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We consider viscous fluids in spherical geometry, a lighter fluid 

supporting a heavier one. Chandrasekhar (Quart. J. Mech. Appl. Math. 8, 1 

(1955)) analyzed this unstable configuration providing the equations 

needed to find, numerically, the exact growth rates for the ensuing 

Rayleigh-Taylor instability. He also derived an analytic, but approximate 

solution. We point out a weakness in his approximate dispersion relation 

(DR) and offer a somewhat improved one. A third DR, based on 

transforming a planar DR into a spherical one, suffers no unphysical 

predictions and compares reasonably well with the exact work of 

Chandrasekhar and a more recent numerical analysis of the problem (G. 

Terrones and M. D. Carrara, Phys. Fluids 27, 054105 (2015)). 

PACS numbers 47.20.Bp, 47.20.Gv, 47.20.Ma. 

 

I. INTRODUCTION 

Hydrodynamic instabilities affect the flow of fluids in static or dynamic 

configurations. The Rayleigh-Taylor (RT) instability [1,2] affects fluids in a gravitational 

field g  or when a fluid of density Aρ  accelerates another fluid of density Bρ  with 

BA ρρ < . An example is water ( 3g/cm 0.1=Aρ ) supporting honey ( 3g/cm 4.1=Bρ ). 
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Small, infinitesimal perturbations at their interface grow with time and cause the 

interpenetration of the two fluids. Lord Rayleigh [1] analyzed this “static” configuration 

and many subsequent studies, especially in spherical geometry, were concentrated on 

astrophysical applications [3]. We call this a “static” configuration because the average 

location of the interface, or the radius R , does not vary with time while interpenetration 

continues. 

The “dynamic” configuration in which a fluid accelerates a heavier fluid was studied 

by G. I. Taylor [2]. “Dynamic” because in this case the average location of the interface 

or R  does change as a result of a pressure gradient. The unstable configuration of a 

heavy fluid supported by a light fluid in a gravitational field pointing “down” becomes 

unstable when the same light fluid accelerates the heavy fluid “up”. This average, 

accelerating motion is also accompanied by fluid interpenetration. Taylor found that the 

same, exponentially growing instability found by Lord Rayleigh operates here also: 

teγηη 0~ where η =amplitude of perturbations, t =time, and γ  is the growth rate. In fact 

the same expression for γ  (given below) applies to both the “static” and “dynamic” 

configuration if g  is interpreted as a gravitational field in the former and as acceleration 

in the latter case. This is true in planar geometry only; in spherical or cylindrical 

geometry there are differences, discussed below. 

Fluid properties and in particular viscosity affect the RT instability in either 

configuration, static or dynamic, and any geometry, planar or spherical/cylindrical. The 

higher the viscosity of either fluid, the slower the interpenetration, i.e. it reduces the 

growth rate. In this paper we study the effect of viscosity on the growth rate of the static 

configuration in spherical geometry. We propose a relatively simple analytic, 
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approximate formula for γ  and compare it with previous work giving exact numerical 

results [3,4]. We also compare the proposed formula with another approximation given 

by Chandrasekhar [3]. 

Concerning the static and dynamic configurations, the reader should not be misled by 

the identity of the RT instability in these two configurations noted above; It happens only 

for the simplest, often called “classical” case: inviscid fluids in planar geometry. In 

spherical geometry, or when viscosity is present, the correspondence between the two 

configurations ceases. For the static case one looks for exponentially growing modes with 

the largest growth rate γ , usually called a “stability analysis.” For the dynamic case one 

must solve an “initial value problem” and, except for the classical case, does not evolve 

in a simple, exponential manner. These points will be discussed further in the next 

Section. We bring them up here just to note that the dynamic problem, first treated by 

Taylor [2], has acquired very substantial attention in recent years because of its 

importance in inertial confinement fusion [5,6]. State-of-the-art calculations are now 

performed with 3D (three dimensional) hydrocodes in spherical geometry including 

radiation, viscosity, etc. [7,8] all of which act to suppress, but not eliminate, the RT 

instability. Another instability, the Richtmyer-Meshkov (RM) instability [9,10] occurs 

when a shock passes through an interface. This is often treated as an instantaneous 

acceleration and is clearly of a dynamic nature and will not be examined here; the effect 

of viscosity on the RM instability was treated in [11]. 

In Sec. II we present and discuss the dispersion relation (DR) for the growth rate 

starting with the classical, planar inviscid case [1,2] and ending with the spherical viscous 

case [3,4]. In Sec. III we compare the approximate DRs with exact numerical results for 
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low A  [3] and high A  [4], where A  is the Atwood number defined by 

)/()( ABABA ρρρρ +−≡ . A third, simpler model is presented in Sec. IV and all 3 DRs 

are compared with the exact results of Chandrasekhar [3]. Conclusions are presented in 

Sec. V, and mathematical details are given in the appendix. 

 

II. DISPERSION RELATIONS 

We start with the classical case [1,2]: 

 02 =− gkAγ , planar inviscid,             (1) 

where λπ /2=k , λ  being the wavelength of the perturbation in the shape of 

)cos()( kxtη . In this paper we discuss only the linear regime defined by 1<<kη . 

In the spherical case the shape is lnYt ,)(η  where lnY ,  is a spherical harmonic of order 

n  and nln ≤≤− . Now the DR is given by 

              0
])1([

))(1(2 =
++
−+−

AB

AB

nnR
gnn

ρρ
ρργ , spherical inviscid,           (2) 

where R  is the radius of the interface. The linear regime translates into 1/ <<Rnη . Eq. ( 

2) reduces to Eq. (1) in the short wavelength limit, 1>>n , as kRn →/ . 

Eq. (2) has an interesting history. It was derived first by Binnie [12] and rederived by 

others [13,14]. Soon after Binnie’s paper Plesset published a new analysis with a 

different result [15]. We have already commented [16] on the difference between Eq. (2) 

and Plesset’s result. Some confusion has arisen from the fact that the authors [12-14] 

have claimed Eq. (2) as the solution for the dynamic problem where )(tRR =  and Rg &&≡ , 

while Eq. (2) is the solution to the static problem with .constR =  Plesset’s solution, 

which we do not reproduce here, is the correct solution for the dynamical problem. 
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In contrast, the classical solution, Eq. (1), applies to both the static [1] and the 

dynamic [2] cases, the latter giving )cosh()( 0 tt γηη =  where gkA=γ , )0(0 =≡ tηη , 

and we have assumed 000 =≡ =tdt
dηη& . 

The above statements are not affected by the addition of surface tension )(sT  [17]: 

Static [1] and dynamic [2] treatments coincide for (and only for) the planar inviscid case. 

The “buoyancy” term gkA  in Eq. (1) is multiplied by 22 /1 ckk−  where 

)(2 /)( s
ABc Tgk ρρ −≡ . Note that this factor can be negative for 22

ckk > , i.e. short 

wavelength perturbations, in which case the configuration becomes stable [17] and 

)cosh( tγ  converts to )cos( tγ  with 2/122 )}1/({ −= ckkgkAγ . 

Matters are substantially complicated when we include viscosity [3,17]. In this paper 

we quote only approximate DRs and refer the reader to previous literature for the exact 

treatments. In planar geometry an approximate DR is 

 02 22 =−+ gkAk νγγ , planar viscous,            (3) 

where )/()( ABAB ρρμμν ++≡ and BA,μ  are the viscosities of fluids A and B. The exact 

treatment can be found in Ref. 18 and was reviewed in [17]. 

Eq. (3) also has an interesting history. Bellman and Pennington [18] quote it as an 

upper bound on exactγ . Shortly thereafter Hide derived it as an approximate DR [19] using 

a variational method due to Chandrasekhar [20] – see also Ref. [17]. Subsequently, Reid 

pointed out an error [21] in Hide’s derivation. Since then any reference to Hide’s work is 

accompanied by a reference to Reid’s work. Only the derivation of Eq. (3) was in 

question because comparisons have shown that the formula itself is an excellent 

approximation to the exact results [22,23]. 
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In Ref. [11] we provided an alternative derivation of Eq. (3) which bypasses Reid’s 

objection by applying a method used earlier to treat, again approximately, density 

gradient stabilization [24]. Here we use the same method, which is a simple variation on 

Chandrasekhar’s technique, to derive an approximate DR (Eq. (6) below) for the 

spherical viscous case. 

There is only one case, that of a planar, single, viscous fluid with a free surface, i.e. 

1=A , for which an exact growth rate is known analytically [25]. It is somewhat ironic 

that in comparing it with the approximate result, Eq. (3) above, we made an error by 

leaving out the factor of 2 that appears in Eq. (3). Upon converting to nondimensional 

variables X  and Y , defined as 3/12 )/( gk ν  and 3/12 )/( gνγ  respectively, Eq. (3) reads 

02 22 =−+ XYXY  and therefore the solution is XXXY +±−= 42  instead of Eq. (24) 

in Ref. 25. In effect, Fig. 2 in Ref. [25] compares the exact result for ν (thick line) with 

the approximate result for ν/2 (thin line), which explains why the thin line is so much 

above the thick one. When compared for the same value of ν the approximate solution is 

much closer to the exact one and practically coincides with it, unlike what is shown in 

Fig. 2 of Ref. [25]. 

Finally, we consider the spherical viscous problem and, again, write down only 

approximate viscous DRs. Using his variational principle Chandrasekhar derived 

0
])1([

))(1(
])1([

)}()12(])1()[1(2{
2

2
2 =

++
−+−

++
−++++++

AB

AB

AB

ABAB

nnR
gnn

nnR
nnnnn

ρρ
ρρ

ρρ
γμμμμγ     (4) 

for the spherical viscous problem (Eq. (90) in Ref. [3]). He compared the above equation 

with his exact results for the case 1.0=A  and BA νν =  and found good agreement – See 

Fig. 2 in [3]. Here AAA ρμν /≡  and BBB ρμν /≡ . Note that when BA νν =  their common 
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value is given also by ν  as defined above, )/()( BABA ρρμμ ++ . As expected, Eq. (4) 

reduces to Eq. (3) in the planar limit ( kRnn →∞→ / , ) and to Eq. (2) in the inviscid 

limit ( 0, →BAμ ), and to the classical result, Eq. (1), in the planar inviscid limit. 

Eq. (4), however, suffers in one aspect: It predicts a completely unphysical behavior, 

“negative viscosity,” for the lowest mode ( 1=n ) when BA μμ 13> . For 1=n  Eq. (4) 

reduces to 

 0
]2[

)(2
]2[

)13(
2

2 =
+
−−

+
−+

AB

AB

AB

AB

R
g

R ρρ
ρρ

ρρ
γμμγ .            (5) 

The “viscous term,” meaning the middle term in Eqs. (3)-(5), becomes negative in Eq. (5) 

if BA μμ 13> , implying growth faster (!) than inviscid. One can show that this is the only 

anomaly of Eq. (4): For 2≥n  the viscous term is always positive as long as 0, >BAμ , 

hence the usual behavior is obtained: viscous growth is slower than inviscid growth. 

The above observation led us to consider our simpler method to derive approximate 

DRs [24]. For the density gradient application we obtained a different DR [24]. For the 

planar viscous problem we obtained the same DR [11]. For the spherical viscous problem 

at hand we obtain 

0
])1([

))(1(
])1([

])1()2)[(1(2
2

2 =
++
−+−

++
−++++

AB

AB

AB

AB

nnR
gnn

nnR
nnnn

ρρ
ρρ

ρρ
γμμγ ,         (6) 

which is derived in the appendix. We believe this is an improvement over Eq. (4). 

However, it still has an unphysical prediction for 1=n : 

 0
]2[

)(2
]2[

12
2

2 =
+
−−

+
+

AB

AB

AB

B

R
g

R ρρ
ρρ

ρρ
γμγ .            (7) 
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Although it does not predict “negative viscosity” like Eq. (5), Eq. (7) predicts that if 

0=Bμ  then the growth is inviscid, independently of Aμ . We expect, on simple physical 

grounds, that growth should be suppressed even if only one of the fluids (the lighter one 

in this case) has viscosity. 

In Eq. (6) it is again clear that 1=n  is the only possible anomalous case and that all 

modes 2≥n  are affected by viscosity as long as it is present in at least one of the fluids. 

Of the two anomalies displayed in Eq. (5) and (7) we believe the second one is less 

severe, so perhaps Eq. (6) is “less wrong” than Eq. (4). A simpler, somewhat ad hoc but 

anomaly-free DR will be discussed in Sec. IV. 

The reader may inquire why Chandrasekhar, who did consider 1=n , did not point 

out this anomaly. The reason, most probably, was that in computing exact growth rates 

and then comparing them with his approximate DR (Eq. (4) above) he set BA νν = . 

Setting ννν == BA  in Eqs. (4) and (6) we obtain 

0
])1([

))(1(
)1(

)12)(()1(2
2

2
2 =

++
−+−

⎭
⎬
⎫

⎩
⎨
⎧

++
+−+++

AB

AB

AB
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nnR
gnn

nn
nnn

R ρρ
ρργ

ρρ
ρρνγ          (8) 

and 

       0
])1([

))(1(
)1(
)(21)1(2
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2 =

++
−+−

⎭
⎬
⎫

⎩
⎨
⎧
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−+++
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AB
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nnR
gnn

nnR
nn

ρρ
ρργ

ρρ
ρρνγ          (9) 

respectively. Eq. (8) above appears as Eq. (91) in [3]. Since AB ρρ >  neither of the above 

two equations displays any anomaly. Even for 1=n  the viscous term is 

γ
ρρ
ρρν ⎥

⎦

⎤
⎢
⎣

⎡
+

−+
AB

ABR
2

)(94)/( 2 in Eq. (8), compared with γ
ρρ
ρρν ⎥

⎦

⎤
⎢
⎣

⎡
+
−+

AB

ABR
2

)(84)/( 2  from Eq. 

(9), quite similar. 
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In the next section we compare Eqs. (4) and (6) with each other and with the exact 

results of [3] for low A , 1.0=A , and with the exact results of [4] for high A , 0.1=A . 

 

 

        III. COMPARISON 

 A. LOW A  

Chandrasekhar [3] and Terrones and Carrara [4] chose different ways to reduce the 

number of variables and deal with nondimensional quantities. It is straightforward to 

show that the 8 primitive variables of the problem γ , Aρ , Bρ , Aμ , Bμ , R , g , and n  can 

be combined into 5 nondimensional quantities. Chandrasekhar chose A , BA νν / , 

,/ 23 νgR  and n  as the 4 independent variables and gR /γ  as the dependent one, so 

),/,/,(/ 23 ngRAfgR BA νννγ = . In his numerical work he took 1.0=A , 1/ =BA νν , 

and computed gR /γ  as a function of n , 91−=n , for 18 different values of 

GgR ≡23 /ν , a “Grashoff” number. 

In Fig. 1 we plot Eqs. (8) and (9) to be compared with Fig. 1 of [3]. As anticipated, 

both equations yield very similar results because of the choice BA νν = . It follows that the 

comparison with exact results made in Fig. 2 of [3] applies, practically with no change at 

all, to Eq. (8) as well as to Eq. (9). 

B. High A 

A different choice of variables was made by Terrones and Carrara [4]. They define 

 3/12 )/( gBνγα ≡           (10) 
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as a nondimensional growth rate, and take BAs μμ /≡ , BAd ρρ /≡ , 3/12 )/( BgRB ν≡ , and 

again n  as the 4 independent variables, i.e., ),,,( nBdsαα = . They look at the case 

,0=s  0=d  (hence 1=A ) and study α  as a function of n  for various values of B – See 

Fig. 5 of [4]. 

For 0== AA ρμ  Eqs. (8) and (9) reduce to 

               0/)1(/]/1)2)(1(2[ 22 =+−++++ BnBnnn αα          (11) 

and 

              0/)1(/)2)(1(2 22 =+−+++ BnBnn αα                     (12) 

respectively. They differ only by n/1  in the viscous term which obviously is negligible 

for large n  (as stated above for any BA,μ  and BA,ρ  both DRs given in Eqs. (4) and (6) go 

over to the planar limit, Eq. (3), for large n ). For 1=n  the coefficient of the viscous term 

is 13 in Eq. (11) and 12 in Eq. (12) so we again expect small differences between the two, 

mostly at low B , i.e. high viscosity. Note that G  and B  are related by 3BG = . 

In Fig. 2 we plot α  from Eqs. (11) and (12) as functions of n , 501−=n , for 1=B , 

2, 5, 10, and 50, to be compared with Fig. 5a of Terrones and Carrara [4]. Clearly, the 

two approximate DRs yield very similar growth rates and, compared with the exact 

results of [4], the agreement is quite good except for low values of  n  and B . This is 

confirmed by Fig. 3 where we again plot α  from Eqs. (11) and (12) for 71−=n  and 

1.0=B , 1, 2, and 5. This figure should be compared with Fig. 5b of [4]. 

To highlight the differences let us look at the point 1== Bn . From Eq. (11), 

02132 =−+ αα , we get 152.02/)17713( ≈+−=α , and from Eq. (12) we get 

164.0386 ≈+−=α . Both of these numbers are lower than the value, about 0.25, from 
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[4]. But for 7=n  both equations give 056.0≈α  in closer agreement with Ref. [4] giving 

067.0≈α  – See their Fig. 5b. 

The advantages of having an explicit DR are obvious: One can calculate the growth 

rate for any given values of the 7 independent variables listed above. Exact results must 

be calculated numerically [3,4]. Another quantity, called thresholdB  by Terrones and 

Carrara and related to criticalG  of Chandrasekhar is defined as that value of B  for which 

)1()( maxmax += nn γγ . We propose calculating )(nBthreshold  by treating n  as a continuous 

variable and finding maxγ  by setting 0/ =∂∂ nγ . A somewhat lengthy but straightforward 

calculation from Eq. (11), setting 0/ =∂∂ nα , gives 

            ]2/1/1)1][(2/132[4 2223 nnnnnBthreshold −−+−+= .        (13) 

A simpler calculation from Eq. (12) yields 

                  23 )1)(32(4 ++= nnBthreshold .           (14) 

Note that both equations give nBthreshold 2→  in the large- n  limit. In Table I we 

compare thresholdB  calculated from Eqs. (13) and (14) with the exact values given in Ref. 

[4]. 

 

IV. SIMPLE MODEL 

In this section we consider a simple DR for the spherical viscous case. Eqs. (4) and 

(6) were based on approximations to the exact work of Chandrasekhar. An alternative, 

admittedly simple-minded approach, is the following: For the inviscid cases given by 

Eqs. (1) and (2), to go from planar (Eq. (1)) to spherical (Eq. (2)) geometry, one can 

define 



 

 

12 

)12(
)1(2
AnR

nnkn −+
+≡            (15) 

and replace nkk →  in Eq. (1) to arrive at Eq. (2). We do the same for the viscous case: 

Replace nkk →  in Eq. (3) to arrive at 

                         02 22 =−+ Agkk nnνγγ , spherical viscous.         (16) 

Like the two previous DRs, this one also reproduces the inviscid DR, Eq. (2), and the 

viscous planar DR, Eq. (3), in the appropriate limits of 0→ν  and kkn →  respectively. 

The main advantage, needless to say, is that Eq. (16) has no “negative” or “zero” 

viscosity which were the weak points of Eqs. (4) and (6). In long form Eq. (16) reads 

     0
])1([

))(1(
])1()[12(

)()1(4
2

22
2 =

++
−+−

++−+
+++

AB

AB

AB

AB

nnR
gnn

nnAnR
nn

ρρ
ρρ

ρρ
γμμγ .       (17) 

In Fig. 4 we compare Eqs. (4), (6), and (17) with Chandrasekhar’s exact results. This 

figure should be compared with Fig. 2 in [3]. All 3 DRs straddle the exact results. 

Similarly, no noticeable difference is seen when we turn to the 1=A  problem 

considered by Terrones and Carrara [4] – All 3 DRs give similar results. Setting 

0== AA ρμ  in Eq. (17) we obtain 

 0/)1(/)1(2 222 =+−++ BnBn αα          (18) 

with α  and B  as defined earlier. Compare the above equation with Eqs. (11) and (12). 

As discussed in subsection IIIB, for 1== Bn  Eqs. (11) and (12) give 152.0≈α  and 

0.164 respectively. Eq. (18) above reduces to 0282 =−+ αα  and hence 

243.0184 ≈+−=α , much closer to the exact result 0.25 [4]. For 7=n  Eqs. (11) and 

(12) gave 056.0≈α , while Eq. (18) above gives 062.0≈α , in somewhat better 

agreement with the exact result ( 067.0≈ ) of Ref. [4]. 
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Finally, we consider thresholdB . Calculating α  from Eq. (18) by setting 0/ =∂∂ nα  we 

get 

 )1(2 += nBthreshold ,          (19) 

to be compared with Eqs. (13) and (14). For 41−=n  Eq. (19) predicts 4=threholdB , 6, 8, 

and 10, in somewhat poorer, but perhaps still acceptable agreement with the numbers in 

Table I. Like Eqs. (13) and (14) it predicts nBthreshold 2→  in the large- n  limit. 

 

V. CONCLUSIONS 

We have examined three, successively simpler DRs for the spherical viscous 

problem: Eq. (4) derived in [3]; Eq. (6) derived in our Appendix; and Eq. (17) more in the 

form of an ansatz. 

Eq. (4) suffers from predicting “negative viscosity” for the case 1=n  and BA μμ 13> . 

Eq. (6) suffers from predicting “zero viscosity” for the case 1=n  and 0=Bμ , even when 

0>Aμ . Eq. (17) suffers no such unphysical behavior, predicting that viscous effects will 

vanish if and only if both 0=Aμ  and 0=Bμ , just as in planar geometry. Given its 

simplicity and its acceptable comparison with the exact results of [3] and [4], we believe 

this simple ansatz can be used as an estimate for viscous effects in spherical geometry. 

As Figs. 2-4 show, the main difference among the models occurs for 1=n  and higher 

values of n  do not discern among the models. Although most of the numerical 

simulations for NIF capsules [7,8] have focused on 1002 −≈n , there have been a few 

experiments searching exclusively for 1=n  effects [26]. 
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We have differentiated between the “static”, .constR = , and the “dynamic,” )(tRR =  

problems. The above DRs solve only the static problem. The dynamic problems are much 

more challenging and, in increasing complexity, are: inviscid spherical [15], viscous 

planar [27], and viscous spherical [28], the last one requiring the solution of an integro-

differential equation. Exact solutions to viscous dynamic problems are practically out of 

the question, and we hope the approximate growth rates presented in this work will be 

useful in future searches for approximate solutions. 
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APPENDIX: DERIVATION OF EQ. (6) 

Start with Eq. (70) of Ref. [3]: 

0)1(1)1(2)(12            
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where 
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W
r
nn

dr
d

rdr
dF

⎭
⎬
⎫

⎩
⎨
⎧ +−+≡ 22

2 )1(2 ,          (A2) 

and W  is the perturbed velocity. As in the planar case [11] we integrate the above 

equation from 0 to ∞  and, as an approximation, use the inviscid eigenfunctions for W : 

,1   ,            

1         ,
)1( ≥=

≤=
+− rr

rrW
n

n
inviscid           (A3) 

after normalizing r  by the radius R  of the interface, so that 1=r  denotes the interface 

(see Eq. (87) in [3]). Eq. (A1) has yet to be normalized in the same way. After integration 

by parts all “surface terms,” evaluated at 0=r  and ∞=r , are set to zero. 

The 1st, 4th, and 5th terms in Eq. (A1) are total derivatives and therefore turn into 

surface terms upon integration and do not contribute. The last term also does not 

contribute because 0=F  in the approximation  inviscidWW →  (substitute Eq. (A3) in Eq. 

(A2)). Only the 2nd, 3rd, and 6th terms in Eq. (A1) will survive and, as will see, contribute 

to the first, last, and middle terms, respectively, of Eq. (6). 

After performing the normalization the integrals in Eq. (A1) are: 

11

2
1

0

1

1

1

00 +
+=+=+= ∫∫∫∫∫

∞
−−−

∞∞

nn
drrdrrdr

r
Wdr

r
Wdr

r
W BAn

B
n

ABA
ρρρρρρρ .     (A4) 

ABAB dr
r

Wrdr
r

W
dr
d ρρδρρρ −=−−= ∫∫

∞∞

00

)1()( .         (A5) 

dr
r

W
dr
ddr

r
W

dr
ddr

r
W

dr
ddr

r
W

dr
d

BA )()()(
1

2

21

0
2

2

0
2

2

0
2

2

∫∫∫∫
∞∞∞

+== μμμμ  

)2()1()()(                    11 ++−=−=
+− == nn

r
W

dr
d

r
W

dr
d

BArBrA μμμμ .     (A6) 

We have used integration by parts twice in the first line of Eq. (A6). 
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As mentioned above only the 2nd, 3rd, and 6th terms in Eq. (A1) contribute to the 

integration. All of them have the common factor )1( +nn  which can be canceled. 

Substituting Eqs. (A4), (A5), and (A6), respectively, in those three terms and including 

the R  factors for normalization we obtain 

0/)]2()1([2)(
1

2 =++−+−−⎟
⎠
⎞

⎜
⎝
⎛

+
+ Rnn

R
g

nn BA
ABBA μμ

γ
ρρρργ        (A7) 

which leads to Eq. (6). 

Clearly, one can multiply Eq. (A1) by any power of W , say mW , and then integrate. 

We advocated 0=m , i.e. no multiplication at all [24]. Chandrasekhar’s method 

corresponds to 1=m . It is equally clear that if one could use the exact eigenfunction 

exactW , then the calculated growth rate would be exactγ  and independent of m . However, 

not only exactW  is quite complicated, but to obtain it one already needs exactγ  and hence 

the process (multiplying by m
exactW  and integrating over space) would be a mere 

mathematical exercise. By using inviscideapproximat WW = , which are much simpler and already 

at hand, one derives an approximate γ  which depends on m , as illustrated by the two 

DRs in Eq. (4) and Eq. (6). The reader can readily appreciate the simplicity of our 

method (no multiplication) because, if one does multiply Eq. (A1) by W  before 

integrating, as Chandrasekhar did, then the total derivative terms, viz. the 1st, 4th, and 5th 

terms in Eq. (A1) which did not contribute for us, must be kept and, after repeated 

integration by parts, evaluated using  eapproximatW  in the final step, leading to Eq. (90) in 

Ref. [3]. 
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The main reason why the DR based on 1=m  differs from the DR based on 0=m  is 

that eapproximatW  does not satisfy the requirement that not only W  but drdW /  also must be 

continuous at the interface. Eq. (A3), the inviscid eigenfunction used as approximation to 

W , is continuous but its derivative is not. Chandrasekhar’s solution was to take the 

average of the two terms containing drdW /  which he characterized as “admittedly a 

crude procedure,” – see his discussion following Eqs. (88) and (89) in Ref. [3]. By not 

introducing an extra factor of W  and integrating Eq. (A1) directly we bypass this issue 

and obtain a DR, Eq. (6), that is “less wrong” than Chandrasekhar’s, given here as Eq. 

(4). 

As to the replacement nkk → , one can justify it only for large- n  because spherical 

harmonics approach sinusoidal perturbations of wavelength 

nRkk n /2/2/2 πππλ ≈→= . For arbitrary n  we can only call upon the analogy with the 

inviscid case. The resulting DR, Eq. (17), avoids the anomalies suffered by the other two 

spherical DRs, Eqs. (4) and (6), and appears to be in reasonable agreement with the exact 

results of Chandrasekhar [3] and of Terrones and Carrara [4]. It remains to be seen 

whether such an extremely simple treatment is viable in other applications. 
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Figure Captions 

Fig. 1. (Color online) Plot of the nondimensional growth rate gR /γ  as a function of 

mode number n  for 11 values of the Grashoff number indicated on each pair of 

curves. The Atwood number is 0.1 and the viscosities satisfy ννν == BA . Eq. (8), 

which is Eq. (91) in [3], is plotted as a dotted red line, and Eq. (9) is plotted as a solid 

black line. The two are practically indistinguishable. Compare with Fig. 1 in Ref. [3]. 

Fig. 2. (Color online) Nondimensional growth rate α  as a function of mode number n  

for 5 values of B  as indicated on each pair of curves, for the case 0== AA ρμ . Eq. 

(11) is plotted as dotted red line, and Eq. (12) is plotted as solid black line; the two 

are barely distinguishable. Compare with Fig. 5a of Ref. [4]. 

Fig. 3. (Color online) Same as Fig. 2 for 4 different values of B . Eqs. (11) and (12) can 

be distinguished at low values of mode number n . Compare with Fig. 5b of Ref. [4]. 



 

 

20 

Fig. 4 (Color online) Comparison of the 3 approximate DRs with the exact results of 

Chandrasekhar [3] for the case 1.0=A  and ννν == BA . All 3 DRs give similar 

results. We plot gR /γ  as a function of n  for various values of G  as indicated on 

each group of curves. Eq. (4) is represented by the thin dotted red line, Eq. (6) by the 

thin solid black line, and Eq. (17) by the thin solid green line; The exact results 

appear as thick black lines. Compare with Fig. 2 of Ref. [3]. 

 

 

 

Table Caption 

Table I. Values of thresholdB  for the first 4 values of mode number n , 41−=n , as 

calculated from Eq. (13), Eq. (14), and exact results from Ref. [4].  

 

n  Eq. (13) Eq. (14) Ref. [4] 

1 5569.3)45( 3/1 ≈  3089.4)80( 3/1 ≈  4472.4  

2 1297.6  3164.6)252( 3/1 ≈  5393.6  

3 2354.8  3203.8)576( 3/1 ≈  5985.8  
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4 274.10  323.10)1100( 3/1 ≈  647.10  
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