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A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins
to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and
noise due to random arrival of these molecules at their binding sites can severely limit the precision
of regulation. Recent work on the optimization of information flow through regulatory networks
indicates that the lower end of the dynamic range of concentrations is simply inaccessible, over-
whelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as
the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription
factors also act as indirect translational regulators, binding to the mRNA of other regulatory pro-
teins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration,
and averaging over these multiple sensors reduces the noise. We analyze information flow through
this new scheme and identify conditions under which it outperforms direct transcriptional regula-
tion. Our results suggest that the dual role of homeodomain proteins is not just a historical accident,
but a solution to a crucial physics problem in the regulation of gene expression.

I. INTRODUCTION

Cells control the concentration of proteins in part by
regulating transcription, the process by which mRNA
molecules are synthesized from the DNA template. Cen-
tral to the regulation of transcription are the “transcrip-
tion factor” (TF) proteins that bind to specific sites along
the DNA and enhance or repress the expression of nearby
genes. Perhaps surprisingly, many TF molecules are
present at very low concentration, and even at low to-
tal copy number [1]. While it has been appreciated for
many years that low concentrations of biological signaling
molecules must lead to significant noise levels [2], direct
measurements of the fluctuations in gene expression have
become possible only in the past fifteen years [3].

Pathways for the regulation of gene expression can be
seen as input-output devices, with information flowing
from input control signals (TF concentrations) to out-
put behaviors (number of synthesized protein molecules).
While “information” usually is used colloquially in de-
scribing biological systems, the mutual information be-
tween input and output provides a unique, quantitative
measure of the performance of these systems [4, 5]. In the
context of embryonic development, for example, the in-
formation (in bits) carried by gene expression levels sets
a limit on the complexity and reproducibility of the body
plans that can be encoded by these genes [6].

Decades of work on neural coding provide a model for
the use of information theory in exploring signaling pro-
cesses in biological systems [6, 7]. To exploit this con-
cept, as a first step it is necessary to estimate the var-
ious information theoretic quantities from data on real
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systems, and for genetic regulatory networks that has
been achieved only very recently. There are estimates
of the mutual information between the concentration of
a TF and its target gene expression [8, 9], the informa-
tion that expression levels of multiple genes carry about
the position of cells in the developing fruit fly embryo
[10, 11], and the information that gene expression lev-
els provide about external signals in mammalian cells
[12, 13]. As a second step, we need to understand the-
oretically how the various features of the systems—the
architecture of signal transmission, the noise levels, the
distribution of input signals—contribute to determining
information transmission. In qualitative terms, the noise
levels set a limit to information flow given a fixed max-
imum signal level, and thus understanding information
transmission is intimately connected to the question of
how the cell can maximize the information conveyed by
a limited number of molecules produced and transported
stochastically [14–24]; completing the circle, this problem
is directly analogous to the “efficient coding” problem in
neural systems [25]. As emphasized in Ref. [5], infor-
mation theoretic ideas can thus be used as tools for the
quantitative characterization of biological systems, but
there is also the more ambitious goal of building a theory
in which the behavior of real neural, genetic, or biochem-
ical networks could be derived, quantitatively, from the
optimization of information flow.

Transmitting maximum information with a limited
number of molecules requires regulatory networks to em-
body strategies for minimizing the effects of noise. Im-
portantly, there are (at least) two contributions to the
noise [26], and optimal networks find a balance between
these. In transcriptional regulation, the most common
gene regulatory mechanism, a commonly appreciated
component of noise comes from the stochastic birth and
death of the synthesized protein and mRNA molecules
[27], which we refer to as “output noise.” But there is
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also noise at the input of the regulatory process, from the
random arrival of TF molecules at their binding sites. We
can think of transcriptional regulation as a mechanism for
sensing the concentration of TFs, connecting the analy-
sis of “input noise” to the broader problem of limits on
biochemical signaling and sensing [28–37], first studied
in the context of bacterial chemotaxis [2]. Changing the
shape of input-output relations, both through coopera-
tivity and through feedback, changes the balance between
input and output noise, thus rendering the optimization
of information flow a well–posed problem even with very
simple physical constraints on the total mean number of
molecules [16–18].

Central to any account of noise reduction is the ef-
fect of averaging. Several averaging strategies that make
transcriptional regulation more reliable have been identi-
fied: there is averaging over time as molecules accumulate
[2, 28, 31–34], averaging over expression levels of multiple
genes that are regulated by the same TF [16, 17, 38, 39],
and averaging over space as molecules diffuse between
neighboring cells or nuclei, e.g., in a developing embryo
[19, 40–43] or organoid [44]. In the (typical) case where
one TF targets multiple genes, there is a regime where
information transmission is optimized by complete re-
dundancy in the response of these targets, and another
regime in which the concentrations for activation or re-
pression of the targets are staggered so as to “tile” the
dynamic range of inputs [16, 17]. But, even as we con-
sider networks with increasing numbers of targets, the
theoretically optimal strategy is to insert the additional
genes into the high-concentration end of the input range
and to avoid the lower part of the dynamic range alto-
gether. It is the high input noise at low concentrations
that renders this regime suboptimal for reliable signaling.

Here we explore a distinct averaging strategy which al-
lows transcription factors to access the low end of their
input range in a robust manner. Since these regulatory
proteins bind to DNA, it is plausible that they could
also bind to mRNA, thereby regulating translation; this
is known to happen in the large class of homeodomain
proteins [45–47] and for the Argonaute family proteins
[48, 49], for several other proteins that fulfill impor-
tant functions in the Drosophila embryo and oocyte [50–
57], but also in other eukaryotic species [58–60] and in
prokaryotes [61–67]. Intuitively, each mRNA molecule
could act as an independent sensor of the input concen-
tration, and averaging over these multiple sensors could
reduce the input noise and thereby allow for more ef-
fective information transmission at low input concentra-
tions.

To develop this intuition, we first consider a model
of the “direct transcriptional regulation” (DTR) scheme,
in which a TF concentration is read out and averaged
by M binding sites on the same promoter (Section II);
we subsequently generalize the model to a more compli-
cated “indirect translational regulation” (ITR) scheme,
in which the averaging function is served by M cytoplas-
mic mRNA molecules (Section III). We compare the two

regulation mechanisms, DTR and ITR, by computing the
maximum information flow in each as a function of the
input noise magnitude and other determinants of the in-
formation flow (Section IV). We conclude by discussing
a biologically relevant example from early Drosophila de-
velopment (Section V).

II. AVERAGING OVER NEIGHBORING
REGULATORY REGIONS IN DIRECT
TRANSCRIPTIONAL REGULATION

The intuition behind the arguments of this work is that
a cell can extract more information from low concentra-
tions of TFs by averaging over multiple binding regions.
We expect that this will be realized by having the multi-
ple binding regions on different mRNA molecules. As a
motivating exercise, however, we can imagine that there
are many regions for binding of the TF at a single tar-
get near the gene being regulated, and that the expres-
sion of this gene depends on the average of the occupan-
cies of these regions (see schematic in Fig. 1A); there are
hints that such non–cooperative regulation by a cluster
of binding regions may be realized in some cases [68]. We
expect that, with averaging over M binding regions, we
should find a

√
M reduction in noise levels, and our goal

here is to exhibit this explicitly, as well as to understand
the conditions for this reduction to be achieved. These
results will provide a guide to the more complex case
of “indirect translational regulation” (ITR), introduced
in Sec. III. The calculational framework we use here is
based on our previous work [4, 16–18].

We write the expression level of the single target gene
as g, and if expression is controlled by the average of
multiple nearby regulatory regions then the dynamics are
of the form

dg

dt
= r

[
1

M

M∑
i=1

fi(c)

]
− 1

τ
g + ξ , (1)

where r is the maximal rate of synthesis, 1/τ is the rate
at which the gene products are degraded, and ξ is a
Langevin noise source (zero-mean white noise). In this
model there is a single TF species, at concentration c,
that controls expression. We assume τ to be the longest
time scale in the problem, thus setting the averaging time
for all noise sources in the regulatory pathway. As de-
scribed more fully in Refs. [8, 15–19], we can think of the
regulatory mechanism as propagating information from
c to g, and this information transmission is a measure of
the control power achieved by the system.

In the simplest case, each region harbors just one bind-
ing site, and the contribution of that site to the activa-
tion of gene expression is determined by its equilibrium
occupancy n̄i ∈ [0, 1]; then we have

fi(c) = n̄i(c) =
c

c+Ki
, (2)
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where Ki is the binding constant or affinity of site i for
the TF. Alternatively, each region, corresponding to a
regulatory sequence along the DNA, could be a tight clus-
ter of binding sites that act cooperatively, so that

fi(c) =
cHi

cHi +KHi
i

, (3)

where Hi is the Hill coefficient describing the cooperativ-
ity. Note that in this parameterization, we can describe
activators and repressors by the same equation, using
positive and negative Hi, respectively.

The noise term ξ should include many different mi-
croscopic effects. There is noise in the synthesis and
degradation of the gene product (output noise), and there
is noise in the arrival of the TF at its target site (in-
put noise). As in Refs. [15–19], we describe the out-
put noise as a birth–death process, and subsume several
complexities by assuming that we are counting “inde-
pendent events” without making a detailed commitment
about their nature (e.g., whether the mRNA or protein
molecules are independent, or if the truly independent
events are bursts of transcription [69]); we will, however,
consider these aspects in more detail in the ITR model
(Sec. III).

For the input noise, there is a minimum level set by
the Berg–Purcell limit [2, 28, 34, 37], which is equivalent
to a variance in the TF concentration,

σ2
c,(in) =

c

Dc`cτ
ΦB(~n(c)) , (4)

where Dc is the diffusion constant of the TF, `c is the
effective linear dimension of the binding region, τ is the
integration time over which noise is averaged, and the
“occupancy factor” ΦB(~n(c)) is a function of the aver-
age occupancy that depends on molecular details, with
B denoting the number of binding sites per regulatory
region. In particular, for a single binding site with equi-
librium occupancy n̄1, we expect Φ1 = (1−n̄1)−1 [34, 35];
for a cluster of sites in the limit as their number grows
large, such that a single site is never fully saturated,
ΦB → Φ∞ ≡ 1 [28, 70].

We can cast both input and output noise into the
Langevin form (cf. Eq. 1), but we know from Refs. [15–
19] that, so long as they are not too large, these noise
sources provide additive contributions to the variance of
g. We can find the effect of the input noise by “propa-
gating errors” through the mean input-output relations,
and then add to the output noise:

σ2
g = ḡ +

M∑
i=1

(
∂ḡ

∂fi

)2(
∂fi
∂c

)2

σ2
c,(in) . (5)

The first term is the Poisson output noise, with the vari-
ance equal to the stationary mean, which can be com-
puted from Eq. (1):

ḡ(c) =
rτ

M

M∑
i=1

fi(c) . (6)
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FIG. 1. (Color online) Schematic comparison of direct
transcriptional regulation (DTR) and indirect tran-
lational regulation (ITR) schemes. (A) In direct tran-
scriptional regulation (DTR), activator (or repressor) TFs,
depicted as green squares and present at concentration c, in-
teract with (potentially multiple, not necessarily identical)
TF binding regions to activate (repress) expression of the
regulated gene g. (B) In the indirect translational regula-
tion (ITR) scenario, input molecules (green squares) bind to
mRNAs m of protein y (red chain) to make the mRNA un-
accessible for translation (gray oval). Translation can pro-
ceed from unbound mRNA molecules, giving rise to proteins
y (red stars). These proteins act as repressors (or activators)
for gene g; the overall mapping from c to g is thus activating
(repressing) in both scenarios.

Note that since fi ∈ [0, 1], the maximum mean number
of output molecules is Nmax = rτ .

Let us now assume, for simplicity, that all regulation
functions fi are identical: all Hi = H, all Ki = K, and
hence all fi(c) ≡ f(c) = n̄(c). The total noise in gene
expression in a model with M identical binding regions
then reads:

σ2
g = ḡ +M

( rτ
M

)2
(
∂f

∂c

)2
c

Dc`cτ
ΦB . (7)

Introducing, consistently with our previous work, a di-
mensionless concentration unit c0 = Nmax/Dc`cτ , and
measuring expression levels g in units of maximal induc-
tion Nmax = rτ , we observe that the mean expression is
simply ḡ = f(c), and the noise can be written as

σ2
g =

1

Nmax

[
ḡ +

ΦB
M

c

(
∂ḡ

∂c

)2
]
. (8)

If the input concentration c has a limited dynamic range,
i.e., c ∈ [0, C], where C = cmax/c0 is the maximal allowed
concentration of the input in units of c0, the relative im-
portance of the two noise terms is set by C. For C � 1,
it is possible to regulate the gene such that the input
noise contribution [second term of Eq. (8)] is negligible
compared to the output noise [first term of Eq. (8)]. For
C � 1, the input noise is dominant and the output noise
is negligible, unless M is large. The balancing of these
noise terms has been explored in detail in our previous
work [15–19].

Alternatively, the total noise at the output from Eq. (8)
can be mapped to an equivalent noise at the input
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through the slope of the input-output relation ḡ′(c),

σ2
c =

1

Nmax

[
ḡ

(
∂ḡ

∂c

)−2

+
ΦB
M

c

]
. (9)

Equations (8,9) contain two differences compared to
the single input/single output case reported in Ref. [16].
First, the “occupancy factor” ΦB is introduced by a re-
finement of the expression for the input noise [34, 35];
this change will not qualitatively influence our conclu-
sions. Moreover, as mentioned above, the significance of
this correction decreases as the number of binding sites
per region increases [34]. Second, the factor 1/M mul-
tiplying the input noise contribution suggests that the
input noise can be decreased by averaging over multiple
binding regions for the TF.

If the transcriptional regulatory apparatus really were
driven to strongly suppress the input noise, e.g., by a fac-
tor of order 10, this would necessitate large M , and it is
hard to imagine how 102 − 103 binding regions could be
packed into a linear regulatory section on the DNA. One
difficulty with this is that there is no plausible molecular
machinery which could read out the average occupancy
of so many regions. The other, more fundamental diffi-
culty is that, due to close packing on the DNA, such reg-
ulatory regions would interact and thus fail to provide
independent concentration measurements, likely negat-
ing the apparent benefits of input noise averaging. This
effect is well known since the original work of Berg and
Purcell in the context of chemoreception [2].

In the following section we will show that translational
regulation implements an input noise reduction mecha-
nism that is conceptually identical to that of M bind-
ing regions, while automatically removing the two asso-
ciated problems discussed above. We will compare the
noise reduction in the “indirect translational regulation”
(ITR) mechanism to the “direct transcriptional regula-
tion” (DTR) case, which we define as the simple scheme
using M = 1 regulatory element with noise given by
Eqs. (8,9).

III. INDIRECT TRANSLATIONAL
REGULATION

In the indirect translational regulation (ITR) scenario,
the gene g is not regulated directly, but through an in-
termediate step. Let us assume that regulatory protein c
translationally represses the mRNA m of a protein whose
copy number we will denote by y; this protein acts as a
repressing (or activating) TF for the output protein g,
as depicted in Fig. 1B. As a result, the end transforma-
tion of inputs c to outputs g is again activating (or re-
pressing), and can be compared to the respective direct
transcriptional regulation pathway (see Fig. 1).

One possible reaction scheme for indirect translational
regulation consists of the following system of equations:

dm

dt
= rm −

1

τm
m− k+cm+ k−b (10)

db

dt
= k+c m− k−b−

1

τm
b (11)

dy

dt
= rym−

1

τy
y (12)

dg

dt
= rf(y/Ω)− 1

τ
g . (13)

Here, the mRNA of the intermediary gene y is produced
at rate rm and degraded at rate τ−1

m . It can be bound
by the input translational regulator at rate k+c, and un-
bound at rate k−. The variable m tracks the number of
unbound mRNAs from which translation can proceed; b
tracks the repressed (bound) mRNA number. Transla-
tion of the unbound mRNA occurs at rate ry and the
protein is degraded with rate τ−1

y . Finally, y controls the
expression of g, as the input c does in the DTR scenario,
through a regulatory function f : g proteins are expressed
with maximal rate r, and degraded with rate 1/τ , by as-
sumption the slowest time scale in the problem. Here m,
b and y are given as absolute molecule counts, c is given
in concentration units. The function f(·) is defined to
take concentration as input to parallel the DTR scenario;
the expression level of the intermediary gene y therefore
must be divided by the relevant reaction volume, Ω, when
inserted into f . Equations (10-13) still have to be sup-
plemented by the associated Langevin noise terms; we
analyze the noise in detail below.

By solving Eqs. (10-13) in the steady state, we obtain
the average levels of signaling molecules:

m̄ =
rmτm

1 + c
Kc

,

ȳ = ryτym̄ ,

ḡ = rτf
( ȳ

Ω

)
. (14)

Here, Kc = 1+k−τm
k+τm

, and in the limit of fast binding and

unbinding (k−τm � 1) this reduces to Kc ≈ k−/k+,
which is akin to the familiar form for the dissociation
constant. As before, we define Nmax = rτ to be the max-
imum number of molecules at the output. Analogously,
let M = rmτm be the steady state number of mRNA,
either active (unbound by c) or repressed (bound by c),
i.e., M = m̄+ b̄.

To compute the noise in gene expression at steady
state, we consider the following noise sources: (i) shot
noise due to the production and degradation of g; (ii)
shot noise due to the production and degradation of the
protein y; (iii) shot noise due to production and degrada-
tion of the mRNA m; (iv) diffusion noise due to random
arrival of y molecules at the promoter of g; and (v), dif-
fusion noise due to random arrival of c molecules at the
mRNA of y. Only two of these noise sources [(i) and
(v)] arise from directly analogous processes in the DTR
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scheme. The additional sources reflect the increased com-
plexity of the ITR scheme, suggesting that ITR will only
be beneficial over DTR when the reduction in the input
noise of c (v) is large enough to compensate for the effect
of the new noise sources.

As in previous work (Refs [15–19], but see also [20]),
this analysis neglects switching noise, i.e., the noise
due to stochastic transitions between different occupancy
states of the promoter [28, 71–75]. One reason for this is
that such noise contributions depend on the exact molec-
ular mechanisms operational at the promoter, which we
do not know in detail. The other reason is that the
noise contributions analyzed here represent the physi-
cal bounds due to finite number of molecules. At suf-
ficiently low concentrations, which are the focus of in-
terest here, these noise contributions will overwhelm the
switching noise; more generally we can imagine that cells
have evolved mechanisms that minimize these adjustable
sources of noise, leaving the physically inevitable noise
sources to dominate. We will now analyze the effect of
the different noise contributions on the steady state vari-
ance of the output g in detail.

Birth-death noise sources (i)–(iii). To correctly com-
pute the birth-death (shot) noise contributions to the
total noise at the output, it is instructive to consider the
propagation of arbitrary shot noise sources in a generic
signaling cascade of the form:

dx1

dt
= r1 −

1

τ1
x1 + ξ1

dx2

dt
= r2f2(x1)− 1

τ2
x2 + ξ2

...
dxn
dt

= rnfn(xn−1)− 1

τn
xn + ξn , (15)

where the shot noise spectra are

〈ξj(t)ξk(t′)〉 = 2τ−1
j x̄jδjkδ(t− t′) (16)

in the steady state, with x̄j = 〈xj〉 the stationary mean.
Assuming that τn � τj for all j 6= n, it can be shown
by linearizing and Fourier transforming Eqs. (15) (see
Appendix A) that the total variance in xn, to a good

approximation, is σ2
n =

∑n−1
j=1 σ

2
n←j + x̄n, where

σ2
n←j =

 n∏
q=j+1

rqτqf
′
q

2

×
(
τj
τn

)
× x̄j . (17)

Equation (17) is intuitive to interpret: shot noise entering
the cascade at step j has variance equal to the mean, x̄j ,
which gets filtered by the temporal averaging, τj/τn, over
what is ultimately the slowest timescale in the problem,
τn = τ , and is finally propagated through all subsequent

stages of the signaling pathway, given by the gain factors
and slopes of the input-output relations [76].

Diffusion noise sources (iv) and (v). Here we first note
that the contribution of diffusion noise sources to the
variance in the output can be generically written as

σ2
g←x =

(
∂ḡ

∂x

)2
x

Dx`xτ
Φx , (18)

where x is the concentration of the diffusing species, Φx is
a function of the internal state of the regulatory region to
which x is binding, `x is its linear extent, and the deriva-
tive acts on the steady-state transformation between x
and the mean output ḡ, given by Eqs. (14).

For noise source (iv), the diffusive species is y, and the
target is the TF binding site controlling the expression of
g. The relevant input-output relation through which the
noise is propagated is ∂ḡ

∂(y/Ω) = rτf ′(y/Ω). This yields:

σ2
g←y = r2τ2 [f ′(ȳ/Ω)]

2 (ȳ/Ω) Φy
Dy`yτ

. (19)

To allow for flexible regulation that can implement dif-
ferent input-output curves f(y/Ω), we will later assume
that the expression is effected by many binding sites, re-
sulting in Φy ' 1.

For noise source (v), the diffusive species is c, and the
targets are mRNAs m. Since each mRNA molecule acts
as an autonomous “detector” for the concentration c, the
relevant “receptor occupancy” is the probability of a sin-
gle mRNA to be bound and thus repressed by c; denoting
the average single-mRNA occupancy as m̄1 ≡ m̄/M , we
can write the diffusion noise for each single mRNA as:

σ2
m1

=

(
∂m̄1

∂c

)2
c Φc

Dcmlcτ
=

(
1

M

∂m̄

∂c

)2
c Φc

Dcmlcτ
, (20)

where Dcm = Dc +Dm, accounts for the fact that in the
ITR scenario also the detectors can be mobile; usually we
can expect Dc � Dm, such that Dcm ' Dc, and in the
following we thus set Dcm = Dc. As in the direct regu-
lation model, we can add up the diffusion noise for the
identical but independent c-detectors to obtain the diffu-
sion noise in the total mRNA population: σ2

m = Mσ2
m1

.
Propagating this noise through the downstream input-
output relations finally yields the expression for noise
source (v):

σ2
g←c =

(
∂ḡ

∂m̄

)2

M

(
1

M

∂m̄

∂c

)2
c Φc
Dclcτ

. (21)

Assuming a single TF binding site per mRNA, we can
expect Φc = (1− b̄/M)−1 [34], which we use in our sub-
sequent calculations.

Assembling all noise sources together. Applying the
above considerations to the ITR regulation sheme de-
fined by Eqs. (10-13), we can write down the steady state
variance in the output as:
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σ2
g = ḡ︸︷︷︸

(i)

+

(
rf ′

Ω

)2

ττy ȳ︸ ︷︷ ︸
(ii)

+

(
rf ′τ

Ω

)2

(ryτy)2
(τm
τ

)
m̄︸ ︷︷ ︸

(iii)

+
ȳ

Dy`yτΩ
Φyr

2τ2f ′2︸ ︷︷ ︸
(iv)

+
c

D`cτ
MΦc

(
1

M

∂m̄

∂c

)2(
∂ḡ

∂m̄

)2

︸ ︷︷ ︸
(v)

. (22)

Let us now choose a set of units that is natural for the
ITR scheme and consistent with the DTR scenario. As
before, we measure the output ḡ in units of Nmax = rτ
such that it falls into [0, 1], and we measure the concen-
tration c in units of c0,

c0 =
Nmax

Dc`cτ
. (23)

In direct analogy, we choose a concentration unit for pro-
teins y:

y0 =
Nmax

Dy`yτ
. (24)

Since the binding sites and diffusion constants for TFs
y and c are in principle different, these units could be
different, but we will later assume them to be similar.
Let us also define:

ymax =
ryτy
Ωy0

(25)

as the maximum (dimensionless) concentration of pro-
teins y expressed from a single mRNA.

Binding and unbinding of c to mRNA defines the first
nonlinearity of the problem; denoting the average occu-
pancy of a single mRNA molecule by h(c), we have

h(c) =
Kc

Kc + c
, (26)

where c and Kc = (1 +k−τm)/(k+τmc0) are both dimen-
sionless. Note that h(c) = m̄/M . The second nonlinear
function is f(y), determining the output expression level
of g (as in the DTR scenario); its argument is a dimen-
sionless concentration of y, measured in units of y0. We
will explore the space of functions with a Hill form

f(y) =
KH

yH +KH
, (27)

where K is also measured in units of y0, and the Hill
coefficient H roughly corresponds to the number of y
binding sites on the promoter of g. Here again the sign
of H determines whether y is an activator or repressor
to g. In this work, we will focus on the case H < 0
(meaning that y activates g, while itself being repressed
by the upstream input c, resulting in overall negative
regulation of g by c), and compare to the DTR model in
which g is repressed by c as well [H < 0 in Eq. (3)].

We can rewrite the noise in Eq. (22) as the effective noise at the input,

σ2
g =

(
∂f

∂(ȳ/Ωy0)

)2(
∂(ȳ/Ωy0)

∂m̄

)2(
∂m̄

∂c

)2

σ2
c = y2

maxM
2f ′2h′2 σ2

c . (28)

After rearranging terms and writing all copy numbers and concentrations in the new units defined above, we obtain

σ2
c =

1

Nmax

 1

M2

f

f ′2
1

h′2
1

y2
max︸ ︷︷ ︸

(i)

+
F

M

h

h′2︸ ︷︷ ︸
(ii)+(iii)

+
1

M

h

h′2
Φy
ymax︸ ︷︷ ︸

(iv)

+
Φc
M
c︸︷︷︸

(v)

 , (29)

where

F =
r

ry
(1 + ryτm) , (30)

and f and its derivative are evaluated at ȳ/Ωy0 = ymaxm̄ = ymaxMh(c). As before, the input concentrations can
vary across the range c ∈ [0, C], where C = cmax/c0 is the dimensionless maximal concentration of the input. If gene
expression rates for the target and intermediary proteins were similar, r ∼ ry, then F ≈ 1+ryτm, which is reminiscent
of the Fano factor due to the “burst size” ryτm, the number of proteins of y expressed on average from one mRNA; we
will therefore refer to F by “Fano factor” in the following. In a modified variant of the ITR model where mRNAs are
not continuously created and degraded to maintain an average of M copies, but are present at a fixed total number
of M copies, F = r/ry ≈ 1.
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It is useful to remind ourselves of the corresponding
result in the DTR case, which is Eq. (9) with M = 1,

σ2
c =

1

Nmax

ḡ
(
∂ḡ

∂c

)−2

︸ ︷︷ ︸
(i′)

+ ΦBc︸︷︷︸
(v′)

 . (31)

We see that term (i) of the ITR case is equal to term (i′)
in the DTR case, although this identification requires us
to propagate the inputs through more layers of response
in the ITR, hence a more complex expression. Similarly,
term (v) of the ITR case, representing diffusive noise for
c-molecules binding to mRNA m, is directly analogous
to the diffusion noise term (v′) in the DTR case, but
ITR reduces the input noise variance by a factor of M .
While Eq. (29) appears complicated, we can nevertheless
estimate the relative magnitudes of different noise sources
and assess their relevance.

Let us first compare the relative magnitude of the two
input-type noise sources. The scale of the ITR noise com-
ponent due to finite number of y molecules (iv) relative
to the input noise in c (v) is

(v)

(iv)
= ymax

h′2

h

Φc
Φy

c ∼ ymax

C
. (32)

We expect that Φ and regulatory functions h are of or-
der unity, and that the natural scale of the concentra-
tion c is given by C, the maximal dimensionless input
concentration; then the scale of the derivative of h is
h′ ∼ C−1, leading to the final result. The importance of
this term thus depends on the comparison of the maxi-
mal concentration of the intermediary y proteins and the
input proteins c. Clearly, if the intermediary proteins of
y are present at very low copy numbers, their diffusion
noise will become limiting, and the ITR scheme will be
ineffectual.

The scale of input noise (v) relative to the components
of the ITR noise due to birth-death processes, (ii)+(iii),
is given by

(v)

(ii) + (iii)
=
h′2

h
Φc

c

F
∼ 1

FC
. (33)

As we argue above, we should expect values of F ≥ 1.
The importance of noise sources (ii)+(iii) thus depends
on the scale of F relative to C, and in the regime of
low input concentration, C � 1, noise sources (ii)+(iii)
will be negligible for models with small transcriptional
bursting for y proteins, i.e., when F ∼ 1.

Finally, we can assess the relative scale of the input
noise (v) with respect to the output noise (i):

(v)

(i)
= M

h′2 f ′2

f
y2

maxΦcc ∼
H2

MC
. (34)

Here, the regulation functions f and h are again of order
unity, but the derivative of f has a scale of H/(Mymaxh),

H being the Hill coefficient of f . As a result, the depen-
dence of the noise term (i) on ymax exactly cancels out;
similarly, the M -dependence of term (i) cancels out ex-
actly. This is to be expected: by increasing M , one can
average away the input noise, but the magnitude of the
output noise can not be reduced. The same is true for
Eq. (9), where the output noise contribution is not di-
vided by M . This term is thus important as it must
become limiting when M grows large, with the relevant
scale being set by H2/MC ∼ 1. The quadratic scaling
with H shows that steep regulation curves strongly am-
plify the noise on the input side.

IV. COMPARING OPTIMAL INFORMATION
FLOW IN THE TWO SCHEMES

To compare the regulatory power of direct transcrip-
tional regulation (DTR) and indirect translational regu-
lation (ITR), we ask how much information can be trans-
mitted through each scheme. If noise in gene expression
is Gaussian, as we assumed here, then the response of the
regulatory pathway is fully characterized at steady state
by the distribution P (g|c) = G(g; ḡ(c), σg(c)), where G is
a normal distribution with the mean and standard devi-
ation that can be computed from the Langevin equations
Eqs. (1,10-13). The mutual information, I(c; g), between
the regulator concentration, c, and the downstream ex-
pression level, g, is then given by:

I(g; c) =

∫
dc Pc(c)

∫
dg P (g|c) log2

[
P (g|c)
Pg(g)

]
, (35)

where Pg(g) =
∫
dc Pc(c)P (g|c). Mutual information, a

non-negative number measured in bits, tells us how pre-
cisely the input c determines the output g, given that
the noise places limits to the fidelity of this control. This
quantity still depends on the distribution of input pro-
tein levels, Pc(c), experienced by the regulatory pathway.
It is possible to find the optimal distribution P ∗c (c) that
maximizes the information, and the maximum achievable
information is then referred to as the (channel) capacity
[4, 8]. P ∗c (c) is tuned to the noise properties of the reg-
ulation process, favoring the use of input concentrations
at which the regulatory element responds with smaller
noise over those inputs where noise is higher.

While finding the optimal input distribution and the
corresponding maximal information I is difficult in gen-
eral, in the case of small noise, σg � 1, we previously
derived a simple formula for the capacity [8]:

I(c; g) = log2

Z√
2πe
≡ log2 Z̃ +

1

2
log2Nmax , (36)

where

Z =

∫ C

0

dc

σc(c)
, (37)

Z̃ = Z(Nmax = 1)/
√

2πe , (38)
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FIG. 2. (Color online) Optimal capacity of direct transcriptional regulation (DTR, black), compared to indirect
translational regulation (ITR, red), as a function of the maximal input concentration C. (A) Optimal capacity

log2 Z̃ vs. C for various total amounts of translationally targeted mRNAs, M . Here and in subsequent panels we fix Nmax,
the maximal output copy number, to a reference value Nmax = 1 and show the resulting capacity; larger values of Nmax simply
shift all capacities upwards by an additive amount, as in Eq. (36). The strength of “ITR noise” sources, (ii) + (iii) + (iv) of
Eq. (29), is set by (Fano factor) F = 1 and (maximal concentration of the intermediary protein) ymax = 10. For M > 1, ITR
outperforms DTR at low C, but at high C DTR can still reach higher capacities if M is not sufficiently large (e.g., dashed red
line for M = 10). At M = 1 (dotted red line), the ITR scheme cannot benefit from input noise averaging, yet the intermediary
regulatory steps still contribute the “ITR noise” absent in DTR, causing DTR to be superior to ITR at all C. (B) Capacity
curves for different values of M in (A) collapse when plotted against the product of maximal input concentration and the
number of mRNA targets, MC, as predicted by the scaling relation in Eq. (34). Increasing input noise by lowering C thus can
be compensated for by increasing M . The collapse is not perfect at high MC and curves for different M saturate at different
capacity values because the strength of “ITR noise” is not negligible and their effect on capacity depends on M .

and σc is given either by Eq. (9) for the case of direct
transcriptional regulation, or by Eq. (29) for the case
of indirect translational regulation. Z plays the role of
the normalization constant in the distribution over in-
puts that maximizes I(c; g); the optimal distribution is
P ∗c (c) = Z−1σ−1

c (c). The simple dependence of capacity
on Nmax in Eq. (36) follows because Nmax only enters the
expression as a multiplicative prefactor to σc.

The capacity given by Eqs. (36, 37) still depends on
the regulatory parameters. We view the maximum con-
centration of input molecules, C, not as a parameter but
as a constraint; in the ITR case there is also a constraint
on the number of mRNA molecules, M , and, less impor-
tantly, on the statistics of translation, captured by F . In
the DTR scheme, the parameters that we can adjust in
order to optimize information transmission are the dis-
sociation constant (K) and the Hill coefficient (H) of
the regulatory function f in Eq. (1). For ITR, we have
the same two parameters determining the properties of
the regulatory function f in Eq. (13), plus an extra pa-
rameter, Kc, the dissociation constant for the repression
function h(c). Since our focus is on the regime where
input noise is limiting, C � 1, we fix ymax and F such
that “ITR noise” sources, relating to intermediary com-

pounds, i.e., the mRNA and protein of y, are not dom-
inant. The analysis of noise terms from the preceding
section suggests that choosing F = 1 and ymax = 10 will
ensure that noise in the ITR scenario is dominated by
the input noise in c [(v)] and the output noise due to
production and degradation of g [(i)]. In this regime,
the performance of the complex ITR regulatory scheme
should approach the direct regulation using M regulatory
elements, Eq. (9).

A. Optimal solutions

We mapped the optimal capacity as a function of C
for the DTR and ITR scenarios at various values for M ,
with the results shown in Fig. 2. For each point on the ca-
pacity curves, information was maximized with respect
to the regulatory parameters ({K,H} in case of DTR,
{K,H,Kc} in the case of ITR). As expected, increas-
ing M clearly enhances the capacity by additionally sup-
pressing dominant input noise at C < 1 relative to direct
regulation. For C > 1, the performance of ITR vs. DTR
depends on the choice of ymax and F , which determine
when additional noise sources specific to the ITR scheme
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FIG. 3. (Color online) Scaling of the optimal capacity with “ITR noise” parameters ymax and 1/F . The optimal

capacity log2 Z̃ for different fixed values of the mRNA number M in the ITR model is plotted against “ITR noise” parameters
properly rescaled by M , to observe the compensation between translational noise components and the input noise. (A) For the
diffusion noise due to the intermediary protein y, the relevant parameter is M ×ymax, where ymax is the maximal concentration
of y. (B) For the shot noise due to the expression of intermediary mRNA and protein y, the relevant parameter is M × (1/F ),
where 1/F is the inverse Fano factor. In both cases, we set the remaining noise sources to be as small as possible: C = 1000
and F = 1 for (A), C = 1000 and ymax = 1000 for (B). A perfect collapse in (A), comparable to that in (B), could only be
achieved for Fano factors F � 1, which are biologically unrealistic.

become important.

At very small C ∼ 10−2, the input noise clearly limits
capacity in the DTR scenario. As we switch over to the
ITR scenario with M = 10, we expect the (dominant) in-
put noise variance to drop by a factor of 10, leading to an
increase in I(c; g) of log2

√
10 ≈ 1.7 bits, roughly equal to

the observed difference between the DTR curve and the
ITR curve for M = 10. As M is increased, this scaling
breaks down because the reduced input noise stops be-
ing the sole factor limiting information transmission, and
the capacity curves flatten as a function of C, saturat-
ing towards the limit where the transmission is limited
only by output and ITR noise. We draw attention to the
magnitude of these effects: the capacity of real regula-
tory elements is in the range of one to several bits [8], so
that differences on the order of one bit are huge.

The value of C where the capacity begins to saturate
depends on M , because increasing M is equivalent to in-
creasing C as predicted by the scaling relation of Eq. (34).
To make this explicit we plotted the same capacity data
against MC instead of C, as shown in Fig. 2B. As ex-
pected, the curves collapse in the low-MC regime, where
input noise is dominant, and start to saturate at similar
MC values. However, they do not reach the same plateau
at saturation, because the ITR noise contributions, (ii) +
(iii) + (iv), are non-negligible. To see that these contribu-
tions can be traded off against the decrease in input noise
set by M as well, we varied parameters F and ymax at
fixed C = 1000 in Fig. 3, such that only one noise source

remained non-negligible compared to the others. When
the resulting capacity is plotted against the appropriately
rescaled versions of the parameters, Mymax and M/F , re-
spectively, we again see a collapse of the capacity curves
for different M , as predicted in Section III. In Fig. 3B
the collapse is almost perfect, because y-input noise (iv)
dominates whereas the respective other two noise sources
are negligible, and the plateau thus is purely set by out-
put noise. In Fig. 3A this is not possible because under
realistic conditions the Fano factor F ≥ 1, meaning that
the ITR noise cannot be completely eliminated; however,
we verified that a perfect collapse can also be achieved
here by setting F to unrealistically low values F � 1.

What do the optimal regulatory curves look like? Fig-
ure 4A shows that at low C = 0.1, where capacity en-
hancement by translational regulation is largest, the low-
ered input noise in the ITR model allows for markedly
steeper effective input-output curves ḡ(c), especially for
M � 1. At larger C, the difference in capacity between
ITR and DTR decreases, as expected from Fig. 2, and
the input-output curves converge towards similar effec-
tive Hill coefficients in both models, but ITR has a sig-
nificantly lower midpoint input concentration than DTR.
These observations are confirmed by a more systematic
analysis, presented in Figs. 4B and C, where we plot the
optimal (effective) transition point K∗eff and the optimal
Hill coefficient H∗, respectively, as functions of C.
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FIG. 4. (Color online) Optimal regulatory curves. (A) Optimal regulatory curves, ḡ(c), for C = 0.1 (left), C = 1 (middle)
and C = 10 (right), and different values of M in the indirect translational regulation (ITR) model (colored curves): M = 10
(top), M = 100 (middle), M = 1000 (bottom). The direct transcriptional regulation (DTR) model is plotted in black for
reference. Colors correspond to the vertical lines in Fig. 2. Here, F = 1 and ymax = 10. ∆I, the difference in capacity between
ITR and DTR in bits, is shown in each panel. (B, C) Optimal regulation threshold, K∗eff , and the optimal Hill coefficient, H∗,
that characterize the regulatory curves in (A), shown as a function of C. Since the overall regulation is repressive in either
scheme, Hill coefficients are negative. In the DTR model, Keff ≡ K; for ITR, Keff = (Kc/K)Mymax −Kc.

B. Comparison at equal resources

In the previous section we compared the optimal op-
erating points for the two regulation scenarios indepen-
dently, neglecting the resource cost associated with reach-
ing the corresponding optima. However, indirect transla-
tional regulation evidently consumes more resources than
direct regulation. The extra resource cost is set by M ,
which determines the cost of the mRNA for the interme-
diary protein y, as well as ymax, which determines the
cost of the y protein itself. While it is difficult to con-
vert the cost of mRNA and cost of protein into the same
“currency,” we can nonetheless compare the costs of the
ITR and DTR schemes in terms of the total number of
mRNA molecules M alone.

In the DTR scheme, a good estimate for this cost is
M = Nmax〈g〉, where 〈g〉 =

∫
g(c)P ∗(c)dc is the ex-

pected number of independent output molecules in re-
sponse to the optimal distribution of inputs, P ∗c (c). In
the ITR scheme, this cost is increased by the number of

mRNA molecules needed to implement translational reg-
ulation, M , such that M = Nmax〈g〉 + M . In this case,
〈g〉 is implicitly a function of M , because different val-
ues of M lead to different noise levels and consequently
different optimal input distributions P ∗(c).

When we fix the total resource costM in both scenar-
ios, the information in the direct scenario is given by:

I(c; g) = log2 Z̃ +
1

2
log2Nmax = log2 Z̃ +

1

2
log2

M
〈g〉

.

(39)

For translational repression, the (optimized) information
reads

I(c; g) = log2 Z̃(M∗) +
1

2
log2

M−M∗

〈g〉
, (40)

where M∗ is the value of M ∈ [0,M] that optimizes
the capacity, reflecting the optimal allocation of available
resources,M, between the translational mechanism that
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FIG. 5. (Color online) Direct transcriptional regulation (DTR) vs. indirect translational regulation (ITR) at
equal resources. (A) Comparison of the maximal capacity as a function of C between indirect translational regulation (ITR,
red curves) and direct transcriptional regulation (DTR, black curves) scenarios, for three values of total resource cost (total
mRNA number), M. Here, ymax = 10, F = 1. Compared to Fig. 2, ITR stops being beneficial compared to DTR at lower C.
(B) Capacity difference between the ITR and DTR models as a function of C and M. The thick red line marks the (C,M)
values that lead to equal capacities; in the regime above the red line ITR, in spite of intermediary regulatory steps, is beneficial
over DTR.

reduces input noise (favoring large M) vs. the reduction
of the output noise (favoring large Nmax, i.e. smaller M).

M∗ can be found by first optimizing log2 Z̃(M) for fixed
M and then optimizing I(c; g) over M in the second step.

Figure 5 compares the information capacities of the
ITR (red lines) and DTR (black lines) scenarios for three
fixed values of the total mRNA number (“cost”) M
(10, 100, 1000). Two effects can be observed: First, in
both scenarios the capacities increase markedly withM;
this is expected, because increasingM reduces the over-
all noise in both scenarios. Note, however, that the gain
in capacity upon increasing M is larger in the ITR sce-
nario (compare red curves) than in the DTR scenario
(compare black curves), in particular at low C. This is
also expected because the ITR scheme is more efficient in
suppressing input noise; in accordance, optimal mRNA
values M∗ at low C are higher than at high C (data not
shown). Second, due to the additional resource require-
ments of the ITR scheme, it stops being beneficial over
the DTR scheme already at lower C, compared to the
situation where constrained resources are not taken into
account in Fig. 2.

We mapped, systematically, the conditions under
which ITR becomes beneficial over DTR. Figure 5B
shows the capacity difference IITR − IDTR as a function
of the two main factors that influence capacity, C and
M. The thick red line marks the combinations (C,M)
that lead to equal capacity in both models, i.e. it summa-
rizes the crossing points between ITR and DTR curves in
Fig. 5A (thick red points); above the line ITR is superior

to DTR, below DTR yields higher capacities. ITR is ben-
eficial at low C (i.e., high input noise), and as C increases,
ITR remains beneficial only for resource-intensive regu-
latory schemes whose cost M grows sufficiently quickly
with C. We note, once again, the large size of these in-
formation differences, in bits.

V. DISCUSSION

An efficient regulatory pathway will respond to vari-
ation in its signal across the full input dynamic range.
But what if a part of this dynamic range is associated
with very high input noise, as is the case for regulatory
molecules present at low concentration? Then, the path-
way can either avoid responding to those signals com-
pletely, thereby sacrificing some of the bandwidth, or it
can utilize reaction schemes that are able to reduce the
impact of high input noise. In this paper we showed that
indirect translational regulation (ITR) is one such regu-
latory scheme. The intuitive reason for the advantage of
translational regulation is that every single one of the M
mRNA molecules that is being translationally regulated
by the input signal effectively acts as a “receptor” for
the input concentration; this results in an M -fold more
efficient averaging of input noise compared to the case of
direct transcriptional regulation (DTR), where a single
DNA binding site is acting alone as a receptor. Consis-
tent with this intuition, our results show that when input
noise is dominant (C � 1), translational repression with



12

high M can provide large increases in channel capacity
relative to direct regulation.

Increases in capacity, however, do not come for free.
First, the ITR scheme involves additional reaction steps
and intermediary regulatory molecules; as a consequence,
new noise sources, which we call “ITR noise,” are intro-
duced. Only when these sources are sufficiently small
relative to the input noise set by C, does the transla-
tional scheme yield measurable benefits. Second, lower-
ing ITR noise sources also incurs metabolic costs associ-
ated with producing the required intermediary molecules;
this means that a realistic comparison between the direct
scheme and the translational repression scheme is rele-
vant only when carried out at comparable resources. We
explored these effects in detail to show when translational
repression is beneficial over direct regulation.

In this work we have analyzed only one particular reac-
tion scheme for translational regulation, but clearly many
variations on the same idea are possible. We examined
several of these possibilities, and found consistent results.
First, the transformation of the input c into the gene ex-
pression level g in the DTR as well as the ITR model can
be either repressive or activating. We find no qualitative
differences between the two regulation schemes, and thus
present only the repressive scheme. The channel capac-
ities of the two schemes, separately optimized, differ by
∼ 0.1 bits, with activation performing slightly better at
C . 1, and vice versa. While the shapes of the regula-
tory curves must be different by construction, the general
trends—sharper regulatory curves already for low C in
the ITR model, lower dissociation constants for high C in
the ITR model—for the activators are identical to those
of the repressors. Second, we examined how the precise
description of the input noise form (ΦB in Eq. (4)) in-
fluences our results. In one limit, we can set ΦB = Φ1,
corresponding to a single binding site, while in the oppo-
site limits we can set ΦB = Φ∞, corresponding to a large
number of binding sites [28, 34, 35]. Tracing through the
full numerical analysis in both cases, all differences are
small, and largely confined to the regime in which both
C and M are small.

Our analytical model is made tractable by several tech-
nical assumptions: The input noise depends on diffusion
constants, and we assumed equal diffusion constants for
the input and the intermediary molecules, and further
that translationally regulated mRNAs are immobile. Re-
laxing these assumptions changes the effective diffusion
rates in the diffusion noise terms; in particular, highly
mobile mRNAs might further contribute to input noise
reduction in the ITR model, Eq. (20). We also had to
make assumptions about how the translationally regu-
lated mRNAs are produced and how they interact with
the inputs. Apart from a change in ITR noise magni-
tude, the model where translationally regulated mRNAs
are present at a fixed molecule count behaves identically
to the model we studied, where mRNAs are continuously
made and degraded. We have, however, not analyzed
more complicated interaction schemes between the in-

put and the mRNA, e.g., one in which the mRNA would
sequester the input regulatory proteins. Lastly, we have
assumed that the noise in the system is Gaussian and not
overly large. This is supported by experimental evidence
for the paradigmatic case of Drosophila embryogenesis,
where crucial protein signals appear to be tightly con-
trolled both at the input and output side, with typical
coefficients of variation . 10% [40, 77–79]. Extending
the applicability of our model to systems in which the
noise is non-Gaussian and/or large would require a sepa-
rate major computational effort (to numerically compute
the channel properties, find its capacity, and then opti-
mize it over parameters), which is beyond the scope of
this work.

We focused exclusively on intrinsic noise arising from
intracellular gene production and diffusion and have ne-
glected the effects of extrinsic noise. A recent study
explored the combined impact of intrinsic and extrinsic
noise within the framework of information theory, using
stochastic simulations, and found that extrinsic noise can
cause overestimation of the channel capacity and other
nontrivial effects [80]. While studying extrinsic noise
with similar detail in our model would require a com-
pletely new effort, we briefly assessed the influence of ex-
trinsic noise in the mRNA number M in an approximate
calculation (see Appendix B); our results indicate that
for a typical magnitude of the variance in M , the capacity
loss due to extrinsic noise in the input-noise dominated
regime (C < 1) is small.

What are the limits to noise reduction using trans-
lational regulation? We started with a pedagogical ex-
ample where the input concentration is detected by M
regulatory sites. This scenario can be realized as a con-
sequence of gene amplification, which is commonplace in
bacteria, but the number of gene duplications (i.e., M)
typically stays below 10 [81]. While gene amplification
also occurs in some strongly specialized eukaryotic cells,
it is generally seen as a strategy to massively increase the
protein production rate [82–84], or as a hallmark of can-
cer [85, 86]. Alternatively, a high multiplicity of M reg-
ulatory sites could occur in a single promotor / enhancer
region. Consequently, the sites would be packed very
closely on the DNA and thus the molecule “detected” by
one site would have a high likelihood of rebinding to a
nearby site, providing a statistically correlated, rather
than independent, sample of the concentration in the
bulk. In this regime, the decrease in input noise variance
would be slower than 1/M , and as M → ∞, the input
noise would saturate to a bound determined by the lin-
ear dimension of the cluster of regulatory sites [2, 28, 70].
The same argument will ultimately apply to M mRNA
molecules of the ITR scenario. There, each mRNA har-
bors a binding site of size `c ∼ 1 − 10 nm, but the mR-
NAs typically are separated by distances d ∼ 1− 10 µm.
Roughly, we can expect that input readouts will be in-
dependent and the ITR mechanism effective so long as
M . d/`c ∼ 102 − 104, putting M in the range that
we examined and where it appears biologically plausible;
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recent experiments in the Drosophila and zebrafish em-
bryos and in mammalian cells reported mRNA counts in
the range of 50 − 1200 per typical cell volume [79, 87–
91]. For such values of M , we find significant increases
in capacity of 0.8− 1.8 bits at C ∼ 0.1− 1, with optimal
regulatory curves using high Hill coefficients |H∗| & 4,
thereby accessing the full output dynamic range. More-
over, the molecular mechanism for integrating the read-
out over M such “receptors” is simple diffusion of the
intermediary protein y, unlike in the pedagogical exam-
ple of M regulatory sites on the DNA where we know of
no plausible molecular integration mechanism.

Are there biological examples of such indirect transla-
tional regulation scheme? During early Drosophila mor-
phogenesis, one of the primary transcription factors that
drive the anterior-posterior (AP) patterning of the em-
bryo is Bicoid, which is established in a graded, exponen-
tially decaying profile along the AP axis [92–96]. Bicoid
activates a number of downstream genes directly in the
anterior and the middle region of the embryo where its
concentration is highest. Absolute concentrations of bi-
coid are estimated to be ∼ 55 nM at a maximum, falling
to∼ 8 nM at the midpoint of the embryo [40, 77]). At the
posterior end of the embryo, where its concentration is
low and hard to detect quantitatively using the imaging
methods available, Bicoid translationally represses caudal
mRNA [46, 47, 97, 98]. The caudal mRNA molecules are
produced by the mother, who deposits them into the egg
with a uniform distribution along the AP axis. As they
are bound and repressed by Bicoid, while the free ones
get translated into Caudal protein, the embryo develops
a new gradient of Caudal protein with high concentra-
tion at the posterior and low in the anterior. Caudal
acts much like the intermediary protein y in our model,
becoming a regulator of patterning genes in the posterior.
While such a scheme involving an intermediary maternal
mRNA and protein appears wasteful at first glance, here
we have shown that it may provide a substantial bene-
fit for information transmission at low input concentra-
tion, i.e. in posterior regions of the embryo. Although
we are not familiar with any direct measurement of cau-
dal mRNA copy numbers, the copy numbers for the gap
genes [79] (and also bicoid [87]) are consistent with the
range of M ∼ 102 − 103 mRNA per nuclear volume.

More generally, it is interesting to note that Bicoid is
just one member of a larger homeodomain protein fam-
ily whose members have the ability to act both as a
transcriptional as well as translational regulators [45–47].
Several other proteins acting as translational regulators
have been reported in the fly embryo and oocyte [50–
57], and in other eukaryotic species [58–60], oftentimes
in a developmental context. These findings hint at the
possibility that the regulatory principle implemented by
Bicoid and caudal mRNA in Drosophila may be at work
also in other developmental systems. While translational
regulation has also been reported in bacteria [61–67], here
typical mRNA numbers are of order ∼ 1 [99], such that in
prokaryotes translational regulation may serve a different

purpose than averaging the input to enhance information
transmission. In summary, our results suggest that the
dual role of proteins as both transcriptional and transla-
tional regulators is not just an accident of history, but a
solution to a fundamental physics problem faced by the
cell.
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Appendix A: Shot-noise propagation in a generic
signaling cascade

Let us assume the following signaling cascade, de-
scribed by a system of Langevin equations for the signal-
ing species xj , in which shot noise is generated at each
level j ∈ [1, .., n] and (for j < n) propagated into the
copy number of species xj+1 via a regulatory function
fj+1(xj):

dx1

dt
= r1 −

1

τ1
x1 + ξ1

...
dxn
dt

= rnfn(xn−1)− 1

τn
xn + ξn , (A1)

In the steady state, for the noise powers of the Langevin
noise sources ξj we have

〈ξj(t)ξk(t′)〉 =

(
Rj +

x̄j
τj

)
δjkδ(t− t′) =

2x̄j
τj
δjkδ(t− t′) ,

(A2)

where R1 ≡ r1 and Rj>1 ≡ rjfj(xj−1), and x̄j = 〈xj〉
denotes the stationary mean. For our purposes we want
to compute the overall variance in the last component
σ2
n = 〈δx2

n〉.
Linearizing around the means x̄j via xj = x̄j + δxj

and fj(xj−1) ' fj(x̄j−1) + f ′j(x̄j−1)δxj−1, and Fourier-
transforming for t → ω allows us to convert Eqs. (A1)
into the following equation system for the Fourier-
transformed fluctuations δx̃j :

−iωδx̃1 = − 1

τ1
δx̃1 + ξ̃1

...

−iωδx̃n = rnf
′
n(x̄n−1)δx̃n−1 −

1

τn
δx̃n + ξ̃n . (A3)
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For the Fourier-transformed noise powers ξ̃j we get

〈ξ̃j(ω)ξ̃∗k(ω)〉 = 2τ−1
j x̄jδjk . (A4)

The system defined by Eqs. (A3) can be solved alge-
braically by succesively inserting the solution for δx̃j into
the equation for δx̃j+1:

δx̃1 =
ξ̃1

τ−1
1 − iω

...

δx̃n =

n∑
j=1

ξ̃j

τ−1
j − iω

n∏
q=j+1

rqf
′
q

τ−1
q − iω

, (A5)

where we abbreviate f ′q ≡ f ′q(x̄q−1).

We can now obtain the variance σ2
n by integrating over

the noise power spectrum Sn(ω) = 〈δx̃nδx̃∗n〉 of the fluc-
tuations in component n:

σ2
n =

∫
dω

2π
Sn(ω) =

∫
dω

2π
〈δx̃nδx̃∗n〉

=

∫
dω

2π

n∑
j=1

2x̄jτ
−1
j

τ−2
j + ω2

n∏
q=j+1

(
rqf
′
q

)2
τ−2
q + ω2

, (A6)

where we recall that for mixed indices 〈ξ̃j(ω)ξ̃∗k(ω)〉 = 0.
Isolating the n-term of the sum, and introducing the

dimensionless integration variable w ≡ τnω, we can fur-
ther write:

σ2
n = x̄n

∫
dw

π

1

1 + w2︸ ︷︷ ︸
=1

+

n−1∑
j=1

∫
dw

π

x̄j

(
τj
τn

)
1 +

[
τj
τn
w
]2 n∏

q=j+1

(
rqτqf

′
q

)2
1 +

[
τq
τn
w
]2 .

(A7)

The integrand of the second integral can be written as:

n∏
k=j

(
1 +

[
τk
τn
w

]2
)−1

=
1

1 + w2

n−1∏
k=j

(
1 +

[
τk
τn
w

]2
)−1

.

(A8)

The leading factor (1+w2)−1 only has significant contri-
butions when |w| . 1, and will be suppressed (together
with the whole integrand) for |w| � 1. Assuming that τn
is the longest timescale of the problem, i.e. ∀k : τn � τk,
in the relevant regime |w| . 1 all factors except for the
leading one will be ' 1. Thus, to a good approximation:

σ2
n ' x̄n +

n−1∑
j=1

x̄j

(
τj
τn

) n∏
q=j+1

(
rqτqf

′
q

)2 ∫ dw

π

1

1 + w2

= x̄n +

n−1∑
j=1

 n∏
q=j+1

rqτqf
′
q

2

×
(
τj
τn

)
× x̄j︸ ︷︷ ︸

≡σ2
n←j

. (A9)

Appendix B: Influence of extrinsic noise in the
mRNA number M

Here we briefly explore the impact of extrinsic noise in
the mRNA copy number M , the most important param-
eter of our ITR model. In the original model mRNA is
constantly produced and degraded at finite rates, gener-
ating an intrinsic contribution to the overall noise. Here,
in contrast, we assume that mRNAs are present at a
fixed copy number M in each system, but that across
systems, the value of M is normally distributed with a
mean M̄ and a variance σ2

M . Note that this scenario cor-
responds to the limit of infinitely fast mRNA production
and degradation in our original model, implying that the
Fano factor F ' 1. If the typical deviations of M from
the mean M̄ are small, to a first approximation we can
expand (dropping the subscript P (M) for brevity)

〈σ2
c (M)〉 = 〈σ2

c (M̄)〉+ 〈(σ2
c )′M̄ (M − M̄)〉︸ ︷︷ ︸

=0

+ 〈
(
σ2
c

)′′
M̄

(M − M̄)2〉+ ...

' σ2
c (M̄) + (σ2

c )′′M̄ σ2
M , (B1)

where angular brackets denote averaging over the extrin-
sic noise distribution and the uneven terms vanish be-
cause this distribution is assumed to be Gaussian. The
effective variance at the input, σ2

c (M), has the form
[Eq. (29)]

σ2
c (M) =

1

Nmax

(
N +

1

M
R
)
, (B2)

where N corresponds to the output noise [term (i) in
Eq. (29)] which is independent of M (note that f ′ ∼
1/M), and R collects all the remaining terms after iso-
lating their common prefactor 1/M (note that the per-
mRNA occupancy function h(c) and its derivative do not
depend on M). It follows that

(σ2
c )′′M̄ =

1

Nmax

2

M̄3
R =

2

M̄2

(
σ2
c (M̄)− 1

Nmax
N
)
,

(B3)

and hence

〈σ2
c (M)〉 ' σ2

c (M̄) +
2σ2

M

M̄2

(
σ2
c (M̄)− 1

Nmax
N
)
. (B4)

Let us now assume σ2
M = β2M̄α, which we can use to

study two relevant example regimes: the case in which
extrinsic noise has a fixed coefficient of variation (CV),
σM/M̄ = β (α = 2), and the case in which the extrinsic
noise is purely Poissonian, σ2

M = M̄ (α = 1, β = 1). We
can then write:

〈σ2
c (M)〉 ' σ2

c (M̄) +
2β2

M̄2−α

(
σ2
c (M̄)− 1

Nmax
N
)

≤ σ2
c (M̄)

(
1 +

2β2

M̄2−α

)
. (B5)
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As expected, fluctuations in M thus increase the effec-
tive variance in our model, but this increase is bounded
by a factor ψ =

(
1 + 2β2/M̄2−α); the corresponding

(maximal) loss in capacity is given by an additive term
∆I = − 1

2 log2 ψ. For a typical fixed CV of 10%,

ψ ≡ (1 + 2β2) = 1.02. In the Poissonian noise case,
ψ ≡ (1 + 2/M̄), which quickly approaches 1 as M̄ grows
large; specifically, for M̄ ≥ 100 we have ψ ≤ 1.02. For
ψ = 1.02 the expected loss in capacity is below 0.02 bits,
small compared to the expected capacity increase in the
input-noise dominated regime (C < 1) for M̄ & 10.
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