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Human immunodeficiency virus (HIV) evolves with extraordinary rapidity. However, its evolution
is constrained by interactions between mutations in its fitness landscape. Here we show that an
Ising model describing these interactions, inferred from sequence data obtained prior to the use
of antiretroviral drugs, can be used to identify clinically significant sites of resistance mutations.
Successful predictions of the resistance sites indicate progress in the development of successful models
of real viral evolution at the single residue level, and suggest that our approach may be applied to
help design new therapies that are less prone to failure even where resistance data are not yet
available.

I. INTRODUCTION

Under selective pressure from sub-optimal an-
tiretroviral treatment regimens, HIV has been ob-
served to evolve drug resistance within weeks of
treatment initiation [1]. While modern combina-
tion therapies have greatly reduced the rate of evo-
lution of drug resistance, resistant strains are found
in greater than 14% of newly infected patients in
the United States [2, 3]. The rapid evolution of
resistance is congruent with the overall observation
that HIV evolution is remarkably fast, with studies
indicating that in the absence of treatment a sin-
gle patient’s HIV infection will explore every pos-
sible point mutation many times daily [4–6]. How-
ever, empirical studies of viral sequence data indi-
cate that HIV evolution is structured and exhibits
reproducible patterns [1, 7].

The existence of significant correlations in the evo-
lution of HIV suggests that sequence data can be
used to parameterize statistical mechanical models
of HIV evolution that predict important features of
its evolution, including the evolution of drug resis-
tance. Previous researchers have used a variety of
approaches to predict HIV fitness and aspects of its
evolution using viral sequence data on its own [7, 8],
and with additional phenotypic properties such as
drug resistance and replicative capacity [9]. Oth-
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ers have addressed the problem of predicting the
sites of drug resistance mutations by detecting sites
under positive selection during treatment [10], su-
pervised learning [11], and structural modeling of
protein-drug interactions [11, 12].

Here we use HIV sequence data from 757 unique
patients, obtained prior to the widespread clini-
cal use of protease inhibitors, to parameterize a
spin representation of the standard Eigen model
of quasi-species evolution [13–15] (see Appendix A
for details). This data was obtained from the Los
Alamos National Laboratory HIV sequence database
(www.hiv.lanl.gov). We then use the inferred model
to predict sets of sites in HIV protease where joint
mutations are unlikely to significantly impair viral
fitness. We hypothesize that such sites are more
likely to be sites of clinically relevant drug resis-
tance mutations because resistance mutations that
severely impair viral replication are unlikely to be
selected. The exclusion of sequence data obtained
after the clinical use of antiretroviral drugs limits of
the influence of selection for drug resistance, which
may be present even in sequences obtained from
drug-näıve individuals (for example due to transmit-
ted drug resistance), and focuses instead on intrinsic
fitness constraints. Thus, our successful identifica-
tion of major drug resistance sites (defined in [16])
here suggests that our techniques could be applied to
predict HIV evolution in response to new treatment
regimens or vaccine candidates.

We note however that this identification of resis-
tance sites is “indirect” in the sense that only infor-
mation about fitness is used. Thus, these predictions



are not specific to a particular drug, and would be
most useful in cases when resistance information is
unknown. In order to make highly accurate, drug-
specific predictions of resistance, additional infor-
mation would be required to narrow down the list
of potential drug resistance sites identified based on
fitness constraints to the ones that are most relevant
for a particular case.

II. FITNESS AND PREVALENCE
LANDSCAPES FROM THE EIGEN MODEL

We begin by inferring an estimate of the prob-
ability distribution of mutations in the viral pro-
tease from sequence data. Protease amino acid se-
quences are first translated into a binary form, with
the amino acid at each site i encoded by si ∈ {0, 1},
where 0 (1) denotes a wild type (mutant) amino acid
at that site. Full sequences are thus represented as
vectors s = (s1, s2, .., sL), with L = 99 for protease.
We assume that the joint distribution of mutations is
adequately captured by the moments 〈sisj〉 and find
the maximum entropy distribution consistent with
the observed moments (note that because s2i = si,
〈si〉 = 〈s2i 〉 all first moments are included) [8, 17].
The resulting probability distribution takes the form

P (s) = Z−1 exp(−E(s))

E(s) =

L∑
i<j

Jijsisj +

L∑
i=1

hisi ,
(1)

where Z is the partition function. The parameters
{Jij}, {hi}must be chosen such that the distribution
P (s) reproduces the observed moments 〈sisj〉. Here
the {Jij} can be thought of as capturing direct in-
teractions between sites, disentangled from the net-
work of correlations that include indirect effects me-
diated through intermediate sites [18–20]. Similar
maximum entropy approaches have been fruitfully
applied to analyze patterns of neural activity and to
predict contact residues in protein families [19–22].
The description of the selective cluster expansion al-
gorithm used to infer E(s) is given in [18, 23]. Al-
though only the pair correlations are constrained in
Eq. 1, the inferred Ising model accurately predicts
higher order correlations as well.

The form of the probability distribution gives
rise to the notion of a “prevalence landscape” that
expresses the relative frequencies of protease se-
quences. Previous work has shown that the inferred
prevalences of sequences from HIV Gag proteins
correlate with their replicative capacities, another
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FIG. 1. The coupling−J between a pair of sites increases
sharply as the fitness of the double mutant approaches
the fitness of the wild type sequence. (a) The peak in

−J occurs at the level crossing, where −Jf = hf
1 + hf

2 .

If −Jf becomes larger than hf
1 + hf

2 , so that the double
mutant has higher fitness than the wild type sequence
(shaded region), the corresponding coupling −J in the
prevalence landscape decreases. (b) Log fitness of the
wild type strain and the double mutant strain as a func-
tion of Jf . The log fitnesses intersect at the point where
−J is maximized.

proxy for fitness [8, 24], in line with the intuition
that fitter strains should be more prevalent. How-
ever, prevalence is affected by many factors other
than fitness, including epidemiological dynamics, re-
combination, and demographic noise, which compli-
cate this association [25–27].

Insight into the relation between fitness and preva-
lence can be obtained through Eigen’s model of evo-
lution [13]. This model assumes an infinite popula-
tion of viruses, and accounts for mutation and selec-
tion, but neglects many of the important effects de-
scribed above. However, these simplifications allow
for the relationship between fitness and prevalence
to be studied using methods adopted from statisti-
cal physics [14, 15]. Following Eigen’s model, the
prevalence can also be written as the outcome of
evolutionary dynamics over a large number of gen-
erations T , represented as a series of coupled Ising
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spin systems [14]

e−E(sT ) ∝
∑
{st}T−1

t=1

exp

[
T−1∑
t=1

(K(2st − 1)(2st+1 − 1)− F (st))

]

F (s) =

L∑
i<j

Jfijsisj +

L∑
i=1

hfi si,

(2)

where K is related to the per site per generation
mutation rate µ by K = 1

2 log( 1−µ
µ ). Here F (s)

is minus the log fitness of sequence s and will be
referred to as the fitness landscape. The super-
scripts t ∈ {1, 2 . . . , T} on the sequence vectors re-
fer to discrete generations. The superscript f on

the parameters {hfi } and {Jfij} indicates that these
parameters are taken from the fitness landscape in
Eq. 2 (assumed to have the same functional form
as Eq. 1), rather than the prevalence landscape of
Eq. 1. The evolutionary dynamics described here
applies to evolution within a population of hosts.
Equations describing within host evolution would
require accounting for differing immune pressure be-
tween individuals [15], though protease is not com-
paratively immunogenic [28]. Given that tens of mil-
lions of humans have been infected with HIV over
the course of the epidemic, and that both the num-
ber of infected cells and their rate of turnover are
high [29], the limit of large population size and long
sampling times that we consider here is not unrea-
sonable.

Ideally, one would like to invert Eq. 2 to solve for
F (s) in terms of E(s), because E(s) is inferred di-
rectly from data. In principle, this could be achieved
by matching the distribution of sequences at the final
generation T in the Ising representation of Eigen’s
model with the prevalence landscape, given by Eq. 1.
This is a challenging problem in general, however,
approximate results can be obtained by studying a
two site system, which can be solved by straightfor-
ward transfer matrix methods. While network ef-
fects influence the inferred couplings between sites,
this simple approximation provides useful intuition.
Furthermore, network effectsexert a weaker influence
on the 〈si〉, as most of their variance is explained by
the single site hi in Eq. 1.

Solving the two site version of Eq. 2 shows that
the hf are difficult to reliably infer, because the mu-
tation coupling K is large enough (K ' − log(µ)
and µ ' O(10−4), using the microscopic mutation
rate [30]) that very small hf lead to large h in the
prevalence landscape (see Appendix B for further de-
tails). However, large values of J in the prevalence

landscape have a simple interpretation in the fitness
landscape as couplings between pairs of sites where
mutating both sites leads to only a small change in
fitness compared to wild type (Fig. 1). In this case
the double mutant could become advantageous with
only a small increase in the fitness of one of the
mutations, as might occur when drugs are added
to the environment, for example. Mathematically,

this occurs as −Jf approaches hf1 + hf2 . We refer to
the point in parameter space where the coupling be-
tween sites allows the double mutant strain to have
equal fitness to the wild type as a level crossing.

III. RESISTANCE MUTATIONS IN
PROTEASE

To go from the interpretation of large values of
−J in the prevalence landscape as indicators of
nearby level crossings to predictions of resistance
mutations requires elucidating a relationship be-
tween level crossings and resistance mutations. A
rigorous argument relating resistance mutations to
the fitness landscape would require detailed knowl-
edge of the drug, its binding sites, the structure
of the target protein, and other details. However,
generically we expect that when the environment in
which HIV replicates changes due to the initiation of
drug therapy, HIV must mutate in ways that abro-
gate drug binding, while at the same time preserving
protein function. Large couplings −J connect sites
that are likely to be able to co-mutate with limited
costs to fitness, even if the associated individual mu-
tations are costly. Such sets of sites are therefore
more likely to be associated with resistance. Here
our assumption is that resistance cannot be achieved
through selectively neutral mutations at single sites,
in which case drug treatment would likely be ineffec-
tive. Indeed, this appears to be the typical case for
HIV protease, where resistance mutations are usu-
ally deleterious [31].

To predict the sites of resistance mutations
based on the above considerations, we consider the
strongest couplings −Jij associated with each site i.
Using the largest coupling values we then assign each
site a rank r ∈ {1, . . . , 99} from strongest to weakest.
We predict that the sites with the strongest interac-
tions (i.e. the highest ranked sites) are most likely
to be associated with drug resistance. Focusing on
the highest ranked sites, and the strong couplings
between them, can be seen as a process of pruning
weaker interactions from the network. Three pruned
versions of the network of mutational interactions in
HIV protease are shown in Fig. 2. However, note
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that without any drug-specific information, we can-
not specify which sites in a strongly-coupled pair
should be associated with resistance.

This model can be cast in the form of a classifica-
tion rule by predicting sites ranked at or above some
threshold rank r to be sites of drug resistance mu-
tations, and sites of lower rank to be unassociated
with resistance. To test the model’s performance,
we take the set of resistance sites to be those clas-
sified as sites of major resistance mutations by the
Stanford HIV drug resistance database (sites 30, 32,
33, 46, 47, 48, 50, 54, 76, 82, 84, 88, and 90) [16].
As higher ranked sites are selected, the proportion
of sites that are associated with resistance should
increase. This can be measured using positive pre-
diction value (PPV) and negative prediction value
(NPV), defined as

P (true = resistance|predicted = resistance) ,

P (true = non-resistance|predicted = non-resistance) .

These are shown in Fig. 3 compared to benchmarks
for a random classifier, and demonstrate that the
performance of the classification rule is substantially
better than chance for higher ranked sites. Exami-
nation of the true positive rate (TPR) and false pos-
itive rate (FPR),

P (predicted = resistance|true = resistance) ,

P (predicted = resistance|true = non-resistance) ,

shown in Fig. 3, confirm that TPR>FPR, indicating
performance better than chance. We also note that
the fraction of the strongest interactions which link
at least one major drug resistance site is extremely
high, as can be seen in Fig. 2 (further details in
Appendix D).

To examine these results using classical statisti-
cal significance testing, we used the hyper-geometric
distribution to compute p-values for the null model
of randomly selecting the number of sites at or above
each rank threshold and obtaining at least as many
resistance mutations as found using the ranking clas-
sifier (see Appendix C). The predictions have p-
values < 0.05 for essentially all rank thresholds from
r = 3− 50, which comports with the argument that
strongly coupled sites are more likely to be sites of
resistance mutations and supports the significance
of the predictions of resistance among higher ranked
sites. The lack of significance for the highest ranked
pair is a consequence of the very small number of
sites. Further tests also show a significant difference
between the rank of resistance sites versus nonresis-
tance sites (Mann-Whitney U = 343, p = 0.0255),

another way to test the utility of interactions in pre-
dicting resistance sites. We also tested related clas-
sification rules constructed using direct information
[19] and correlation matrices, with no improvement
in performance. All methods based on pairwise in-
teractions outperformed methods ranking sites ac-
cording to their mutability, an intuitive result given
that most resistance mutations in protease are dele-
terious (see Appendix D for details).

IV. DRUG COMBINATIONS AND
BIOPHYSICAL INFORMATION

As virological failure occurs in patients under-
going treatment with protease inhibitors, new pro-
tease inhibitor drugs are administered [2]. To fur-
ther assess the validity of our predictions, we used
the model to infer pairs of protease inhibitors where
multi-drug resistance should be unlikely to evolve.
We reasoned that resistance should be less likely if
1) a pair of drugs share few resistance mutations in
common, and if 2) fitness constraints make it dif-
ficult for the virus to tolerate mutations conferring
resistance for both drugs simultaneously. The first
condition can easily be checked by simply counting
the number of common resistance mutations for each
pair of drugs (see [16]). Information about the sec-
ond condition can be obtained through the inferred
couplings in our model. In the same way that large
negative values of J indicate sites that can readily
mutate together, positive values of J indicate sites
where double mutations are suppressed. Thus, the
interactions between the resistance mutations that
are common to both drugs should be as positive as
possible. We found three combinations (atazanivir-
indinavir, atazanavir-fosamprenavir, and darunavir-
nelfanavir) that are optimal for both of these crite-
ria in the Pareto sense: improvement in one crite-
rion necessitates a reduction in the other criterion.
Two of these, along with both near-optimal pairs
(atazanavir-darunavir and atazanavir-lopinavir), in-
corporate atazanavir, consistent with clinical knowl-
edge that the resistance profile of atazanavir appears
distinct from other protease inhibitors [32].

The network of large interactions also captures im-
portant biophysical information. As a first example,
the third strongest coupling is between sites 82 and
54. Site 82 is frequently the first resistance muta-
tion site observed after the initiation of protease in-
hibitor treatment, and is usually followed by muta-
tion at site 54 [1]. Some couplings may also be asso-
ciated with stabilizing mutations, which compensate
for loss of fitness due to a destabilizing mutation. A
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FIG. 2. Stronger couplings are more likely to link sites of major resistance mutations. Here we show the network of
interactions between the top r ranked sites, from r = 40 (left) to r = 10 (right). Only the strongest couplings, those
meeting or exceeding the largest coupling for the lowest ranked site, are displayed. Interactions linking at least one
major resistance site are darkly shaded, links between non-resistance sites are lightly shaded.
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rank
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PPV
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FIG. 3. Top-ranked sites, based on the maximum
strength of their couplings, are far more likely to be sites
of major drug resistance mutations than would be ex-
pected by chance. (a) Negative prediction value (NPV,
upper curves) and positive prediction value (PPV, lower
curves) and for the classifier compared to the benchmark
of random guessing, as a function of rank. Collections
of the highest ranked sites are clearly associated with
improved PPV. (b) False positive rate (FPR) and true
positive rate (TPR) as functions of rank. TPR > FPR
indicates performance better than chance.

recent biophysical study examined the melting tem-
peratures of HIV protease with a major resistance
mutation at site 84 [31]. The study showed that on
its own, the major resistance mutation reduced the
stability of HIV protease considerably. When the
mutation at site 84 is accompanied by one of a set
of three known accessory mutations at sites 10, 63,
and 71, stability is restored, or even enhanced. Cou-
plings between sites 10 and 84, and sites 63 and 84,
are strong, in the top 7% of all couplings (though

weaker than the couplings shown in Fig. 2, which
are within the top 1%). The coupling between sites
71 and 84 is slightly weaker, but still in the top 13%
of all couplings. This suggests that links between
destabilizing mutations and those that improve pro-
tein stability may be captured by the network of
interactions inferred from sequence data.

V. CONCLUSIONS

Our results show that from sequence information
alone, much of the evolutionary response of HIV pro-
tease to inhibitors can be reproduced. While in the
case of protease inhibitors, the answer was known,
the successful retrodictions indicate that our under-
standing of HIV evolution is becoming predictive at
the level of individual residue sites. We anticipate
that the methods developed above will contribute to
the development of predictive theories of viral evo-
lution and to the development of new treatments,
such as integrase inhibitors [33], where resistance is
not nearly as well characterized as in protease.
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Appendix A: Sequence data and correlations

We downloaded a multiple sequence alignment
(MSA) for the HIV-1 clade B Protease protein from
the Los Alamos National Laboratory HIV database
(http://www.hiv.lanl.gov). Sequences labeled by
the database as “problematic” were excluded. To
minimize evolved drug resistance [3, 34], we only se-
lected sequences obtained in the year 1996 or ear-
lier, and we removed sequences from trial studies of
protease inhibitors as described in the main text,
yielding a total of 6701 sequences from 757 unique
patients. After downloading, the MSA data was pro-
cessed to remove insertions relative to the HXB2 ref-
erence sequence [35]. Ambiguous amino acids were
then imputed with simple mean imputation.

The binarized MSA data consists of sequences
from B patients, which we label k = 1, . . . , B. Let
us call the number of sequences from the kth patient
as Bk, and let us write the ath sequence from pa-

tient k as s(k,a) = {s(k,a)1 , . . . , s
(k,a)
99 }, with the single

site variables si ∈ {0, 1}. To obtain a represenative
sample of the population we averaged over multiple
sequences from the same patient, so the one- and
two-point correlations we obtain from the data are
then

pi =
1

B

B∑
k=1

[
1

Bk

Bk∑
a=1

s
(k,a)
i

]
,

pij =
1

B

B∑
k=1

[
1

Bk

Bk∑
a=1

s
(k,a)
i s

(k,a)
j

]
.

(A1)

The one-point correlations pi measure the frequency
of mutations at each position i, and the two-point
correlations pij measure the frequency of pairs of
mutations occuring simultaneously at two positions
i, j.

Appendix B: Relationship between hf , Jf and
h, J

In general, it is difficult to show the precise rela-
tionship between the underlying hf , Jf parameters
and the corresponding inferred h, J . However, some
insight can be obtained in simple cases.

First, let us consider a single site approximation in
the Eigen model in Ising form [14]. Here the formula
for exp

(
−E(sT )

)
is as in (2), but with F (s) given

by

F (s) =

L∑
i=0

hfi si . (B1)

We can solve for each site by decomposing the sum
in (2) into a product of transfer matrices

M =

(
exp

(
K − hf

)
exp (−K)

exp
(
−K − hf

)
exp (K)

)
. (B2)

In the limit of many generations, we can rewrite (2)
as

exp(−E(sT )) ∝ lim
T→∞

MT v0, (B3)

where v0 is a vector with the proportion of the pop-
ulation initially in the wild type and mutant states.
This implies that we can obtain all of the informa-
tion about the asymptotic state by looking at the
eigenvector associated with the largest eigenvalue of
M . Solving for the corresponding field yields

h = − log

[(
1− ehf

2

)
e2K

+

√
ehf +

(
1− ehf

2

)2

e4K

]
.

(B4)

We find then that h is highly sensitive to small
changes in hf for small hf (see Fig. 4a; note that
K ' 4 for amino acid mutations in HIV). Precisely
inferring hf from h is thus a difficult problem in
practice. However, it is likely that these issues are
moderated at population sizes that are finite. Ex-
pressions for h, J inferred through a two-site approx-
imation are unwieldy, but can easily be evaluated
numerically (Fig. 4b,c).

To compute the solution for the Eigen model in
the two site approximation, the following transfer
matrix was used:
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FIG. 4. (a) Plot of h versus hf showing the sensitivity of h. The inferred field h approaches a µ-dependent cutoff

as hf → ∞. (b) Plot of inferred h and J as a function of Jf for a two site approximation assuming hf
1 = hf

2 = 0.1.

The inferred value of h is insensitive to Jf until the “level crossing” point hf
1 + hf

2 + Jf = 0 is reached. (c) Similar

results are obtained when hf
1 and hf

2 are not identical. Here hf
1 = 0.1 and hf

2 = 0.05.

M =


exp

(
2K − hf1 − h

f
2 − J

)
exp

(
−hf1

)
exp

(
−hf2

)
exp (−2K)

exp
(
−hf1 − h

f
2 − J

)
exp

(
2K − hf1

)
exp

(
−2K − hf2

)
1

exp
(
−hf1 − h

f
2 − J

)
exp

(
−2K − hf1

)
exp

(
2K − hf2

)
1

exp
(
−2K − hf1 − h

f
2 − J

)
exp

(
−hf1

)
exp

(
−hf2

)
exp (2K)

 . (B5)

The normalized elements of the eigenvector associ-
ated with the largest eigenvalue give the fraction of
the population in each state, and are trivially alge-
braically related to the parameters of the prevalence
landscape.

Appendix C: Statistical significance of
resistance mutation detection

As a further check of the significance of the re-
sults, we computed p-values for the null hypothesis
that predicted resistance sites were drawn randomly.
This results in a p-value that is a function of number
of predicted resistance sites. If there are r sites ran-
domly drawn out of a total of N = 99 sites, and m of
the sites drawn are resistance sites (out of M = 13),
the p-value is given by

p =

M∑
k=m

(
M
k

)(
N−M
r−k

)(
N
r

) (C1)

The p-values are plotted in Fig. 5 as a function of
rank r. As noted in the main text, p < 0.05 for

almost all ranks between 3 and 50, supporting the
significance of the results, as the classification rule
is not expected to perform well for weakly coupled
sites (low ranks).

Appendix D: Results for alternative
classification procedures and drug näıve data

Here we show predictions of resistance sites using
alternative classification rules and data. We first
examine the predictions made with the same model,
but including all sequences from drug-näıve patients
up until the present. The results are shown in Fig. 6,
along with the calculation from the main text for
comparison, and are not significantly different. This
is probably because transmitted protease inhibitor
resistance is relatively rare [3, 34]. However, the
performance is slightly better at the extremely high
threshold limit for the drug-näıve sequence case, a
possible signature of transmitted drug resistance.

Another very simple way to make predictions is
to simply threshold the observed correlation matrix,
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FIG. 5. Minus log p-values (base 10) as a function of
rank. The solid line indicates the standard significance
threshold 0.05.

defined by

Cij =
〈sisj〉 − 〈si〉〈sj〉√

〈si〉(1− 〈si〉)〈sj〉(1− 〈sj〉)
. (D1)

In principle, all of the arguments developed in the
main text apply to correlations as well. However,
the presumed advantage of the direct interactions
approach is that it disentangles indirect from direct
interactions, which the correlation matrix does not.
Predictions using the correlation matrix compared
with the direct interactions approach (with all se-
quences from drug-näıve patients, as well as the re-
stricted sequence set used in the main text) are in
Fig. 6. The direct interaction approach clearly per-
forms better for the high ranked sites.

In protein contact prediction, a common measure
of interactions is the direct information. Direct in-
formation is defined with respect to a two site model

P (si, sj) = Z−1 exp
(
Jijsisj + h̃isi + h̃jsi

)
. (D2)

The coupling Jij is taken from the full solution of
the inverse Ising problem with all sites, and the fields
h̃i and h̃j are chosen to match the single site prob-
abilities P (si) and P (sj). The direct information
between sites i and j is then constructed as

DIij =
∑
si,sj

P (si, sj) log

(
P (si, sj)

P (si)P (sj)

)
. (D3)

Thresholding the direct information matrix, and fol-
lowing the usual procedure results in predictions of
resistance sites. The results are shown in Fig. 7.

80 60 40 20
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1

PP
V

interactions, filtered sequences

interactions, all drug-naive sequences

correlations

benchmark

FIG. 6. Comparison of classification results for positive
predictive value (PPV).
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1
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V

interactions

direct information
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FIG. 7. Comparison of direct information approach and
the direct interaction approach from the paper to classi-
fying drug resistance mutations using positive predictive
value (PPV).

All methods based on interactions perform better
than ranking sites according to their mutability, ei-
ther directly by mutation frequency (Fig. 8) or by
the inferred field h (Fig. 9). This is because muta-
tions in protease that confer drug resistance in pro-
tease tend to be deleterious, thus directly ranking
sites according to the ease of single mutations leads
to poor predictions of resistance.

We note also that many of the largest couplings
link sites where just one site is classified as a ma-
jor site of drug resistance. Based on the methods
presented here, we have no way to distinguish which
site or sites in a strongly linked pair should be asso-
ciated with drug resistance. One alternate approach,

8
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FIG. 8. Negative predictive value (NPV, upper curves)
and positive predictive value (PPV, lower curves) for
sites ranked according to the frequency of mutations at
that site.
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FIG. 9. Negative predictive value (NPV, upper curves)
and positive predictive value (PPV, lower curves) for
sites ranked according to the inferred field at that site.

then, would be to rank the couplings in order of their
strength and attempt to predict how often either one
or both coupled sites are sites of major drug resis-
tance. Performance on this classification problem is
also substantially better than random for the largest
couplings, as shown in Fig. 10.
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