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Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspen-
sions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral
interactions. We study a simple model of active swimmers in three dimensions that effectively
incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations
(up to 106 particles) and find long-lived metastable collective states that exhibit chiral organiza-
tion although the interactions are achiral. We elucidate under which conditions these chiral states
will emerge and grow to large scales. To explore the complex phase space available to the system,
we perform nonequilibrium quenches on a one dimensional Lebwohl–Lasher model with periodic
boundary conditions to study the likelihood of formation of chiral structures.

PACS numbers: 47.54.-r, 05.65.+b, 87.18.Gh, 87.18.Hf

The study of collective phases of organization of self-
propelled particles (SPP) has attracted considerable in-
terest in recent years. This behavior is found in a re-
markable range of different scales: from microtubules
and molecular motors inside a cell [1], to bacteria form-
ing vortices [2, 3], and to flocks of birds such as starling’s
spectacular shapes in the evening sky [4–6], to schools
of fish [7] and herds of wildebeest. The seminal work of
Vicsek et al. [8] ushered the study of collective motion of
active particles into the realm of statistical physics. A
multitude of different states and nonequilibrium transi-
tions have been found in different models of collective be-
havior [9–13] that exhibit ferromagnetic or nematic sym-
metry.

An intriguing behavior is the emergence of chiral-
ity. Bacterial suspensions show striking examples of chi-
ral behavior [3, 14, 15]; colonies of the amoeba Dic-

tyostelium discoideum aggregate in swirling localized vor-
tices [16, 17]. Chiral swimmers exhibit helical paths ro-
bust in the presence of fluctuations [18], and rotationally
driven spinners self-organize in into rotating crystals [19].
Spontaneous swarm rotation was found in [20–22]. The
emergence of biological structures at the beginning of life
that spontaneously break chiral symmetry has no clear
explanation yet [23–25].

Here, we show that a simple model of SPP with achi-
ral interactions may exhibit a chiral symmetry break-
ing under certain boundary conditions. We investigate
the conditions which favor the formation of long-lived,
metastable chiral pattern from an isotropic state. Finally,
to explore the vast phase space available to the SPP we
perform nonequilibrium quenches on the Lebwohl–Lasher
interaction potential for a one-dimensional chain. We
find that chiral structures become likely for large enough
systems.

∗ Corresponding author: marco.mazza@ds.mpg.de

We model active particles through simple interactions
among SPP that effectively mimic the active motion of
bacteria. The SPP are modeled as point particles mov-
ing in the direction of their intrinsic orientation êi. It
is a common choice to choose a constant speed v0 be-
cause at small Reynolds numbers rapid fluctuations of
the speed are exponentially damped. Aiming for a sim-
ple model system, we choose a nematic interaction that
has head-tail symmetry. Nematic interactions represent
to leading order the effective hydrodynamic interactions
among bacteria [26]. Our model captures the hydrody-
namic interactions in a minimal way. However, their role
is still a matter of debate. For example, experimental
measurements of the flow field generated by Escherichia

coli show that the effects of hydrodynamic interactions
are washed out by the stochasticity of the dynamics [27].
The equations of motion for particle i read

~̇ri = v0êi , (1a)

˙̂ei = −γ
∂U

∂êi

+ ~ξi(t) (1b)

where ~ri and êi are the position and direction, respec-
tively, of the i-th particle, such that |êi|

2 = 1 and

êi · ˙̂ei = 0 at all times. The noise ~ξ(t) is a uni-
formly distributed vector on the surface of a sphere [28]
with 〈ξi(t)ξj(t′)〉 = 2Drδ(t − t′)δij , where Dr = η2/γ.

U = − 1
2

∑N

i=1
1

ni

∑

j∈ni
(êi · êj)

2
is the Lebwohl–Lasher

potential that induces nematic alignment [29], where the
second sum extends to the ni neighbors of particle i
within a sphere of radius ǫ. A similar potential has been
studied in two spatial dimensions by a number of authors
[8, 9, 12, 13], however, past work has focused on the limit
of fast angular relaxation which leads to finite-difference
equations. Instead, we explicitly solve Eq. (1) leaving γ
as an explicit parameter.

We perform molecular dynamics simulations of a three-
dimensional system with up to N = 106 particles in a
cubic box of volume V = L3. We employ an explicit



2

10
−1

10
0

0

0.5

1

1.5

2

Peclet number

d
e

n
s
it
y
 ρ

 

 

S

0

1

Figure 1. (Color online) Phase diagram of the system of self-
propelled particles in terms of Péclet number P and density
ρ. The color indicates the global nematic order parameter
and shows the regions of the nematic and the isotropic phases
(denoted by •). The symbol ⋆ indicates a chiral pattern
which developed in one specific simulation run and can arise
everywhere in the nematic region of the phase diagram.

Euler algorithm with time-step δt = 0.1 for the trans-
lational and orientational dynamics, where to satisfy the
constraints on êi we use the algorithm of [30–32]. We im-
plement an efficient neighbor search [33, 34] that allows
us to reach large system sizes, and we apply the usual pe-
riodic boundary conditions in all three dimensions. The
reason for using periodic boundaries is that we aim to
study the role of fluctuations in an active system without
the influence of external fields (such as confining walls).

All following results are shown for N = 663, v0 = 0.5,
and γ = 0.1. The interaction range sets the length scale
in our system (ǫ = 1).

To quantify the degree of nematic alignment we con-
sider the nematic order parameter S defined as the
largest eigenvalue of the nematic order tensor Q =

1
2N

∑N

i=1[3êi ⊗ êi −I] where ⊗ is the tensor product. The

nematic director d̂ is defined as the eigenvector associ-
ated to S. The local director d̂ loc is accordingly defined
by replacing all N particles in the definition of Q with a
subset of Nα particles (e.g., contained in a layer of finite
thickness).

Figure 1 shows the nonequilibrium phase diagram of
the system presented in terms of particle density ρ =
N/V and Péclet number

P ≡
advection

diffusion
=

ǫv0

ǫ2η2/γ
=

v0γ

ǫη2
, (2)

which are useful to characterize bacterial or algal sus-
pensions [35]. There we have also reported the points
where a chiral pattern has spontaneously developed. At
sufficiently large P , the system is in the nematic state in-
dependently of ρ with S ∈ [0.5, 1]. Moreover, as observed
in [13] (but in 2D), the system’s steady-state is spatially
homogeneous with sub-populations moving in opposite
directions. As P decreases there is a clear transition to a
spatially homogeneous, isotropic state.

In the region of the phase diagram where P and S are
large, the system may also develop states where there is
no single, global nematic director, but rather d̂ loc rotates
in space forming a helical structure. Figure 2 shows four

cross-sections of the system equally spaced along the he-
lical axis. The particles contained in each of these cross-
sections of width δ ≈ 1.1ǫ still preserve nematic ordering
with a well-defined d̂ loc. As one moves along the heli-
cal axis this local nematic director slowly rotates with a
constant twist angle. We show in Fig. 3(a) how the com-

ponents of d̂ loc vary along the helical axis (conventionally
called x-axis). The profiles of the y and z components of
the director are very well fit by sinusoidal functions, as
expected for helical structures. The axis of the helix is
in most cases, like in this example, parallel to one of the
box edges with the pitch being 2L due to the periodic
boundary conditions together with the nematic interac-
tions. However, the helix can also be found at an angle
with the box edge (e.g., along one of the diagonals, with
the pitch adjusted accordingly). We observe left- and
right-handed helices with equal probability, and, addi-
tionally, once a chiral state is formed it is metastable at
least up to 2 × 106 time steps.

The formation of a chiral structure in the SPP model
is not determined by the initial conditions. Starting from
the same initial conditions (positions and directions of all
particles), different realizations (different random seeds)
can lead to a nematic, or a left- or right-handed chiral
structure. We also tested the effect of different random
number generators on the stability and reproducibility of
the chiral state including a Mersenne twister algorithm
[36]. Both the structure of a single chiral configuration
(homogeneous director twist, pitch of twice the box size)
as well as the overall occurrence in the phase diagram
and long-lived metastability remained the same

To characterize a chiral state a pseudoscalar order
parameter is useful. The simplest combination of ori-
entations and distances that provides a pseudoscalar is
(êi × êj) · (~ri − ~rj) [37]. We define the chiral order pa-
rameter averaged over all particles as

Sχ = −
π3

6(4 − π)

1

N

N
∑

i=1

1

Ni

Ni
∑

j=1

[

(êi × êj) ·
~rij

|~rij |

]

(êi · êj)

(3)
where ~rij ≡ ~ri − ~rj and the sum over j includes all Ni

particles in a sphere centered on ~ri with radius L/4. We
note that the normalization depends on the radius (here
L/4) which defines the volume over which the local aver-
age (all Ni particles) is taken. The normalization is cal-
culated analytically for an ideal chiral configuration with
ê = ±(cos(zπ/L), sin(zπ/L), 0) Sχ is a pseudoscalar sym-
metric for êi → −êi and vanishes in both the nematic and
the isotropic case. It is normalized so that Sχ = +1(−1)
indicates a left-handed (right-handed) chiral structure.
Figure 3(b) shows a typical evolution of Sχ.

An estimate for the probability of the formation of
a chiral pattern from 300 independent simulations for
different values of P is shown in Table I. Although the
statistics is limited, this probability exhibits a maximum
for P = 0.10. 〈|Sχ|〉

χ
increases as the Péclet number

increases. The reason is the same as for the increase of
S with increasing P (Fig. 1): Because the system has
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Figure 2. (Color online) Cross-sections of a typical chiral con-
figuration (ρ = 1.625, P = 0.08). The color code represents
the local nematic order parameter and the arrows represent
the SPP. The ribbon in the bottom shows the helicoidal be-
havior of d̂ loc in different cross-sections.
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Figure 3. (Color online) (a) Components of d̂ loc along the
helical axis (x̂) of the chiral pattern (see Fig. 2). The sym-

bols are the components of d̂ loc (in slices normal to the he-
lical axis) and the solid lines are sinusoidal least square fits
dloc

y,z = cos (πx/L + φy,z). (b) Time evolution of the chiral
order parameter for the same simulation. The transient evo-
lution before reaching the steady state can extend up to 104

time steps

smaller orientational fluctuations for large P , both order
parameters increase.

We now turn to the study of the formation and stability
of the chiral structure. We consider the local deforma-
tions of a nematic fluid. The demonstration that there
are only three elementary deformations of the equilibrium
nematic director field d̂ can be found in the book by P. G.
de Gennes and J. Prost [38], and these are: splay (∇· d̂)2,

P P (|Sχ| > 0.2) 〈|Sχ|〉
χ

0.08 3.3% 0.48

0.10 6.7% 0.64

0.14 5.7% 0.74

0.20 4.0% 0.82

Table I. Probability P (|Sχ| > 0.2) of the formation of a chi-
ral structure for different Péclet numbers (300 independent
simulations each, ρ = 1). 〈|Sχ|〉χ denotes the mean of the ab-
solute chiral order parameter conditional to the simulations
resulting in a chiral structure with the helical axis parallel to
the box edge.

Figure 4. Ideal splay (a), bend (b), and twist (c) deforma-
tions of the director field. The reference particle (⋆) does not
experience any torque from the neighboring particles (•).

bend [d̂× (∇× d̂)]2, and twist [d̂ · (∇× d̂)]2 [38]. For ideal
splay, bend or twist deformations the total torque on a
reference particle vanishes (Fig. 4). However, the splay
deformation is not stable in the SPP system because the
system does not have sinks or sources. The bend defor-
mation does not persist because there is no centrifugal
force that would keep the particles on a curved path. On
the other hand, the SPP in an ideal twist deformation
move within nematically ordered slices and therefore the
deformation persists. Thus, due to symmetry, the twist
pattern is the only one which is invariant under the mo-
tion of active particles.

Next, we show how an achiral (nematic) interaction
can lead to a chiral pattern by investigating the evolu-
tion of an isotropic to a chiral state in a simulation with
large P . The interaction of the SPP leads to local align-
ment. Firstly, areas of high local alignment grow with
time. As these areas have grown to a certain size, they
typically form a planar domain with d̂ loc perpendicular
to the layer normal (Fig. 5(a)). Secondly, in the evo-
lution of the chiral state, we typically find two of these
areas which fill almost the entire box and have a specific
geometrical relation: the two planes have to be parallel
and the two d̂ loc form an angle close to π/2. Domains

with different d̂ loc start competing and that can result
in a chiral structure. Only long wavelength fluctuations
can untwist a chiral configuration. An example of the
formation of these planes is shown in Fig. 5(b-c). It is
quite simple to identify distinct and differently oriented
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domains that drive the formation of a chiral structure.
We show the temporal evolution of domains with differ-
ent orientations for a chiral structure (Fig. 5(d)) and also
for a system that eventually evolves into a nematic state
(Fig. 5(e)).

Seeding the system with two planar, ordered domains
increases the probability of the chiral state (for a given
P ) from roughly few percent to about 50%. This shows
that the seeds are a good prerequisite for the chiral state
but also that the fluctuations must play a key role since
the probability does not reach 100%. Below, we elucidate
the role of fluctuations in the driving mechanism.

Nonequilibrium systems have access to much more
states than their equilibrium counterparts because de-
tailed balance is absent. It would then be very useful
to devise a way to explore this complex phase space
and study the relative probabilities to transition from
one state to the other. In an attempt to do so, and
to gain insight into the statistics of the observed chi-
ral states, we consider that the velocity orientation of
the system is governed by the Lebwohl–Lasher poten-
tial function in Eq. (1b). To understand the resulting
statistics and dependence on system size, we carry out
simulations of a 1D chain of N Lebwohl–Lasher spins
with periodic boundary conditions under a nonequilib-
rium rapid quench. We rewrite the potential for conve-

nience as V = −
∑N

i=1 J cos [2(θi+1 − θi)]. The system
is not in thermal equilibrium; rather, the local veloc-
ity orientation evolves via a rapid quench from a disor-
dered state to one with strong local orientational correla-
tions and significant variation along only one dimension.
We model each spin’s motion using the velocity Verlet
method with a Langevin thermostat, annealing rapidly
from T = 10 to T = 10−7 in 6 × 105 time steps, with 200
annealing trials for each chain length N .

Surprisingly, we find that the most likely final state for
chains with N > 200 is a metastable state with exactly
one twist of either ±π, while for shorter chains the most
likely final state is untwisted, as shown in Fig. 6. To ex-
plain this result, we consider the energy landscape of the
1D Lebwohl–Lasher model. The potential energy asso-
ciated with a state with n half-twists is 2J(nπ/N)2 [39]
and these twisted states are separated by significant en-
ergy barriers. In quenching the system from a random
initial state to low temperature, instead of finding the
untwisted ground state, the system may easily become
stuck in a twisted metastable state. It is interesting to
note that for the related equilibrium 1D Lebwohl–Lasher
model at any finite temperature, the state with exactly
one half twist (positive or negative) has the highest fu-
gacity for long enough chains. For shorter chains, by con-
trast, the untwisted ground state has the highest fugac-
ity in the equilibrium system. Though our 1D Lebwohl–
Lasher model simulations are not in thermal equilibrium,
the rapid quench to low temperature through the en-
ergy landscape shows similar behavior, with long chains
N > 200 showing highest probability to form a single
half-twist while shorter chains’ most probable final state

is the untwisted ground state. We also find that the mean
square number of twists 〈n2〉 in our rapidly quenched 1D
Lebwohl–Lasher simulations increases linearly with chain
length N , indicating that variation in velocity orientation
follows random walk statistics. A very similar behavior is
found in the SPP model when a simulation box of aspect
ratio 10 : 1 : 1 is used (N = 10 × 233, ρ = 1, P = 0.08).
The probability of forming a chiral structure with twists
of ±π is six times larger than for a cubic box. Moreover,
we also observe the spontaneous formation of structures
with a twist of ±2π in the elongated box.

A finite-size scaling analysis of the SPP model would
be computationally very expensive. But by studying the
Lebwohl–Lasher potential energy we can gain insight into
the complex phase space that underlies the SPP twist
dynamics. The combined results point to the fact that
as the system size increases, the relevance of the twist
states too increases.

In summary, we have shown that a model of SPP with
achiral interactions can exhibit a spontaneous chiral sym-
metry breaking and that orientational fluctuations play
a key role in the emergence of chiral structures. From
our molecular dynamics simulations we always find that
splay and bend are not stable for long times; only twist
is. We have verified that our results are robust by study-
ing systems of different size, and no qualitative differ-
ence was found. Moreover, by performing nonequilib-
rium quenches on the Lebwohl–Lasher model with peri-
odic boundary conditions we have studied the likelihood
of formation of chiral structures. A coarse-graining of
the equations of motion would provide further insight
into the problem. This is left for future work.
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Figure 5. (Color online) Formation of the chiral pattern. (a) Sketch of two competing layers (each nematically aligned). Here,

the angle between the two d̂ loc is π/2. (b) and (c) Example from the same simulation as in Figs. 2 and 3 at time t = 2000 time

steps. The system is divided into 103 boxes in each of which the fraction f
{y,z}
box

of particles with |ey| > 0.9 (b) and |ez| > 0.9 (c)

is determined. Only boxes with f
{y,z}
box

> 0.15 are plotted. fx
box can be defined accordingly. (d) and (e) Evolution of the fraction

f{x,y,z} of boxes with f
{x,y,z}
box

> 0.15 for the same chiral simulation (d) and a nematic example (e). The chiral structure shows
two growing domains of similar size and different orientations, while only one orientation dominates in the nematic case.
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Figure 6. (Color online) Inset: When annealed, the 1D ne-
matic rotor model can evolve into the untwisted ground state
or a chiral metastable state with ±n twists. Main panel: Fre-
quency of final states has a maximum value at |n| = 1 for a
long chain with N = 800 (green ▽, fit as green dashed line),
and at |n| = 0 for a short chain with N = 100 (blue ♦, fit as
blue solid line). The lines are guides for the eye.
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