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Abstract

In this paper we establish a connection between particle trajectories subject to a nonholonomic

constraint and light ray trajectories in a variable index of refraction. In particular we extend the

analysis of systems with linear nonholonomic constraints to the dynamics of particles in a potential

subject to nonlinear velocity constraints. We contrast the long time behavior of particles subject

to a constant kinetic energy constraint (a thermostat) to particles with the constraint of parallel
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Anthony Bloch, Alberto Rojo

I. INTRODUCTION

It is well known that there is an analogy between optics and mechanics that inspired

much of the classical theory of mechanics and indeed extended to the theory of quantum

mechanics. The analogy is based on the fact that trajectories for light rays and particles

can be found from variations of functionals that can be put in one to one correspondence:

light rays follow the path that minimizes time, particles follow the path that minimizes

action. However, there is an important class of systems -nonholonomic mechanical systems-

for which the physical paths between two points is not determined by a variational principle.

That leaves open the question of how to properly quantize these systems, since the optical-

mechanical analogy breaks down. As part of an attempt to bridge this gap, in this paper we

develop the optical mechanical analogy for nonholonomic mechanical systems with nonlinear

constraints. Nonholonomic systems are not Hamiltonian or indeed variational [1], [2], [3], so

this analogy is quite subtle and moreover such systems typically have linear constraints.

A key aspect our analysis is that we are analyzing trajectories and the analogy involves a

change of time. Thus we map trajectories to trajectories rather than dynamics to dynamics.

Nonholonomic mechanics is the study of systems subject to nonintegrable constraints

on their velocities. The classical study of such systems ([1], [3], [4] and references therein)

is concerned with constraints that are linear in their velocities. Nonlinear nonholonomic

constraints essentially do not arise in classical mechanics but are however of interest in the

study of nonequilibrium or constant temperature dynamics which model the interaction of

system with a bath [5], [6], [8], [9], [10]. In this setting the dynamics can be derived using

the classical Gauss’s principle of least constraint.

In this paper we consider an optical analogy for particle mechanics with nonlinear con-

straints. This extends our earlier work on nonholonomic systems with linear constraints [11]

as well as our earlier work on the thermostat, [12].

We describe firstly the classical optical mechanical analogy where it is shown that the

trejectories of a particle subject to a potential are equivalent to those of a light ray with

suitable index of refraction. We show that a similar (but more complex) equivalence may be

derived for certain systems with nonlinear nonholonomic constraints. We show in particular
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how to relate the index of refraction of the optical system to the potential of contrained

system. This is important because it shows that such systems, which are not variational,

can be mapped to systems which are variational – namely certain optical systems. We hope

this will be useful for their quantization which depends on having a variational structure.

We note that it is possible to quantize certain nonholonomic systems – see for example [13]

and the discussion in [14], by taking the limit of radiation field which enforces the constraint

or embedding the system in a larger variational system, but there is no universal procedure

for quantizting nonholonomic systems, even with linear constraints.

We also contrast the long time behavior of particles subject to a constant kinetic energy

constraint to particles with the constraint of parallel velocities. We note also that particu-

larly in the latter case we obtain a kind of “flocking” behavior of the particles (see e.g. [15])

and we hope this work might be useful in future analysis of flocking of biological and other

systems.

II. SUMMARY OF CLASSICAL OPTICAL ANALOGY

The optical mechanical analogy stems from the isomorphism between trajectories of a

particle of mass m, moving at constant energy E in a potential V (x) (the momentum being

p(x) =
√

2m(E − V (x)), and that of a light ray that propagates, at constant frequency, in

a medium of index of refraction n(x). In each case, if xi and xf are the initial and final

points, the trajectories are the extrema of their corresponding action functionals:

So =
∫ xf
xi
nds (geometric optics)

Sm =
∫ xf
xi
pds (mechanics).

(1)

The analogy results from the equivalence of two conservation laws: conservation of mo-

mentum in the direction parallel to the surfaces of constant potential (Newton’s second law

for particles) and conservation of wave vector (or “slowness”) in the direction parallel to the

surfaces of constant index of refraction (Snel’s law for light rays).

The analogy implies that the physical trajectories between xi and xf can be computed

either for a light ray or for a particle, provided one has the equivalence

p(x) =
√

2m[E − V (x)] = n(x). (2)
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Notice that p and n have different units, but this is irrelevant in determining the geometry

of the trajectories since the respective units amount to multiplicative constants in their

actions. The optical mechanical analogy gained further prominence with the advent of

quantum mechanics, and the early search of a wave mechanics for particles. The natural

question is: if geometric optics is the small wave length limit of wave optics, what plays the

role of a wave length λ for particles, in such a way that Newtonian mechanics is recovered in

the limit of small λ? The optical mechanical analogy provides the natural correspondence:

p(x) ∝ n(x) ∝ 1

λ(x)
. (3)

Since p and λ have different units there must be a constant of proportionality between

them: p = h/λ, the celebrated De Broglie’s relation, with the proportionality constant

(Planck’s universal constant) determined experimentally.

We remark that the optical analogy may also be rephrased as follows (see e.g. [16] and

[17]). We simply replace the classical mechanical action with

∫ b

a

[k · ẋ− ω(x,k, t)]dt . (4)

Then the usual Hamilton’s equations with k playing the role of momentum gives rise

to the Hamilton-Jacobi equation for the light ray (although not the Eikonal equation).

The variational principle in this case is analogous to Hamilton’s principle in that it is an

unconstrained variational principle with fixed time at the edpoints but with energy not fixed.

This is in constrast to the Maupertuis principle where the energy E is fixed and which is the

focus of this paper. Further dicusssion on optics and mechanics may be found for example

in [18], [19], [20].

III. LIGHT RAY EQUATION

We now analyze the general dynamics of light rays in a medium with isotropic index of

refraction. We start with the Lagrangian (which represents the optical length) in such a

medium:

L =
ds

dt
n

=
√
ẋ2 + ẏ2 + ż2n(x). (5)
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To compute the dynamics we observe:

dL
dẋ

= t̂n(x).

d

dt

dL
dẋ

=
dt̂

ds

ds

dt
n+ t̂ (∇n · ẋ)

=
dt̂

ds
+ t̂

(
∇n
n
· t̂
)

(6)

where t̂ is the unit tangent vector to the ray. We also have

∇L =
ds

dt
∇n

=
∇n
n

(7)

Combining the above equations we get

dt̂

ds
= (t̂×∇ lnn)× t̂ . (8)

We can understand this in terms of wave fronts by writing the refraction law that relates

the curvature of the light ray with the index of refraction. We recall the following:

Consider the trajectory of a light ray propagating in an arbitrary two–dimensional index

of refraction n(x) (the argument easily extends to three dimensions).

The problem of the curvature of a light ray in an arbitrary index of refraction was treated

by Born and Wolf [18] in their classic “Principles of Optics”. Here we re-derive the same

result using a slightly different approach for completeness, as in [11]. We discretize the

problem into lines of constant n, as in Figure (1).

FIG. 1: Discretization of the trajectory of a light ray in a spatially dependent index of refraction n

Snel’s law for a ray refracting on one of this lines is

n(s) sinα(s) = n(s+ ds) sinα(s+ ds) (9)

= n(s+ ds) sin (α− dθ) , (10)
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where α(s) is the angle the light ray makes with the normal to the surface of constant n, s

is the arc length and dθ is the change of the angle of the tangent to the curve [See Figure

(1)].

Now expand the right hand side of Equation (10) to obtain

dθ

ds
=
n′(s)

n(s)
tanα(s). (11)

Since α is the angle of the tangent to the ray with the normal to the light ray,

dn(s)

ds

1

cosα(s)
= |∇n|, (12)

and from this equation we obtain the general expression for the curvature of the light ray

dθ

ds
≡ κ(s) =

|∇n|
n(s)

sinα(s), (13)

Thus

κ = |∇ ln(n)| sinα (14)

|κ| = |∇ ln(n)× t̂| . (15)

Also, we have

dt̂

ds
= κn̂, (16)

with n̂ the unit vector normal to the ray. Since the normal to the ray is perpendicular to t̂

and is in the plane spanned by t̂ and ∇n, we have the following equation for the light ray:

dt̂

ds
= t̂×

(
∇ ln(n)× t̂

)
. (17)

IV. SYSTEMS WITH NONLINEAR NONHOLONOMIC CONSTRAINTS

We now turn to nonholonomic mechanics – mechanics for systems with nontrivial velocity

constraints – contraints which cannot be writen as constraints on positions, or as holonoimic

constraints. The standard setting for nonholonomic systems (see e.g. [1]) is the following:

one has a mechanical systems defined a configuration space Q, which we take to be a smooth
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manifold, and locally one has n coordinates qi(t) and m (linear in the) velocity-dependent

constraints of the form
n∑
i=1

a
(j)
i (q)q̇i = 0, j = 1, · · · ,m. (18)

The constraints are assumed to be nonintegrable, i.e. they are not equivalent to a set of

position constraints. They constrain motion only in velocity space but not in position space

and the entire position space is accessible to the system. Equivalently one says that the

constraints define a nonintegrable distribution on the tangent bundle of the configuration

space – at each point the velocities are retricted to a subspace of the velocity space.

Let L(qi, q̇i) be the system Lagrangian. and suppose the m velocity constraints are

represented by the equation A(q)q̇ = 0 where A(q) is an m × n matrix and q̇ is a column

vector. Let λ be a row vector of Lagrange multipliers which are used to define the virtual

forces which are necessary to impose the constraints. The equations we obtain are thus

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= λA(q), A(q)q̇ = 0. (19)

Note that such systems are not variational and the dynamics may not be derived by append-

ing the constraint to the Lagrangian by Lagrange multipliers, i.e. forming the augmented

Lagrangian. If one simply appends the contraint(s) to the Lagrangian one arrive at so called

vakonomic mechanics which is not equilvalent to the correct Newtonian dynamics – there

are extra terms in the equations make the dynamics variational. Details on this issue may

be found in [1] and work cited therein.

In the current setting we are interested in a nonlinear constraints of the form φi(q, q̇) = 0

These again may be implemented using Lagrange multipliers, by differentiating the con-

straint and enforcing the system to lie on the resultant hypersurface defined by this con-

straint. This is equivalent to Gauss’s principle of least constraint (see e.g. [6],[1]).

In the linear setting (see [1]), the system energy is preserved. This is not true in the

nonlinear setting.

Another feature of nonholonomic systems is that volume may not be preserved in the

phase space even in the absence of external friction ([1] [13]). In the systems below volume

is also not preserved in general.

We begin by considering a Newtonian system subject to an external force. We impose the

constraint by a Lagrange multiplier in accordance with Gauss’s principle of Least Constraint.
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A. One constraint

Consider an N dimensional vector V = (ẋ1, · · · , ẋN) and an N dimensional force F =

(f1, · · · , fN). The constraint is imposed by a “time dependent viscosity” η(t).

For the velocity dependent constraint

G(v) = 0

v̇ = F− η(t)∇G

and

v̇ = F− ∇G · F
∇G · ∇G

∇G

guarantees that the constraint is satisfied dG/dt = 0.

1. Constant velocity constraint

We now show that the constant velocity constraint gives us a nice relation with the optical

mechanical analogy, using the formulation of Section III.

The constant velocity (or constant kinetic energy) constraint corresponds to the following

G:

G(v) = v2 − v20. (20)

Hence

v̇ = F− F · v
v20

v

=
F(v · v)− (F · v)v

v20

=
v × (F× v)

v20
. (21)

Using the constancy of the speed we have t = v/v0, and

v̇ =
dv

ds
v0

=
dt

ds
v20, (22)

which, combined with (21) gives
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dt

ds
= t×

(
F

v20
× t

)
. (23)

Given (21) and (17) we have the equivalence

F = v20∇ ln(n), (24)

In other words, for the constant velocity constraint, the optical mechanical analogy is

expressed by the equation

U(x)

v20
= − lnn(x) + Constant . (25)

Thus the trajectory (but not the dynamics) of a particle in a constant velocity constraint

with potential U(x) is the same as that of a light ray moving in an index refraction given

by

n(x) = Ae−U(x)/v20 , (26)

with A a constant. We note that the potential is related to the natural log of the index

of refraction up to the addition of a constant, but this constant becomes multiplicative for

the index of refraction and therefore becomes irrelevant for the geometry of the light-ray

trajectory.

Example–constant gravity

We now consider a particular example where we have a constant gravitational field.

F = gĵ.

Thus we have

v̇y = g − g
v2y
v20

(27)

v̇x = −gvyvx
v20

(28)

Since the speed is constant, we write

v = v0(sin θ, cos θ) (29)

and rewrite (28) as

v̇x = −g sin θ cos θ. (30)
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Also,

v̇x = v0
d sin θ

dy

dy

dt

= v20
d sin θ

dy
cos θ,

which, combined with (30) gives

d sin θ

dy
= − g

v20
sin θ (31)

or

sin θ = Ce−αy,

with α = g/v20. Now, using Snel’s law

n(y) sin θ = Const

we get in fact that

n(y) ∝ eαy.

In general, using (31)

n
d(1/n)

dy
=

1

v20

dV

dy
, (32)

or

−d ln(n)

dy
=

1

v20

dV

dy
, (33)

and

lnn(y) = −V (y)

v20
+ Constant (34)

We note that in the analysis above both the potential and index depend only on y. This

relects the nature of the analogy between the optical and mechanical problems where the

change in the potential in a given direction is determined by the change of optical index in

that direction.
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B. Dynamics of many particles with a single velocity constraint

We recall the work of [12]. We assume we have N particles with equals mass.

Consider the case of N particles in one dimension subject to a constant gravitational force

f = mg and and with constant kinetic energy. In the absence of the constraint the particles

move independently and the kinetic energy fluctuates. We can show that the constraint

induces correlations and that the long time behavior corresponds to all particles moving

with the same velocity, regardless of the initial conditions.

As above the equation of motion of the n-th particle is

v̇n = g −
∑N

m=1 gvm

V2 vn. (35)

Of course V2 =
∑
vn(t)2 is preserved by the dynamics. Define

uq =
1

N

∑
n

vne
iqn, (36)

with q = 2π
N
k, k = 0, 1, · · · , (N − 1). Also define a (constant) mean quadratic velocity as

v2M = V2

N
.

Substitute these two transformations in (35) to obtain

u̇q(t) = gδq,0 −
gu0(t)

v2M
uq(t). (37)

From (37) the equation of motion for u0 is

u̇0 = g

(
1− u20

v2M

)
. (38)

with solution (and long time limit) given by:

u0(t) = vM tanh(gt/vM)→ vM .

The solution for uq(t) for q > 0 is given by

uq(t) =
uq(0)

cosh(gt/vm)
.

In the long time limit, uq(t)→ 0. Substituting in (36) we see that the long time solution

is

vn(t→∞) = vM .
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This means that in this particular example, at long times, the constraint enforces all

particles to move with the same velocity vM . In the absence of the constraint, the velocities

are of course independent, and the total energy is conserved.

In the constrained case the long time behavior for each particle position is a linear in-

crease, meaning that, although the kinetic energy is constant, the potential energy is linearly

decreasing: U̇n = −mgvM .

The extension to non-equal masses is essentially immediate. The main result is that the

long time behavior remains the same: regardless of the mass differences, the asymptotic

velocities are all the same. This means of course that in that case equipartition does not

occur. One can also apply the analysis to the case of equal mass particles with different

charges in an electric field.

We remark that this one dimensional analysis is useful for understanding the multi-

particle case. To obtain an optical analogy we consider below higher dimensions.

C. Many particles–More than one constraint

We now consider many particles with multiple constraints.

Gk(v) = 0, k = 1, · · · ,m (39)

v̇ = F−
m∑
k=1

ηk∇Gk, (40)

where v has dimensions D × N , with N the number of particles and D the spatial dimen-

sionality.

Define

Aj = ∇Gj · F (41)

Bij = ∇Gi · ∇Gj (42)

then

v̇ = F−
m∑
k=1

(
B−1A

)
k
∇Gk (43)
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D. Parallel velocity constraint in 2D

We now consider the case of N particles with N − 1 constraints that enforce parallel

motion (for related work see [7])

Gi = ẋiẏi+1 − ẏiẋi+1, i = 1, · · · , N − 1.

The equations of motion are

ẍ1 = f1x − η1ẏ2 (44)

ÿ1 = f1y + η1ẋ2 (45)

ẍk = fkx − ηkẏk+1 + ηk−1ẏk−1 (k = 2, · · ·N − 1) (46)

ÿk = fky + ηkẋk+1 − ηk−1ẋk−1 (k = 2, · · ·N − 1) (47)

ẍN = fNx + ηN−1ẏN−1 (48)

ÿN = fNy − ηN−1ẋN−1 (49)

where (fix, fiy) denote the (x, y) compoments of the force acting on the ith particle.

For conservative forces, the above equations guarantee that the individual energies for

each particle are conserved. Also, for general forces, it guarantees that the direction θk for

each of the particles is the same.

In terms of

zj = ẋj + iẏj

= vje
iθj

fj = fjx + ifjy (50)

= Fje
iαj , (51)

where Fj denotes the magnitude of the force on the jth particle, the equations of motion

are:

ż1 = f1 + iη1z2 (52)

żk = fk + iηkzk+1 − iηk−1zk−1 (k = 2, · · ·N − 1) (53)

żN = fN − iηN−1zN−1. (54)
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The above implies, using the telescoping property of the sum,

N∑
j=1

zj żj =
N∑
j=1

fjzj (55)

We now rewrite the equation explicitly in terms of the polar form of zj.

We note that żj = v̇je
iθj + ivj θ̇je

iθj . Hence, we have:

∑
j

v̇jvje
i2θj + iv2j θ̇je

i2θj =
∑
j

Fjvje
i(αj+θj) =

∑
j

Fjvje
i(αj−θj)ei2θj . (56)

We now implement the constraint of parallelism between velocities, which implies that θj

equal a common value, θ. Then, dividing by the common exponential of iθ, the imaginary

part of the above equation becomes

N∑
j=1

v2j θ̇ =
N∑
j=1

Fjvj sin(αj − θ). (57)

Thus we have

θ̇ =

∑N
j=1 Fjvj sin(αj − θ)∑N

j=1 v
2
j

. (58)

From this equation we can extract an optical mechanical analogy for each particle. First

we use the fact the curvature for the trajectory for each particle is given by

κj =
dθ

dsj
=

θ̇

vj
, (59)

and we have conservation of energy

vj(x) =
√

2[Ej − V (x)]. (60)

Now consider the following two cases:

1. Constant gravity g

For the gravitational case Fj = g, αj = −π/2 and we obtain

θ̇ = −g cos θ

∑N
j=1 vj∑N
j=1 v

2
j

(61)
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Also, since the force is constant (independent of position) and the angles θj are equal, we

have

v̇i = v̇j,

the relative velocities are constants of motion.

Consider particle j: for given initial conditions for each particle velocities and positions

v0k and y0k we have that all the velocities can be written in terms of yj the y coordinates of

particle j:

vk = vk(yj).

The curvature of the particle is the following function of position:

κj = − cos θ
g

vj

∑N
j=1 vj∑N
j=1 v

2
j

and, using (14), with sinα = cos θ, we find the optical mechanical analogy for constant

gravity

d

dyj
lnn(yj) = − g

vj

∑N
j=1 vj∑N
j=1 v

2
j

. (62)

This thus gives an expression for the equivalent index of refraction that gives light ray

dynamics similar to -but not identical to- particles moving a constant gravitational potential

subject to parallel velocity contraints. Notice that, in our multi-particle case, there is an

index of refraction for each particle (or light ray), determined by the value of each one

particle constant of motion vj [and Ej through Eq. (60)] . In addition, each light ray has a

complex dynamics since the motion is influenced by the instantaneous position of the rest of

the particles. An interesting special case is as follows, where the individual vj are constants

of motion.

2. Constant magnetic field

Consider now the case of a uniform field but particles with different mass, so that Fj =

ωjvj. Also, since the force is perpendicular to the velocity sin(αj − θ) = 1, and we obtain

θ̇ = ω =

∑N
j=1 ωjv

2
j∑N

j=1 v
2
j

, (63)

the particles rotate proportionately to a weighted average of their bare individual angular

velocities. The optical mechanical analogy is given as above by (62).
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Remark: We make the following remark about velocity type constraints. It is possible

to construct an interesting Hamiltonian that conserves kinetic energy, that for a so-called

ultrarelativistic particle. However, this Hamiltonian is singular, that is, not hyperregular

(see [21]) . (A Hamiltonian (or Lagrangian) is said to be hyperegular if the corresponding

Legendre transform or equivalently its inverse is a diffeomorphism. This is essentially equiv-

alent to the Hessian of the kinetic energy being an invertible matrix. Singular Lagrangians

are usually handled in general by the Dirac’s method (see[22]).)

Consider the following Hamiltonian:

H(x,p) = c|p|+ V (x) (64)

where c is constant (the velocity of light in a vacuum). One can compute the Hamiltonian

equations of motion and one finds that ẋ = p/|p|. Hence the magnitude of the velocity

is conserved and one can check that the dynamics gives that of the system with constant

velocity constraint discussed above. We note that this may be viewed as a ultrarelativistic

(singular) limit of the relativistic Hamiltonian H = c
√
p2 +m2c2+V (x) with corresponding

Lagrangian L = −mc
√
c2 − ẋ2 − V (x). This is limit one obtains as the magnitude of the

velocity approaches c. Since

p =
∂L

∂ẋ
=

mc√
c2 − ẋ2

ẋ (65)

we see that as the velocity approaches c the momentum becomes large leading to the above

ultrarelativistic limit of the Hamiltonian.

V. CONCLUSION

In conclusion we have demonstrated, as far as we know for the first time, that there

is a natural optical analogy for the motion of particles subject to nonlinear nonholonomic

constraints. This extends the classical analogy and our earlier work on the case of holonomic

constraints.

This analogy, as in the classical setting, only maps trajectories to trajectories. However,

this is important because it shows that such systems, which are not variational, can be

mapped to systems which are variational – namely certain optical systems. We hope this

will be useful for their quantization which depends on having a variational structure.
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Further, our work leads to an interesting contrasting description of the motion of particles

subject to a thermostat constraint and particles with enforced parallel directional velocities.

We intend in future work to extend these ideas to the analysis of dynamical and controlled

flocking.
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