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The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in
calculating the electrostatic energy when high charging energies limit the total charge to a single
quantum, entailing unequal potentials on the particles. We show that the energy at small separation
h has a singular logarithmic dependence on h. We derive a general form for this energy in terms of
the singular capacitance of two spheres in near contact c(h), together with nonsingular geometric
features of the cluster. Using this form, we determine the energies of various clusters, finding
that more compact clusters are more stable. These energies are proposed to be significant for metal-
semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should
dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.

I. INTRODUCTION

In self-assembled lattices of nanoparticles one often
encounters clusters of metal particles [1–3] as shown in
Fig. 1. The remarkable stability of these clusters was ar-
gued to depend partly on states of nonzero electric charge
[1]. For particles of nanometer scale, such states are dom-
inated by the quantization of charge. The energy to add a
single electron to a particle becomes large on the scale of
the thermal energy kBT , so that net charge on a particle
is atypical. Thus any net charge on a cluster is necessarily
unevenly distributed over its particles. Still, a net charge
on one particle must polarize the surrounding particles,
producing electrostatic attraction. This contrasts with
the macroscopic case in which the available charge would
be shared amongst the particles, producing repulsion. It
is of great interest to understand what types of clusters
are favored under this simple and novel binding mecha-
nism. Mutual electrostatic interactions between spheri-
cal conductors and with surfaces are of interest in space
environments [4] and in scanning probe microscopy [5].
Merrill et al. [6] explored the interactions among charged
colloidal particles in clusters in solution.

Unlike most interactions of small particles, this electro-
static interaction cannot be reduced to a pairwise poten-
tial energy. Charge on one sphere induces polarization
on each nearby sphere. This polarization induces fur-
ther polarization in other spheres, as shown in Fig. 2.
Since their separation is not large compared to their ra-
dius, the polarization cannot be accurately described by
a dipole approximation. Instead, all the spheres carry a
polarization charge distribution that must be found self-
consistently to minimize the electrostatic energy. It is
not known what types of clusters would be favored by
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FIG. 1. (a) Transmission electron micrograph of experimental
superlattice structure containing lead sulfate and dark colored
palladium nanoparticles showing formation of regular palla-
dium clusters as sketched in the colored inset. Scale bar is 20
nm. Reprinted by permission from Macmillan Publishers Ltd:
from Ref. 1, Fig. 1j, courtesy D. V. Talapin. (b) Transmission
electron micrograph of a dodecagonal quasicrystal superlat-
tice self-assembled from Fe2 O3 nanocrystals and clustered
dark-colored 5-nm gold nanocrystals. Reprinted by permis-
sion from Macmillan Publishers Ltd from Ref. 2 Fig. 2b, cour-
tesy D. V. Talapin.

this novel multi-body interaction mechanism. Moore [7]
has provided a multipole formalism for calculating this
energy and has explored the energies of simple clusters.
Recently Qin and Freed [8] provided a systematic method
for determining electrostatic energies for polarizable in-
sulating spheres using image charge methods.

These polarization effects are nontrivial even for the
case of two isolated spheres. Numerical solutions by A.
Russell [9], by Pisler et al. [10] and by Kalinin et al. [5]
have been developed. A case of special interest is that of
identical spheres of radius a bearing equal and opposite
charge q at separation h. At small separation h� a the
charge becomes concentrated arbitrarily strongly near
the contact point. This concentrated contact charge cre-
ates a logarithmically singular mutual capacitance c(h)
of the form c(h) → 1

4a log(αa/h) (in electrostatic units



2

(a) (b)

FIG. 2. (a) Sketch of a cluster whose electrostatic energy is
to be calculated. Sphere 1 has a net charge Q; spheres 2, 3,
and 4 have no net charge. Spheres 1, 2 and 3 are in near
contact. Sphere 4 is in near contact with spheres 1 and 3
only. Near contacts have separation h much smaller than the
sphere radii. Contact charges q between spheres 1 and 2, and
spheres 1 and 4 are shown. Similar contact charges between
spheres 1 and 3 and spheres 2 and 3 are hidden from view.
(b) Same cluster with the charge Q free to migrate between
spheres. Spheres are at the same potential and there is no
contact charge (cf. Fig. 3). The regular tetrahedron treated
in Fig. 6 is obtained by moving sphere 4 so that it contacts
all the other spheres.

[11]), where α is a numerical constant. The resulting
electrostatic energy 1

2q
2/c(h) shown in Fig. 3 reflects this

singular behavior. This divergent contact charge compli-
cates the treatment of clusters of spheres with different
charges. Moore’s recent work on such clusters [7] shows
a non-regular dependence of the energy on separation.

Below we investigate the implications of the singular
contact charge for the electrostatic energy E(h) of clusters
of conducting spheres i at small separation h when the
total charge Q resides on only one sphere, as sketched in
Fig. 2. We contrast this energy with the simpler equipo-
tential case where the charge Q is allowed to pass freely
between the spheres. Then there is no contact charge,
and the electrostatic energy Ee(h) varies smoothly with
h. However in the case of interest where only one sphere
is charged, new behavior arises owing to the appearance
of contact charge. It is necessary to characterize this new
behavior in order to find the desired electrostatic energy
when the separations h are small. We find that the en-
ergy at contact remains finite and equal to Ee(0), but it
acquires a logarithmic correction in h:

E(h) −→ Ee(0) [1 +A/c(h) + · · ·], (1)

where the coefficient A is independent of h and depends
only on position of the extra charge in the cluster, on the
equipotential charges and on the topological connectivity
of the cluster.

We begin by reviewing the origin of the singular c(h)
in Sec. II. Next we define a capacitance matrix C(h)
that gives the proportionality between the charges Qi
and the potentials Vi in Sec. III. In Sec. IV we sepa-
rate the regular and singular contributions to C(h) to
obtain a parameterized expression for small h. In Sec. V
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FIG. 3. Coulomb energy E vs normalized separation for a
pair of conducting spheres with radius a = 27.8 nm, bearing
one quantum e of total charge. Radius was chosen to make
the self energy of a single sphere equal to the thermal energy
kBT at room temperature. Upper solid curve: all charge
on one sphere. Upper dashed curve: energy without charge
polarization. Binding energy of about 0.24 kBT is largely due
to the rapid decrease of E at very small separation. Middle
curves: the charge is equally divided between the two spheres.
Lower curves: equal and opposite charges on the two spheres.
A change of sphere radius a would change the energy scale in
proportion to 1/a.

we derive the form shown in Eq. (1), valid for asymp-
totically small h. In Sec. VI we discuss how this energy
is affected by extended versus compact cluster shapes.
Because the logarithmic singularity is weak, the regu-
lar contributions to C(h) become significant for realistic
contacts. In Sec. VII, we determine the leading regular
contributions for several simple clusters using a straight-
forward numerical procedure. Finally we comment on
experimental implications and tests.

II. MUTUAL CAPACITANCE OF TWO
SPHERES NEAR CONTACT

For completeness we recall the origin of the logarithmic
divergence of the mutual capacitance of two neighboring
spheres of radius a, bearing equal and opposite charges q.
The potential difference between the spheres is denoted
V . In the limit h/a� 1, the capacitance is dominated by
the adjacent sections of the two spheres. Since the cur-
vature there is very small on the scale of h, we may find
the capacitance from this region via the Derjaguin ap-
proximation [12]. This approximation treats the system
as a set of concentric annular ring capacitors, neglecting
the slopes of the surfaces within each ring. At lateral
distance x from the central axis, where the separation is
y(x), the electric field E is evidently V/y(x). Thus the
surface charge density σ(x) = E/(4π) = V/(4πy(x)). To
find the charge q, we integrate σ:

q =

∫
2π x dx σ(x). (2)
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We note that the local height y(x) is given by x2+(a−(y−
h)/2)2 = a2 so that 2x dx+2(a− (y−h)/2) (− 1

2 )dy = 0.
Then for a� y,

2x dx→ a dy, (3)

and

q →
∫ αa

h

2πV a dy/(4πy), (4)

where α a is some upper cutoff of thickness where the
Derjaguin approximation breaks down. Thus,

q → 1

2
V a

∫ αa

h

dy/y =
1

2
V a log(α a/h) (5)

as claimed. A change in the cutoff parameter α has
no affect on the singular amplitude; it only adds a con-
stant independent of h. Thus any choice of α is equally
valid for describing the singular behavior. We shall ar-
bitrarily take α = 1 below. The capacitance q/(2V ) →
1
4a log(a/h)+const. thus goes logarithmically to infinity
as h→ 0. We define the singular part of this capacitance
1
4a log(a/h) ≡ c(h) for use below.

From this capacitance we can infer the energy needed
to separate the contacting spheres with charges ±q. At
contact, the energy E(0) is given by 1

2q
2 (2V/q). Since

(q/2V ) → ∞, we have vanishingly small E at contact.
At infinite separation we have the full Coulomb self en-
ergy 2 1

2q
2/a. Thus with equal and opposite charges the

polarization of the spheres cancels virtually all the elec-
trostatic energy of the separated spheres. Fig. 3 shows
how this singularity influences the exact energy for this
case.

III. CAPACITANCE MATRIX OF A CLUSTER

We now extend our discussion of charges and potentials
to a cluster of n spheres labeled by i. We denote the set

of charges Qi by the vector ~Q. There is in general a linear

relationship between the charges ~Q and the potentials on

the spheres ~V of the form

~Q = C~V , (6)

where C is the n× n symmetric “capacitance matrix”.
In general the potentials Vi are not equal, so that

contacting spheres i and j acquire a singular contact
charge on sphere i at its contact with sphere j: Qij =
c(h)(Vi − Vj). There is in general additional nonsingu-
lar charge HijVj for any sphere j in the cluster, which
remains finite as h → 0. The total charge on i is then
given by

Qi =
∑
j

(c(h)(Vi − Vj) +HijVj)

= c(h)
∑
j(i)

Vi − c(h)
∑
j(i)

Vj +
∑
j

HijVj . (7)

Here the index j(i) runs over all the spheres contact-
ing sphere i. The two terms in c(h) can be expressed
compactly in terms of the symmetric “Laplace matrix”
L defined by Lij = −1 for all contacting spheres i and j
and Lii = −

∑
j 6=i Lij . Thus Lii is the number of spheres

contacting sphere i. Likewise, we denote H as the matrix
of Hij ’s. Thus

~Q = (c(h)L + H)~V (8)

and so C = c(h)L + H. In this language we may readily

express the electrostatic energy E for any charge state ~Q:

E(h) =
1

2
~Q · ~V =

1

2
~Q ·C(h)

−1 ~Q. (9)

Since the c(h) term depends only on potential differ-

ences, it vanishes whenever ~V is uniform with potential
Ve. This “equipotential state” is an important starting
point for our derivation. It is convenient to define a “uni-
form vector” ~u ≡ (1, 1, · · · , 1). Then in the equipotential

state the potentials have the form ~V ≡ Ve ~u. Since all
spheres have the same potential, there are no contact
charges, L~u = 0 and C~u = H~u. In general the charges
~Qe = Ve H~u for the equipotential cluster are not equal.

These charges ~Qe depend smoothly on h with no singu-

larity as h → 0. The total charge Q is given by ~Qe · ~u.
For a given total charge Q, the potential Ve is then given

by Q = ~u · ~Q = Ve ~u ·H~u. Evidently the equipotential
capacitance Ce is simply Q/Ve = ~u ·H~u.

It remains to determine how the singular c(h) affects

the ~V and E when the charges are different from ~Qe.
We note that this problem bears a strong formal resem-
blance to that of determining contact forces in a weakly
compressed mass of droplets [13].

IV. CLUSTER WITH IMPOSED CHARGES

When we specify the charges ~Q 6= ~Qe, the potentials
must become unequal. Then contact charges must ap-
pear, and the Laplacian matrix L becomes important.

First we note that L~V is nonzero for all nonuniform ~V
for the connected clusters considered here [14]. Thus
in the limit of c(h) → ∞, Eq. (8) implies that any

fixed, non-uniform ~V creates diverging charges ~Q. Only

if ~V becomes uniform can the charges be equal to the
given charges. That is, the potentials must approach the

equipotential case treated above: ~V → Ve~u, where Ve is
the equipotential voltage Q/(~u ·H~u). For finite c(h) we

may separate ~V into its limiting part Ve~u plus a (small)

remainder ~V ′. Likewise we may separate the charges ~Q

into the equipotential part ~Qe and a remainder ~Q′. In
this language Eq. (8) becomes

~Qe + ~Q′ = H(Ve~u+ ~V ′) + c(h) L(Ve~u+ ~V ′). (10)
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Noting that L~u = 0 and VeH~u = ~Qe, this yields an
implicit equation for the remainder potentials in terms
of the known remainder charge:

~Q′ = H~V ′ + c(h) L~V ′. (11)

The uniform part of this equation can be found by form-

ing the dot product with ~u. On the left side, ~u · ~Q′ van-

ishes by construction, since ~Qe contains the total charge.
On the right side the term in L vanishes giving

0 = ~u · ~Q′ = ~u ·H~V ′ + c(h) ~u · L~V ′ = ~Qe · ~V ′, (12)

i.e., ~Qe is orthogonal to ~V ′.

As a mapping from the space of ~V ′ to the space of
~Q′, L is invertible, since L~V ′ 6= 0 for all ~V ′. To avoid

confusion, we denote the L restricted to the ~Q′ and ~V ′

space as L̃. The operator L̃ sends a vector in the space
~V ′ orthogonal to ~Qe uniquely to a vector in the space ~Q′

orthogonal to ~u, and its inverse L̃−1 is understood as the

exact reverse. We note that ~V ′ is not orthogonal to ~u.
Further, Eq. (11) is invertible for sufficiently large c(h)
[15]:

~V ′ = (H + c(h)L̃)−1 ~Q′. (13)

We recall (Sec. II) that c(h) was only defined up to an
arbitrary additive constant. Here we see that this arbi-
trariness has no physical impact. If we add a constant
c0 to c(h) and subtract c0L̃ from H, the equation is un-
changed. Thus for any choice of c0 there is always a
regular H for which Eq. (13) is valid.

In terms of the small quantity 1/c(h), this may be
written

~V ′ =
1

c(h)

(
1 +

1

c(h)
L̃−1H

)−1
L̃−1 ~Q′. (14)

We note that as c → ∞ for fixed ~Q′, the factor in (· · ·)
becomes unity, and the correction ~V ′ becomes indepen-
dent of H. Thus in this limit the only part of H that

influences the full ~V is the equipotential part: H~u.

V. ELECTROSTATIC ENERGY

Given this expression for the potential vector ~V , we
may find the electrostatic energy E for a given charge

vector ~Q: E = 1
2

∑
iQiVi = 1

2
~Q · ~V . In terms of the

charge difference ~Q′ ≡ ~Q − ~Qe and potentials ~V ′, E can
be written using Eq. (14)

E =
1

2
( ~Qe + ~Q′) · (Ve~u+ ~V ′)

=
1

2
QVe +

1

2
Ve ~Q

′ · ~u+
1

2
~Qe · ~V ′ +

1

2
~Q′ · ~V ′. (15)

The first term is simply the equipotential energy Ee. As

noted above, the second term vanishes because ~Qe was

defined to have the total charge, leaving no net charge

in ~Q′. The third term was shown to vanish in Eq. (12).
Thus

E = Ee +
1

2
~Q′ · ~V ′

= Ee +
1

2

1

c(h)
~Q′ ·

(
1 +

1

c(h)
L̃−1H

)−1
L̃−1 ~Q′. (16)

In the limit where c(h) is so large that higher orders
in 1/c(h) can be neglected, this reduces to the form an-
nounced in Eq. (1)

E(h) = Ee +
1

2

1

c(h)
~Q′ · L̃−1 ~Q′. (17)

Once the equipotential charges are determined from H~u,
the entire dependence on the charge distribution is gov-
erned by the Laplacian matrix L, with no further depen-
dence on the geometry of the cluster. In practice for h
values as large as a few percent this lowest-order expan-
sion proves inaccurate for the examples studied in Sec.
VII. Thus the full matrix form of Eq. (16) is preferable.
This includes all the dependence on c(h) but neglects the
(presumed regular) dependence of H on h. Since these
are low-dimensional matrices, the needed operations are
straightforward.

Eq. (16) shows that one may isolate the singular part
of the electrostatic energy for a cluster of conducting
spheres close to contact, using nonsingular quantities
which can be readily computed numerically. The energy
at h = 0 but without conductance between spheres is the
same as for the equipotential case where conductance is
allowed. This means that the imposed distribution of
charge among the spheres has no effect on the energy

when h → 0. Conversely, if ~Q = ~Qe, then ~Q′ = 0 and
the energy obtained from Eq. (16) is independent of h.
The actual change of E with h then arises only from the
smooth and regular dependence of H on h, neglected in

our treatment. Finally, if ~Q 6= ~Qe, but the total charge
Q = 0, the leading Ee part of the energy vanishes, and
the entire energy goes to zero with h. In leading order,
the only aspect of the cluster that affects the energy is
its connectivity.

The correction in 1/c(h) in Eq. (17) is necessarily pos-

itive, since both L̃ and L̃−1 are positive definite [14]. As
seen from Fig. 3 above, this increase of energy can depend
strongly on h. In general it depends on which sphere is
charged.

VI. EFFECT OF CLUSTER GEOMETRY

A central question arising from this distinctive electro-
static effect is to understand how the shape of the cluster
affects its binding energy E(∞)−E(h). Clusters with the
smallest E(h) and the strongest binding are expected to
be more abundant. It is natural to ask whether E favors
compact clusters or extended ones. In the limit h → 0
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there is a clear preference for extended clusters. Here the
cluster is an equipotential and is energetically equivalent
to a single conducting object with the given total charge.
The favored shape is thus that with highest capacitance
to ground and largest spatial extent [11]. A cluster of
n spheres thus has the strongest binding when extended
out in a straight line.

However, as shown above, any departure from the h→
0 limit brings strong changes in E . The derivative of E
with h is infinite at h = 0. Thus even small nonzero h
can have a significant effect on the relative E of different
clusters. Appendix A argues that the binding penalty
from the 1/c(h) correction in Eq. (17) favors compact
clusters over extended ones for large n. Moreover, this
correction can be strong enough that the net binding is
stronger for more compact clusters.

VII. EXAMPLES

In this section we show explicitly how the two matri-
ces L and H lead to the h-dependent Coulomb energy E
for several clusters of interest. We first consider a reg-
ular tetrahedron, planar 4-sphere clusters and a regular
octahedron.

A. Determination of L

The Laplacian matrix L for the tetrahedron is imme-
diately apparent since each sphere is in contact with all
three others. Thus according to Sec. III,

L =

 3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 . (18)

For square, we may number the spheres in sequence
around the perimeter. Each sphere is then in contact
with its predecessor and its successor, with no other con-
tact:

L =

 2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 . (19)

If the square is collapsed into a rhombus, L remains un-
changed until two of the opposite spheres — e.g. 1 and
3 — make contact to form a diamond shape. Then

L =

 3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 . (20)

Likewise we can rotate sphere 2 out of the plane of the
other three. Again L remains unchanged until sphere 2
makes contact with Sphere 4.

In an octahedron all six spheres are equivalent and each
makes contact with four others, so that

L =


4 −1 −1 −1 −1 0
−1 4 −1 −1 0 −1
−1 −1 4 0 −1 −1
−1 −1 0 4 −1 −1
−1 0 −1 −1 4 −1
0 −1 −1 −1 −1 4

 . (21)

B. Numerical determination of H

Eq. (16) requires us to determine the regular part of
C, namely H. We perform this determination by numer-
ically computing the full capacitance matrix C for some
small, nonzero h and for the equipotential case. The

equipotential case gives ~Qe and thus allows us to deter-

mine ~Q′ for a given ~Q. Then we may find H using Eq. (8).
The H thus obtained depends on the separation chosen.
Our supposition that H is regular implies that this H(h)
converges smoothly to an asymptotic value as h → 0.
Our numerical results provide a test of this supposition.

Consider a cluster configuration with specified charge

vector ~Q. The actual surface charge distribution min-
imizes the total electrostatic energy. To use this fact,
we discretize sphere surfaces into N small patches uni-
formly distributed over each sphere and denote the patch
charges by σi,α. Here i = 1, 2, · · ·n labels spheres and
α = 1, 2, · · ·N labels the patches. The energy for given
{σi,α} then reads E = 1

2σ · G σ = 1
2σi,α Gi,α;j,β σj,β ,

where

Gi,α;j,β =
∣∣ri,α − rj,β∣∣−1 (22)

is the Coulomb kernel between patches (i, α) and (j, β),
and ri,α is the vector position of the patch i, α. A diag-
onal entry of G evidently represents the Coulomb energy
of a patch in isolation. This energy depends on the size
and shape of the patch. The contribution of this self
energy to the total energy becomes negligible when the
number of patches N becomes sufficiently large. In our
calculation we have taken all patches to have a single self
energy, adjusted to reproduce the known energy of an
isolated sphere.

To minimize the energy subject to the constraints of
total charges on each sphere, we introduce a projection
matrix P of dimension n × nN , that maps charges from
the space of patches to the space of spheres. The en-
tries Pik are non-vanishing and set to 1 only if the kth
patch belongs to the ith sphere. Then the constraints on

charge distributions are P σ = ~Q. We note that P and
its transpose PT obey the relations P PT = N1n and
PT P = 1nN , where 1n and 1nN are identity matrices of
dimensions n and nN respectively.

We implement the constraint on ~Q = Pσ by adding a
Lagrange multiplier energy λi

∑
α σi,α for each sphere i.

Defining ~Λ = {λ1, λ2, · · ·λn}, this amounts to minimizing
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(a)

(b)

FIG. 4. Capacitance coefficients C11 (a) and C12 (b) for a reg-
ular tetrahedron vs normalized separation h/a, determined as
described in the text. The other eight elements of C are deter-
mined by symmetry. Insets show the full capacitance, showing
a strong dependence at small h due to contact charge. Main
graphs show the regular parts H11 and H12 determined us-
ing Eq. (8). Segmented lines connect the calculated values
at different levels of discretization N : blue long dashes for
N = 1000, orange short dashes for N = 2000 and green dot-
dashes for N = 4000. Irregular dependence for smallest h is
attributed to discretization errors and improves for finer dis-
cretization. The strong h dependence of the inset has been
removed and the different discretizations give a consistent ex-
trapolation to h = 0.

1
2σ ·G σ− ~Λ · ~Q = 1

2σ ·G σ− ~Λ ·Pσ. Setting the gradient
∂/∂σi,α equal to zero yields the implicit equation for the

minimizing σ, denoted σ∗, in terms of ~Λ:

Gσ∗ = PT~Λ . (23)

Now the minimizing energy E∗ = 1
2σ
∗ ·G σ∗ can be writ-

ten as

E∗ =
1

2
σ∗ · PT~Λ =

1

2
(Pσ∗) · ~Λ =

1

2
~Q · ~Λ . (24)

separation 0 d
√

2 d
√

3 d Ce

dimer ln 2 + γ/2 −γ/2 2 ln 2

trimer-π/2 0.870 −0.193 −0.249 1.671

1.036a

trimer-π/3 0.781 −0.121 1.616

square 0.876 −0.158 −0.101 1.835

rhombus 0.783b −0.103d −0.062 1.823

0.567c 0.036e

tetrahedron 0.492 −0.017 1.767

octahedron 0.228 0.033 −0.024 2.024

cubic 0.703 −0.072 −0.061 −0.016 2.308

icosahedronf −0.019 −0.060 2.509

dodecahedrong 0.774 −0.091 3.497

TABLE I. Elements of capacitance matrix H extrapolated to
h = 0, tabulated by distance between spheres, measured in
terms of the sphere diameter d in units of the capacitance of
a single sphere. γ = 0.577 is the Euler gamma number. Last
column shows the equipotential capacitance Ce of the cluster.
Notes: a: self energy of the sphere with one contact. b: self
energy of the sphere at the pointed site. c: self energy of the
sphere at the blunt site. d: interaction between the pointed
and blunt sites. e: interaction between the two blunt sites. f :
for icosahedron, the entries needed for distances 1.6 d and 1.9 d
are −0.013 and −0.007 respectively. g: for dodecahedron, the
entries needed for distances 1.6 d, 2.3 d, 2.6 d, and 2.8 d are
−0.044, −0.007, −0.005, and −0.004 respectively.

From this it is clear that ~Λ is simply the set of potentials

on the spheres ~V . We may obtain ~Q in terms of ~Λ using
Eq. (23)

~Q = Pσ∗ = PG−1PT~Λ . (25)

Using ~Λ = ~V and simplifying,

~Q = Pσ∗ = (PGPT)−1~V . (26)

Evidently the capacitance matrix C is the matrix
(PGPT)−1. Thus to determine C(h) it suffices to com-
pute G, project it to form the n × n matrix PGPT, and
invert it. H is then calculated by subtracting c(h)L from
this C.

Figure 4 illustrates the results of this procedure for a
regular tetrahedron. Here C was computed for several
small values of h. The smallest h’s were comparable to
the separation between the patches, so that discretiza-
tion errors were significant. Beyond this h C showed
the expected logarithmic singularity as in Fig. 3. How-
ever, once c(h)L was subtracted to form H, the h depen-
dence was gradual, smooth, and consistent for different
discretizations. Thus the expectation of smooth H was
confirmed.

We found similar confirmation for theHij of other clus-
ters. The characteristic entries of H at h = 0 for all
clusters considered are tabulated in Table I. Only the
independent entries are shown. The full capacitance ma-
trix can be constructed by considering symmetry. For
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FIG. 5. System size dependence of equipotential capaci-
tance energy Ee for a single sphere, a dimer, equilateral tri-
angle, a tetrahedron, an octahedron, a cube, an icosahedron
and a dodecahedron. Upper curve: E = (2/n)1/3/(2 ln(2)),
the energy for compact configurations. Lower curve: E =
ln(2na/r0)/(n ln(2) ln(2a/r0)), the energy of cylinder [16] of
the same volume, with length L = 2na and radius r0 =
0.816 a.

all clusters considered, the agreements are excellent for
0 ≤ h/a ≤ 0.05.

C. Cluster energies

Table I also includes values for the equipotential capac-
itance Ce = ~u ·H~u, which gives the h→ 0 cluster binding
energies, Ee = 1

2Q
2/Ce. This energy depends on the clus-

ter size and shape but not at all on the charge placement.
As anticipated in Sec. VI, we found that Ee increases with
the number of spheres n, as shown in Fig. 5. For com-
pact clusters, the data scale with the system size as n−1/3

while for extended clusters Ee ∼ lnn/n. This expected
behavior is discussed in Appendix A.

Examples of energies E found using H from the pre-
vious section are shown in Fig. (6), for a tetrahedron
and a rhombus. For the rhombus case, two sets of com-
parisons were made, one having a charge placed on the
sphere at pointed position and one at the blunt position.
The discrepancy for h/a ≥ 0.05 is apparent and can be
attributed to the weak h-dependence of H.

The results in Fig. 5 show that the binding energy,
attained at h = 0, for a cluster with extended struc-
ture is always lower than that of compact ones, which
suggests that a typical cluster configuration is always a
linear string. However, the h dependences of compact
and extended configurations are different. Since contacts
can only lower the energy, the contact-energy correction
tends to favor compact clusters with the most contacts.
Further, for large clusters with a single charged sphere
(Appendix A) the contact energy leads to a lower net en-
ergy for compact clusters versus extended clusters. Fig. 7
compares the energies between compact and extended
configurations for cluster of 4 and 6 spheres. In both

(a)

(b)

FIG. 6. (a) Energy of a tetrahedron cluster with one charge
placed on one of the spheres. (b) Energy of a rhombus clus-
ter with the charge placed on the pointed (solid) and blunt
(dashed) corners.

cases the compact configuration is always energetically
favorable for the visible range of h.

Since the relevant Laplacian matrix L̃ of a connected
cluster is positive definite [14], moving spheres away from
each other always raises the energy, resulting in a loga-
rithmically attractive potential well. Consequently, we
expect any types of clusters to be stable at sufficiently
small separation.

VIII. DISCUSSION

The preceding sections have explored a peculiar type
of Coulomb interaction arising from the charging con-
straints encountered at the spatial scales of nanoparticles.
Below we note the limitations of our work and suggest
experimental situations where the interaction discussed
here might nevertheless be relevant.

In order to demonstrate the specific features our mech-
anism, we have considered the simplest example that
shows the necessary features. First, a cluster of spheres
like those considered here has charge polarization extend-
ing beyond the induced dipoles normally considered. Sec-
ond, any excess charge on the cluster is dominated by
single electron charges residing on one or another of the
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(a)

(b)

FIG. 7. Energies of tetrahedron and octahedron clusters and
their linear string correspondence, with one charged sphere.
(a) Tetrahedron (solid) and string (dashed); upper curve:
charge is on the sphere at the end of string; middle curve:
charge is on the second sphere. (b) Octahedron (solid) and
string (dashed); top curve: end sphere is charged; second and
third curves from top: second and third from end sphere is
charged.

spheres. Given these two features, one should observe
the singular dependence on separation h found above.
Our main aim has been to show the form of this sin-
gularity and how its dependence on separation may be
understood.

The relative electrostatic energies of different clusters
are important for determining their relative abundance
and stability. For real experimental situations the rela-
tive abundance of actual nanocluster shapes doubtless
depends strongly on several other factors as well. In
real clusters, it is likely too simplistic to assume a single
charge on a particular sphere; a number of charge dis-
tributions likely have significant probability. If a single
charge is present, it may reside on any sphere of a cluster
that doesn’t require an extra energy much higher than
kBT . Thus in practice one may need to consider an av-
erage over several charge positions in order to determine
the stability of a given cluster shape.

Our calculations have concentrated on the effects of
the logarithmic singularity, important when the separa-
tion h is much smaller than the sphere radii. In cases
where more accuracy is desired for larger separations,
our scheme can be naturally extended by replacing the

regular part H by a Taylor series H0 + hH1 + · · ·.

One might expect that this attractive mechanism
should extend beyond conducting spheres to dielectric
spheres, especially if the dielectric contrast is large. How-
ever, the concentration of charge near a contact is qual-
itatively weaker for dielectrics than for conductors. For
dielectrics in an external field, the charge density remains
finite at contact; it does not diverge as in the conducting
case.

Though we have only treated the specific case of clus-
ters of spheres of equal size, the effects explored here
apply generally to conductors. When any two smoothly
curving conductors approach each other, the Derjaguin
argument of Sec. II implies a logarithmically diverging
mutual capacitance, whose c(h) depends only on the
mean curvatures of the two adjacent surfaces.

In real materials a net charge on a cluster is only cre-
ated in combination with a countercharge elsewhere. In
practice these countercharges may lie close to the cluster
and thus modify the coulomb energy significantly. Thus
our results only apply when the screening length due to
external charge is larger than the cluster.

Naturally real clusters like those of Fig. 1 experience
other forms of interaction unrelated to net charge on the
cluster. The organic coronas [1] used to to stabilize the
particles exert interparticle forces. So do steric interac-
tions with other neighboring nanoparticles. Dispersion
forces and solvent-specific chemical interactions are also
present. In order to make reliable predictions of cluster
shapes, one would need to add these conventional in-
teractions to the charge-induced interactions considered
here.

Experimental consequences of our clustering mecha-
nism could potentially be found in the binary lattices
like Fig. 1 that motivated our study. If our mechanism is
important, one expects (a) cluster shapes with lower elec-
trostatic energy as calculated above should be relatively
more prevalent, and (b) particles with a thicker ligand
layer should be less strongly bound but have greater pref-
erence for specific charge sites. Still, the number of com-
peting effects that determine the specific cluster shapes
precludes any decisive predictions.

Other simpler systems give a brighter prospect for de-
cisive predictions. One such system is a dilute dispersion
of nanoparticles in a nonpolar solvent [17]. One may in-
duce charge separation by adding large counterions to the
dispersion [18]. Then any nanoparticle with a net charge
will attract neutral nanoparticles via the mechanism de-
scribed above. If the counterions are sufficiently large
and distant, their effects can be made minor. Then one
expects to observe clusters with relative abundance dic-
tated in thermal equilibrium by the electrostatic binding
energies described above.
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IX. CONCLUSION

We have shown that the electrostatic energy of a clus-
ter of spherical conductors has a novel form when one
conductor is charged and their separations are small. In
the limit of small separations the energy is finite, but
the corrections to this limit are logarithmically singular.
Thus for real clusters where the separation is nonzero, it
is important to know the singular contribution. Both the
limiting energy and the corrections can be expressed in
terms of non-singular operations. It appears from our nu-
merical examples that these small separations can have
a significant impact on the binding of the clusters. In
certain situations as noted above, this distinctive form of
binding could be significant in determining the prevalent
cluster shapes.
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Appendix A: Shape-dependence of cluster energy

In this appendix we estimate how the Coulomb energy
of a cluster depends on its overall shape: compact vs
extended. We consider a large cluster of n spheres un-
der two extremes of compactness. On the one hand we
consider the cluster of least compactness, where all the
spheres are extended along a one-dimensional line. On
the other hand, we consider the state of maximal com-
pactness in which the spheres form a spherical aggregate
of maximum density. As noted in the main text, the
equipotential part of the energy favors extended struc-
tures. Here we focus on the leading logarithmic correc-
tion to the binding energy E(h) from Eq. (17). We denote
it as E ′,

E ′ =
1

c(h)
~Q′ · L̃−1 ~Q′.

Our interest is in the case where the charge ~Q is concen-
trated in a single sphere.

In both of these clusters, one may use a continuum
approach to characterize L. The L has a simple inter-
pretation in terms of a quantum system. In this system

one replaces each sphere by a site and each contact by a
connecting junction. The L matrix is then the Hamilto-
nian of a quantum particle in this system and its eigen-
states are the energy levels. For a homogeneous solid
these eigenstates are the well-known tight-binding states

of solid state physics [19]. The n eigenstates ~k are nor-
malized plane waves of wavevector k and eigenvalues of
order k2. Using this fact we may write E ′ as

E ′ ∼ 1

c(h)

∑
k

~Q′ · ~k 1

k2
~k · ~Q′ .

Here sum goes over the n distinct wave states compatible

with the boundary conditions. The vectors ~Q′ are con-
structed to have vanishing projection on the k = 0 state,
so k = 0 is omitted from this sum.

To compute the sum, we need to know the dot prod-

ucts ~Q′ · ~k. The ~Q′ is the sum of two parts: ~Q and ~Qe.

We first consider the ~Q part, which vanishes except on
a particular sphere. It is the discrete analog of a delta
function in space. Accordingly it has an equal dot prod-
uct onto all the k eigenstates, each of order n−1/2. Thus
we may treat these dot products as constants in the sum.
We may also replace the

∑
k by the integral Ld

∫
ddk for a

d-dimensional cluster of linear size L. Then E ′ simplifies
to

E ′ ∼ 1

c(h)
(~k · ~Q)2 Ld

(∫ kmax

kmin

1

k2
kd−1dk

)
.

Here kmin ∼ L−1 and kmax ∼ L0.
For a one-dimensional cluster the integral is dominated

by the lower limit and

E ′ ∼ 1

c(h)
(~k · ~Q)2 L (L) .

Since (~k · ~Q)2 ∼ 1/n and L ∼ n, we have E ′ ∼ n.
For a three-dimensional cluster the integral is domi-

nated by the upper limit and

E ′ ∼ 1

c(h)
(~k · ~Q)2 L3 .

Using (~k · ~Q)2 ∼ 1/n and L ∼ n1/3, we conclude E ′ ∼ n0.

We now consider the effect of the ~Qe part of ~Q′. For

both clusters ~Qe is concentrated at the outer boundary.
It thus has significant Fourier components at large k.
However, this charge concentration is in any case qual-
itatively weaker than the complete concentration found

in ~Q. Accordingly we expect the ~Qe part of ~Q′ to have a
minor effect and the scaling estimates for E ′ to hold for

the full ~Q′ as for the ~Q.
The foregoing estimates indicate a qualitative differ-

ence in E ′ in the two cases. This positive energy diverges
with n for the extended cluster but remains finite for
the compact cluster. It disfavors the extended cluster.
This contrasts with the equipotential part of E , which
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favors extended clusters. This equipotential energy Ee
is of order log n/n for extended clusters and of order

1/L ∼ n−1/3 for compact clusters. The total energy
E = Ee + E ′ thus favors compact clusters, in contrast
to the “leading” Ee alone.
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