-free
layer (denoted by filled circles) increases with increasing wall
shear rate.

rates, the values of ∆w is slightly lower. This effect is
likely due to the larger RBC-free layer δ.

The effect of shear rate on margination rate is un-
clear due to disparities among experimental results from
the literature. In rectangular channels with 30, 50 and
100 µm width, near wall platelet concentration was ob-
served above sufficiently large shear rates of 210 s−1, and
further increases in shear rate increased the near wall to
core concentration ratio [12]. However, the dependence
of the near-wall to core concentration ratio was different
between 30, 50 and 100 µm channels. The near wall to
core ratio increased more uniformly at 100 µm compared
to 50 and 30µm channels [12]. Results of Aarts et al. [7]
also showed a nearly uniform increase in the near wall to
core concentration ratio of platelets with an increase of
shear rate from 240 s−1 to 1,200 s−1. However, this be-
havior was contrasted by the results of Yeh and Eckstein
[16] where in tubes of 200 µm diameter at hematocrit of
40%, the rate of lateral transport of platelets was found
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FIG. 3. Average relative distance of platelets from the channel
wall at wall shear rates of γ̇w = 103, 5×103, 104 and 2×104 s−1

plotted as a function of (a) time and (b) average distance
traveled along the flow direction x. The channel height is
H = 40 µm. The average relative distance of platelets from
wall is defined by ∆w(t) = w(t) − w(0) where w(t) denotes
the average distance of marginating particles from wall w(t) =

H/2− |y(t)−H/2|.

to be less at wall shear rates of 250 s−1 or 1220 s−1 com-
pared to 560 s−1. Results of Zhao et al. [76] showed a
small increase of platelet near wall excess when shear rate
was increased five times from 3,000 s−1 to 15,000 s−1.
In our analysis for deriving margination length, we

assumed that suspensions of deformable RBCs ex-
hibit shear-induced diffusivity with the same functional
form as shear-induced diffusivity in suspensions of rigid
spheres, i.e., Dyy = Kγ̇a2. In suspensions of rigid
spheres, the nondimensional parameter K depends on
hematocrit φ. We calculated the RESID of platelets in
the cross flow direction from platelet trajectories at var-
ious wall shear rates. As expected, RESID of platelets is
lowest in the RBC-free region (Fig. 4(a)). The maximum
of Dyy(y)/γ̇w occurs at y ∼ 8 µm, collocated with the
first peak of the hematocrit profile (Fig. 2(a)). Despite
the vanishing (time-averaged) shear rate in the chan-
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nel center, the value of Dyy/γ̇w in the channel center
is nonzero. This nonzero value is due to the finite size
of RBCs and platelets. Fig. 4(b) shows that similar to
suspensions of rigid particles, the nondimensional param-
eter K = Dyy/(γ̇a

2) in RBC suspensions increases with
increasing hematocrit φ.

In addition to φ, the value of K also depends on γ̇.
Fig. 4 shows that Dyy normalized by shear rate is a
weak function of shear rate, and the value of K de-
creases with increasing γ̇w. While effective diffusivity
of rigid spheres in non-colloidal suspensions scales lin-
early with γ̇ [44, 47, 69], RESID scales sublinearly with
γ̇. The decrease of Dyy/(γ̇a

2) with increasing γ̇ is con-
sistent with the results of numerical studies of Zhao et
al. [30] who found that the nondimensional self-diffusivity
of platelets decreases with Ca in suspensions of platelets
and RBCs flowing in microchannels of H = 34 µm.
Pranay et al. [77] found that the nondimensional short-
time self-diffusivity Dyy/(γ̇a

2) of elastic capsules is a
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FIG. 4. Cross-channel profiles of platelet effective diffusiv-
ity Dyy calculated from DNS platelet trajectories at various
shear rate rates in channels of height H = 40 µm. Effective
diffusivity is normalized by (a) wall shear rate γ̇w and (b) by
a2γ̇(y) where a is platelet effective radius and γ̇(y) is local
shear rate in the cross flow direction, y.

non-monotonic function of Ca over a range of 0.08 ≤
Ca ≤ 0.6 with maximum value of Dyy/(γ̇a

2) occurring
at Ca ≈ 0.14.

B. Effect of channel size

We investigated the effect of channel height H on RBC
migration and platelet margination rate by simulating
the flow of RBC and platelet suspensions in channels of
height H = 40, 80 and 160 µm. The RBCs have an effec-
tive radius aRBC = 2.9 µm. Simulations were performed
at hematocrit of φ = 0.20. The simulation parameter
details are given in Table II. The wall shear rates γ̇w are
based on matching RBC shear Capillary number, CaG.
The platelets are modeled as oblate spheroids with a ma-
jor axis of 2.3 µm and aspect ratio of 2.3.
The average lateral displacement of RBCs and

platelets relative to the channel wall ∆w as a function
of the average traveled distance x for various H values
is shown in Fig. 5(a). Margination developing length
LD is much shorter for smaller channels. Also, RBC
migration occurs over a much shorter length compared
to platelet margination. This large difference in devel-
oping scales shows that platelet margination cannot be
explained by passive advection of platelets by plasma as
RBCs migrate towards channel center. If ∆w is normal-
ized by height H and x is normalized by a2/H3, RBC
and platelet average trajectories collapse for all cases
(Fig. 5(b)). This result verifies the scaling relation for
margination length introduced in (2). Also, when x of
RBCs and platelets is scaled by the square of their equiv-
alent radii a2, the development-length of RBC migra-
tion and platelet margination appears to occur on closer
length scales both of which are of the order of O(1).
In most experimental studies, concentration of

marginating particles are measured at large entrance
lengths such that variations in concentration are not de-
tectable. We are not aware of an experimental study
specifically designed to measure the effect of channel
size on margination developing length, yet comparison
of margination developing length from different studies
performed at various channel sizes supports our results
that margination development length greatly increases
with the increase of channel size. Xu and Wootton [78]
found that near-wall platelet concentration in tubes of
D = 3 mm perfused with whole porcine blood is doubled

TABLE II. DNS parameters of test cases for studying the
effect of channel size on margination. In all cases, the chan-
nel depth in the z direction is 40 µm, and the RBC volume
fraction is φ=0.20.

H (µm) L (µm) RBCs Platelets γ̇w (s−1) CaG

40 80 240 100 503 0.28
80 40 240 100 242 0.14
160 40 480 400 100 0.07
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in steady flow at L = 50 cm from the blood reservoir, but
only increased by ≈ 1.5-fold at L = 10 cm. While the
near-wall platelet concentration is approximately dou-
bled in tubes of D = 3 mm over L = 50 cm (L/D ≈ 167),
the near-wall concentration of platelet-sized beads is dou-
bled over L. 5 mm in tube of D = 200µm (L/D ≈ 25)
perfused with RBC suspension of φ = 0.30 [15]. Zhao
et al. [17] reported margination development length of .

2.5 mm in 100 µm (L/H . 25) square channels perfused
with 40% hematocrit RBC suspensions. They measured
a near-wall excess of 7-9 fold at L = 2.5 mm in RBC
suspensions of φ = 0.40.
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FIG. 5. Effect of channel size H on RBC migration and
platelet margination rate. (a) Average relative distance of
RBCs and platelets ∆w is plotted as a function of average
distance traveled w in channels of height H = 40, 80 and
160 µm. (b) Normalizing ∆w by channel height H and nor-
malizing x by a2/H3 results in a collapse of the curves.

C. Effect of particle size and deformability

To identify the particle properties that cause margina-
tion, we varied the size or the deformability of a subset
of RBCs while keeping the properties of the remaining
RBCs unchanged. Then, we compare the margination
rates of the modified RBCs.

We considered the flow of RBC suspensions in chan-
nels of height H = 40 µm at wall shear rate of γ̇w =
10× 103 s−1. The wall shear rate γ̇w is based on match-
ing channel Reynolds number, Re, and RBC shear Cap-
illary number, CaG. The RBCs have an effective ra-
dius aRBC = 2.8 µm, resulting in a confinement ratio of
2aRBC/H = 0.14. A total number of 272 RBCs results
in an average hematocrit of φ = 0.20.

The relative size of marginating particles compared to
the RBCs is denoted by r∗ = am/aRBC, where am is
the effective radius of the marginating particle. We com-
pared the margination rate of rigid RBCs to the margina-
tion rate of small soft RBCs and small rigid RBCs. The
mechanical properties of the small soft RBCs (i.e., mem-
brane shear modulus G, bending modulus κ̃, area con-
straint coefficient ka, and volume constraint coefficient
kv) were scaled by matching the nondimensional param-
eters CaG = γ̇aµ/G, Caκ = γ̇a3µ/κ̃, Caa = γ̇aµ/ka and
Cav = γ̇µ/kv. The relative deformability of marginating
particles compared to the RBCs is denoted by Ca

∗ =
Cam/CaRBC, where Cam and CaRBC are any of the
above nondimensional parameters (i.e. CaG, Caκ, etc.).
By comparing the dynamics of single RBCs of r∗ = 1
and 0.5, we have verified that the above scaling of the
RBC membrane mechanical properties results in similar
dynamics. A total number of 100 small marginating par-
ticles are used. To reduce the effect of rigid RBCs on
the flow, two simulations with a total number of 50 rigid
RBCs were performed for rigid RBCs. The initial lo-
cations of RBCs and marginating particles are identical
in all cases. The properties of marginating particles for
different cases are listed in Table III.

Fig. 6 shows the average trajectories of RBCs and
marginating particles. Smaller size and less deformability
both lead to particle margination. Comparison of average
trajectories of rigid RBCs with the average trajectories
of soft small RBCs shows rigidity has a more significant
effect compared to size within the range of parameters in
this study (Fig. 6). When both effects are combined, i.e.
small rigid RBCs, margination rate is the most rapid.

TABLE III. Properties of marginating particles in test cases
for studying the effect of size and deformability on margina-
tion. Domain size is 80× 40× 40 µm 3.

Simulation Size of marginating particles (r∗) Ca∗

Small rigid RBCs 0.5 0
Small soft RBCs 0.5 1
Rigid RBCs 1.0 0
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FIG. 6. Average relative distance of platelets of various size
and deformability from the channel wall. The channel height
is H = 40 µm.

D. Effect of particle shape on margination rate

We studied the effect of shear rate on platelet margina-
tion by simulating the flow of RBC and platelet sus-
pensions in channels of height H = 40 µm at γ̇w =
10× 103 s−1. The wall shear rate γ̇w is based on match-
ing channel Reynolds number, Re, and RBC shear Cap-
illary number, CaG. The RBCs have an effective ra-
dius aRBC = 2.8 µm, resulting in a confinement ratio of
2aRBC/H = 0.14. A total number of 272 RBCs results
in φ = 0.20. The marginating particles are modeled as
rigid spheroids with aspect ratios of AR = 0.5, 1, 2 and
4 and volume V = 8 µm3. A total number of 100 rigid
spheroids are used in each simulation. The initial loca-
tions of RBCs and spheroids are identical in all cases.

Fig. 7 shows that margination rate is almost inde-
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FIG. 7. Average relative distance of platelets of various aspect
ratio (AR) from the channel wall. The channel height is H =
40 µm.

pendent of the aspect ratio of the marginating particles
within the range of parameters studied here. We have
previously found that for larger particles with volume
V = 23.5 µm3, margination rate slightly increases as as-
pect ratio decreases [36]. This different behavior suggests
that below a certain volume fraction, margination rate
is independent of particle aspect ratio. This result is in
agreement with the numerical results of Müller et al. [37].

V. CONCLUSION

In this study, we investigated the effects of impor-
tant flow and particle properties on margination of par-
ticles in RBC suspensions. We derived a scaling law
for margination length based on the assumption that
margination is mainly driven by RESID. Based on this
scaling law, margination length increases cubically with
channel height H and is independent of shear rate. The
results of our DNS of the flow of RBC and marginat-
ing particles in straight channels verified the proposed
scaling law for margination length. We also showed that
rigidity and size both lead to particle margination, with
rigidity having a more significant effect compared to size
within the range of parameters in this study. Morevoer,
we showed that margination rate is almost independent
of the aspect ratio of the marginating particles.

Some limitations of this study are as follows. We as-
sumed that platelets are rigid, since the platelet Cap-
illary number is smaller than RBC Capillary number
(Cap ≈ 0.09CaRBC) due to its smaller size and larger
shear modulus. As suggested by [33, 35], the deforma-
bility of particles may affect particle migration velocities
at small but non-zero Reynolds numbers. Even though
in our study Replatelet ≤ 0.02, the inertia may affect our
results, since we have shown that particle deformability
has a strong effect on margination. Also, to stabilize the
biconcave shape of the RBCs at low shear rates, we have
modeled the RBC membrane with a bending modulus of
an order of magnitude larger compared to the experimen-
tal consensus values for κ̃. The larger value of κ̃ results
in slightly less deformable RBCs which may result in un-
derestimated margination rates. However, we expect this
effect to be small, since under moderate deformations,
the contribution of bending energy is dominated by the
in-plane energy.
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Appendix: Derivation of the scaling relation for
margination length

An estimate of the margination development length,
LD, can be obtained by a simple analysis of the flow of
suspension of RBCs and marginating particles. We fol-
low the analysis of Nott and Brady [44] for estimating
the development length of concentration profiles in sus-
pensions of rigid spheres. To obtain a scaling relation for
margination length, we consider a suspension of RBCs
and marginating particles flowing between two parallel
plates with separation distance of H .

Assuming that RESID governs lateral displacement of
particles in the RBC-filled region, we can estimate the av-
erage lateral displacement of marginating particles, ∆w,
at time t as

∆w ∼ 2

√

Dyyt, (A.1)

where Dyy is the average coefficient of RBC-enhanced
shear induced diffusivity in the channel. The average
relative distance of marginating particles from wall is
defined by ∆w(t) = w(t) − w(0) where w(t) denotes
the average distance of marginating particles from wall
w(t) = H/2 − |y(t)−H/2|. Combining (1) and (A.1),

∆w at time t is given by

∆w ∼ 2
√

K ¯̇γa2t, (A.2)

where ¯̇γ is the average shear rate across the channel.
To express ∆w in terms of average distance traveled in
the flow direction, x, we can write t = x/U , where U is
the average velocity in the flow direction. Assuming that
the velocity profile of the suspension in the channel is
parabolic everywhere, the average velocity U can be esti-
mated as U = H ¯̇γ/3, yielding t = 3x/(H ¯̇γ). Substituting
this expression in (A.2), we can write ∆w as a function
of x,

(

∆w

H

)2

∼ 12K
a2x

H3
. (A.3)

We define the margination development length, LD, as
the length over which the average relative distance of
particles from wall is ∼ H , i.e. LD = x|∆w∼H . Using this
and (A.3), we can derive an expression for margination
length scale

LD ∼ H3

12Ka2
(A.4)
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