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We model the hierarchical evolution of an organized criminal network via antagonistic recruitment

and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into
the network, who in turn seek out other affiliates. New recruits are linked to established criminals
according to a probability distribution that depends on the current network structure. At the same
time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies
that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global
details of the organization are unknown to law enforcement, who must explore the hierarchy node by
node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and
when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested.
We first analyze recruitment and study the large scale properties of the growing network; later we
add pursuit and use numerical simulations to study the eradication probability in the case of three
pursuit strategies, the time to first eradication and related costs. Within the context of this model,
we find that eradication becomes increasingly costly as the network increases in size and that the
optimal way of arresting the kingpin is to intervene at the early stages of network formation. We
discuss our results in the context of dark network disruption and their implications on possible law
enforcement strategies.

PACS numbers: 89.65.Ef, 89.75.Hc, 87.23.Ge

I. BACKGROUND

Modeling criminal socio-economic systems using tools
from statistical mechanics, complex networks, partial dif-
ferential equations and game theory, and building on well
established social and behavioral phenomena has become
of great interest in recent years [1–3]. This interdisci-
plinary effort has helped shed light on the formation of
crime hotspots [4–6], the dynamics of criminal behavior
[7, 8], the mechanics of gang rivalries [9] and recidivism
trends [10]. In this paper, we bring some of these tools
to the problem of organized crime.
Underworld syndicates can be quite successful in prof-

iting from exploitation, theft, intimidation, and murder
through complex webs of disciplined units governed via
authority structures, division of labor, and strict behav-
ioral codes. Conversely, governments must effectively
protect their citizens, maintain internal order, and safe-
guard the channels of the legal economy. Since orga-
nized criminal associations mostly operate in sophisti-
cated and secretive ways, a pertinent way of studying
them is through the well-known framework of dark net-
works [11, 12]. Here, actors and links are predominantly
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hidden to possible disruptors. Criminals must decide who
to interact with and how to balance the threat of possi-
bly being arrested with the profits afforded by criminal
collaboration [11]. On the other hand, police agents must
eradicate the criminal enterprise often without an a priori
full knowledge of the global network.

Within the context of criminal behavior, the disrup-
tion of dark networks has been studied via probabil-
ity distributions that embody the limited information
available to law enforcement agents and that govern dis-
mantling attempts [11, 13, 14]. Other models analyze
network eradication when the entire structure is known
[15, 16]. Typically, each criminal is assigned a utility
value based on his or her prominence in the organiza-
tion, which is then used by law enforcement to orches-
trate optimal intervention strategies. Several disruption
tactics were tested on a well-documented drug traffick-
ing network in the Netherlands [12]. Here, disruption
was modeled as a process of node removal from a dy-
namic network, where some of the disruption strategies
assume full knowledge of the network. New players are
not introduced, but once a node has been eliminated, the
network is allowed to “recover” and links among nodes
may readjust. The authors found that interventions are
most effective at the very early stages of the disruptive
process, since, in the long run, perturbations and reorga-
nizations lead to a more robust and resilient network. In
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The Recruitment Process

Figure 1. A simulated recruitment process for t = 0, 1, 2, 3. The network starts with a single kingpin, depicted as a large dark
purple circle, and then evolves according to the preferential attachment mechanism described in the text. Here, the number of
new criminals introduced into the network is given by the recruitment index k = 5. The yellow, small nodes represent criminals
without underlings, and will be referred to as street criminals. Of these, the nodes with the darker boundary are those freshly
recruited at the given time step. For example, the number of street criminals when t = 3 is 9, of which five are new recruits.
Intermediate level criminals are depicted as medium-sized red circles.

other work, data from well-known transnational terror-
ist and criminal networks were used to simulate different
disruption strategies, comparing the removal of “bridge”
and “hub” nodes [17]. All models described above offer
insight into fully visible or dark network disruption, but
none of them factor in growth or recruitment.

The goal of this paper is to fill this void and to study
criminal networks as they expand, in an effort to in-
crease reach and profitability, while law enforcement en-
gages in their suppression. Different types of networks
can be studied, such as white-collar, racketeering or ter-
rorist organizations; for concreteness we focus on verti-
cally organized crime networks, such as the Central and
South American drug cartels whose constituents are usu-
ally structured by ranks of influence, seniority and ac-
tivity [18–21]. We thus study disruption strategies on
hierarchical, growing, dark criminal networks. Within
the context of this work, a hierarchal criminal network
is defined to be one where every criminal has precisely
one link to a more senior member, except for the orga-
nization’s head, whom we refer to as the kingpin. The
network links are thus assumed to be professional con-
nections, not social ties. Concurrent to law enforcement
eradication attempts, we include a mechanism for crimi-
nal recruitment. As we shall see, the hierarchal structure
and the interplay between the two antagonistic trends –
recruitment and disruption – lead to interesting dynam-
ics and implications on the optimal strategies to be used
in eradicating the criminal organization.

To model recruitment we use a variation of preferen-
tial attachment models that were originally proposed to
study the topology of the internet [22, 23] and that are
now implemented in a variety of contexts [22–29]. The
central assumption, roughly speaking, is that the “rich
get richer”, meaning that webpages with many existing
links are more likely to be connected to newly introduced

ones. We use these preferential attachment models to
guide the design and analysis of our recruitment mech-
anism. Particularly useful is the notion of a “social dis-
tance” [24, 30] that we will use to model criminal recruit-
ment. Here, each node of a static network is associated to
a set of socially relevant features such as profession, reli-
gion or location that can be used to construct an ad-hoc
metric quantifying the “social” distance between nodes,
and that can be different from the topological distance.

The aim of law enforcement is to disrupt and possibly
eradicate the criminal network by capturing the kingpin,
as successfully accomplished by the Colombian govern-
ment in collaboration with the Drug Enforcement Ad-
ministration (DEA) in the case of the Medelĺın cartel
[31]. According to the DEA, a major factor leading to
the collapse of Pablo Escobar’s drug organization was
the so called “kingpin strategy”, where the senior car-
tel members overseeing network operations were specifi-
cally targeted. The Mexican government is pursuing the
same strategy in its current war on drugs against the
Sinaloa, Gulf, Juarez, Tijuana, Beltran Leyva and Guer-
reros Unidos cartels [32], although with mixed results.
The arrest mechanism we utilize draws on probabilistic
node and link removal processes including cascades that
arise when the elimination of a single node triggers the
removal of others. Node removal cascades are often used
to model wireless networks and power grids where the
failure of a tower may isolate others [33, 34]; they have
also been adapted and used to model contagion [35], neu-
ronal [36–38], and terrorist networks [39]. In this work,
we will taylor node removal processes to represent crim-
inal arrest by law enforcement.

While all the applications described above are not nec-
essarily related to organized crime, we will draw upon
these many different perspectives to best model criminal
recruitment and dark network disruption on the model
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we describe below.

II. OVERVIEW

In this section, we present an overview of our dynam-
ical, hierarchal criminal network stemming from a so-
called kingpin. Our model alternates between two key
processes: the recruitment of criminals to the network
and the concurrent, antagonistic pursuit and disruption
by law enforcement.
To recruit new criminals into the network, we use a

preferential attachment mechanism, a schematic of which
is shown in Fig. 1. Criminal nodes are added to the net-
work at a constant rate, each forming a link to a more
senior member. Here, we assume that there is a large
pool of potential new members the criminal network can
recruit from, as documented for Central and South Amer-
ican drug cartels [19–21, 40–42]. We assume the entire
network structure to be initially hidden to law enforce-
ment except for the visible “street-level” criminals at the
end of the network that do not have any further under-
lings. These street criminals are the ones that are the
most directly involved in drug dealings while more nested
members of the hierarchy are assumed to act more like
masterminds: the higher up a criminal is in the network,
the less likely he or she is to overtly engage in criminal
enterprises, effectively shielding themselves from crimi-
nal implications [18, 42]. We thus assume that police
intervention must begin from street criminals, later pro-
gressing to higher nodes, so that the network structure
becomes visible to law enforcement gradually, in a node
by node fashion.
The distance between a given criminal node on the

network and visible street-level activity is defined as the
smallest number of connections separating the given node
from any street criminal. The closer a criminal is to vis-
ible street-level activity, the more vulnerable he or she
is to detection and arrest. As such, senior criminals
will seek to maintain a buffer between themselves and
street criminals [43–45]. Due to their visibility, the latter
are assumed to have greater access to potential recruits
and to aggressively seek new underlings in order to avoid
their own exposure to law enforcement. Combining these
two heuristics, we posit that within the recruitment pro-
cess, prospective criminals are most likely to establish a
link with street criminals, rather than with more nested
members of the criminal hierarchy. This description of
recruitment is echoed in Refs. [18, 40, 42, 46, 47], and
a precise mathematical formulation will be given in the
next section.
As mentioned above, law enforcement agents can pur-

sue the kingpin starting only from street criminals, pro-
gressively moving to more nested, connected links. We let
each node encountered by law enforcement to be subject
to an “investigation,” and impose that the overall mo-
tion of an agent be represented by a self-avoiding random
walk. Since agents have access to incomplete or inaccu-

This model Network theory

Kingpin Root
Underlings of criminal j Children of node j
Criminal network Rooted directed tree
C(t): Criminals (including
kingpin) at time t

Vertices or nodes (including
root) at time t

S(t): Set of criminals with-
out underlings

Set of leaves at time t, i.e.
nodes of out degree 0

Table I. A table comparing the terminology used in this paper
and that of standard network theory.

rate information, their movements may appear random
to an observer with perfect information of the organi-
zation’s layout. At any point during the pursuit, the
criminal under investigation can be “arrested” with all
of its associated underlings. Although we refer to node
removal as arrest, the latter may represent exile, extra-
dition, or assassination [48, 49]. By removing criminals
from the network, the kingpin becomes more vulnerable
to future capture. However, since the overall structure of
the network is unknown to law enforcement, the random
walk may also lead to a dead-end: in moving from node
to node, the officer may reach a new street criminal with-
out underlings, with no further investigation possible. In
this case, the pursuit is terminated and deemed unsuc-
cessful. If instead the kingpin is reached and arrested,
the criminal network is assumed to be eradicated.
While our modeling assumptions are necessarily sim-

plified for mathematical analysis, they are motivated
from in-the-field methodologies and outcomes used by
governmental agencies. For example, when the DEA
employs its “buy and bust” strategy to bait high level
drug traffickers [50], certain metrics are used to assess the
value of a possible arrest, including the criminal’s influ-
ence and the likelihood of reaching the kingpin [42]. On
certain occasions these sequences of investigations lead
to the arrest of high ranking drug traffickers [51], while
in other circumstances they yield dead-ends, resulting in
public embarrassment [52].
Finally, before illustrating our recruitment and arrest

model more in detail, in Table I we list standard network
terminology and the corresponding nomenclature used
here, for context. For example, in standard network ter-
minology, our network is a tree, the street criminals are
the leaves and the kingpin is the root.

III. RECRUITMENT

We now focus on the mathematical aspects of the recruit-
ment process. We start with an initial criminal network
formed solely by the kingpin. The network evolves recur-
sively so that at time t it contains a set C(t) of criminals,
including the kingpin. Of these, the subset S(t) denotes
street criminals, those without any underlings. We also
introduce the metric dist(j; t) to denote the distance sep-
arating criminal j from street activity and defined as the
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Parameter Description

t Time
k Recruitment index – number of new

criminals added to the network at
each time step

a Node weight parameter in w(j; t).
n Number of criminals on network at

time t, n = kt+ 1

Table II. The parameters of the recruitment mechanism.

minimum number of links between criminal j and any
other street criminal in the hierarchy beneath it. At ev-
ery time step increment, from t to t + 1, we add k new
recruits to the network according to a preferential at-
tachment mechanism. Every node j is assigned a weight
w(j; t) to quantify the relative likelihood that it will link
a new criminal underling. Since, as discussed above, a
plausible assumption is that street criminals are the most
likely to recruit new criminals into the organization, we
let w(j; t) be inversely proportional to the distance be-
tween j and S(t) so that

w(j; t) =
1

dist(j; t) + a
, (1)

where a is a parameter, which we set to a = 1 for simplic-
ity. With these choices, w(j; t) embodies the proximity of
criminal j to visible street-level activity on a scale from
zero to one, with one being the closest possible. If crimi-
nal j is a street criminal, then dist(j; t) = 0 and w(j; t) =
1/a = 1, the maximum possible value. On the other
hand, as the network keeps growing, higher level nodes
can become progressively detached from street activity,
so that in principle dist(j; t) → ∞ and w(j; t) → 0. Note
that the choice a → ∞ leads to a uniform weight w(j; t)
for all criminals. In this case, the recruitment process can
be described as the growth of a recursive tree [27, 28]. On
the other extreme, the choice a → 0 would restrict the re-
cruitment process exclusively to street criminals, barring
higher ranking criminals from adding subordinates. Our
decision to use a finite, non zero value a = 1 ensures that
recruitment is not exclusive to S(t).

After evaluating w(j; t) for all existing nodes, we it-
eratively introduce k new criminals to the network. We
add them one by one to nodes that are selected according
to the relative weights w(j; t). Note that each existing
criminal can add multiple underlings within a single time
step, since the recruitment of one new member does not
exclude the possibility of a different new member being
recruited by same criminal. We call k the recruitment
index. In Fig. 2 we depict a particular network configu-
ration, including the explicit weights w(j; t) assigned to
each criminal j.

The Criminal Network and w(j; t)

Figure 2. The criminal network at t = 3 with the values of
w(j; t) explicitly shown. Here, the recruitment index k = 5
and the initial configuration was that of a single kingpin. All
criminals j within S(t) have weight w(j; t) = 1 since on these
nodes dist(j; t) = 0.

Figure 3. The out degree distribution P∞(d) of nodes on a
criminal network determined from numerical simulations for
t → ∞. The three curves correspond to recruitment indices
k = 1, 10, 20. Simulations were terminated when the total
number of criminals exceeded 5 × 103. All curves for P∞(d)
are averaged over 100 runs. The tail of the degree distribution
is noisy due high degree nodes occurring sporadically. Run-
ning the simulations for longer times will extend the range of
the domain in d, but not the form of P∞(d). We conjecture
the degree distribution to follow an exponential law indepen-
dent of k, and fit it to a decaying exponential distribution as
discussed in the text. The value for P∞(d = 0) = 0.39 for all
values of k.

A. Out Degree Distribution

We can now investigate the statistics related to our re-
cruitment model. First, we explore how the total num-
ber of underlings a criminal has varies throughout the
network, i.e. we analyze the out degree probability distri-

bution. By out degree we indicate the number of nodes
in the hierarchy directly beneath a criminal, excluding
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higher nodes from the enumeration. For example, in
Fig. 2 the out degree of the kingpin is 5 criminals. Of
these five, the upper left two have out degree one and
the other three have out degree two. We do not impose
any limitations on the number of underlings connected to
any given node, either directly or indirectly. In principle
thus, a node can have an infinitely large number of sub-
ordinates. However, due to the choices made in modeling
the attachment weights w(j; t) we expect that as the or-
ganization grows and more senior criminals become more
entrenched within the network, their likelihood of adding
new recruits decreases in favor of criminals that are closer
to street activity. As a result, we expect our organized
crime network to grow several hierarchal levels and to
have a few key players, such as the kingpin, who directly
oversee a relatively large number of criminals while the
rest have at most one or two underlings that “report”
to them. We introduce the time dependent out degree
probability distribution P (d; t) for a randomly selected
node to have d direct underlings at time t. At the on-
set of network growth, when the only criminal present is
the kingpin, P (0; 0) = 1. As the number of added nodes
n = kt+1 increases, we conjecture that for large enough
d, P (d; t → ∞) can be approximated via an exponential
form

P∞(d) ≡ P (d; t → ∞) = c1e
−c2d, (2)

for constants c1, c2. Following the above discussion on
the nature of w(j; t), we expect that as t → ∞ most of
the new underlings will be connected to existing street
criminals, resulting in P∞(d = 0) ≃ P∞(d = 1). Us-
ing this approximation and Eq. 2 for d ≥ 1, we expect
c1, c2, P∞(d = 0) to be related by

c1 ≃ [1− P∞(d = 0)](ec2 − 1). (3)

In Fig. 3, we grew the network to 5 × 103 criminals and
found Eq. 2 to accurately describe the out degree dis-
tribution for d ≥ 1, with Eq. 3 being accurate to first
approximation. We also varied k between 1 and 20 and
did not notice substantial variations in fitted parameter
values. Moreover, we considered smaller sized networks
(not shown here) with 500 criminals and found that Eq. 2
still described the data well. These results suggest that
at large times, network structure is independent of its
rate of growth. In particular, as t → ∞ our results
show that the probability that any given node has no
underlings is given by the k-independent, universal value
P∞(d = 0) = 0.39. The average out degree d is given by

〈d〉 = c1

∞∑
d=1

de−c2d =
1− P∞(d = 0)

1− e−c2
. (4)
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∼γ(29.2,0.4,−6.7)
t=200

∼γ(29.3,0.5,−7.1)
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∼γ(32.6,0.5,−8.1)

Figure 4. The distribution of criminal position relative to
the kingpin after 100 runs. The three curves represent the
different times t at which the recruitment was stopped. Here,
t = 100, 200, 300. The recruitment index was set at k = 5
and the initial configuration of the network was that of the
single kingpin. The probabilities were fit using the shifted
gamma density ρα,β,s(y) found in Eq. 5 and with parameters
γ(α, β, s) specified in the legend. Similar shaped curves arise
for larger values of k.

B. Criminal Density and Position

We now investigate how criminals are positioned relative
to the kingpin, at the core of the network. We expect
the distribution of criminals relative to the kingpin to
become more uniform as the network grows in scale. In
Fig. 4 the recruitment process is stopped at a fixed time
t, when we measure ρ(y), the ratio of criminals at a dis-
tance y from the kingpin with respect to the total number
of nodes. Our measured ρ(y) is then fitted to a shifted
gamma probability density, the continuous analog of neg-
ative binomial distribution [53] and given by

ρα,β,s(y) =
βα

Γ(α)
(y − s)α−1e−β(y−s) (5)

for y > s and α > 1. Our choice was motivated by the
fact that this distribution is supported only on a portion
of the horizontal axis. Using the fitted values of ρα,β,s(y)
the probability that a criminal is a distance y from the
kingpin can be estimated as

∫ y

s

ρα,β,s(y
′) dy′. (6)

From Fig. 4 we note that as t increases, the average dis-
tance from the kingpin increases and that the distribu-
tion of criminals becomes broader, as can be expected.
We also used different initial conditions, starting the re-
cruitment process on given, already established networks
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Figure 5. (Top) Number of street criminals s(t) as a function
of time for recruitment rates k = 10, 50, 100. In each case, the
recruitment process was terminated when the total number of
criminals exceeded 5 × 103 and averaged over 100 runs. We
fit the data to s(t) = rst + 1 and expect rs ≃ P∞(d = 0)k
with the universal factor P∞(d = 0) = 0.39. This scaling is
confirmed by the fitted values of rs as can be seen from the
values shown in the legend. (Bottom) The slope values rs as
a function of k with the rs values in the top display shown in
dark symbols. This data is then linearly fit as shown in the
bottom legend, confirming our conjecture rs ≃ P∞(d = 0)k.

and found that, at long times, the shifted gamma prob-
ability density remained a valid approximation for ρ(y).

C. Street Criminals

In our model, street criminals are the nodes in S(t) with-
out any underlings. We assume theirs is the only activity
to be visible to law enforcement making street criminals
the most vulnerable to arrest. At the same time, due to
the choices made for w(j; t), street criminals also have
the highest probability of recruiting new members into
the organization. Since the network grows linearly in
time, we expect the total number of street criminals s(t)
to increase accordingly, and that the proportion of street
criminals with respect to the total number of nodes will
remain fixed at the universal value P∞(d = 0) = 0.39 as
shown in Fig. 3. In Fig. 5 we plot s(t) and fit the data to
a linear form s(t) = rst+ 1, where the unitary intercept
is chosen since at t = 0 the only criminal present is the
kingpin, who does not have any underlings yet. We ex-
pect rs ≃ P∞(d = 0)k as verified in the lower panel of
Fig. 5.
We can also write an iterative equation for s(t + 1)

Figure 6. Schematic of the addition of new nodes from time t
to time t+ 1. Here, k = 5 and the new nodes are depicted in
light color. The addition of a street criminal to a more senior
one, represented by the node surrounded by a solid ring on
the lower left hand side, will increase s(t+1) by one unit with
respect to s(t). Vice-versa, the addition of a new node to an
existing street criminal, as shown by the nodes surrounded
by the dashed circles, will not change the number of street
criminals, since for every new member of S(t + 1), one from
S(t) will be removed.

[54, 55]. At a given time t the likelihood of adding a new
street criminal to the network is given by the probabil-
ity of adding a new node to a senior criminal, one that
already has underlings. Conversely, the net number of
street criminals will not change upon adding a new node
to existing street criminals, since for every new street
criminal added to the enumeration, there will be one that
will be removed, having added a new underling. This is
illustrated in Fig. 6. The weight associated to adding a
new node to a senior criminal is given by

∑
j∈[C(t)−S(t)]

w(j; t) =
∑

j∈C(t)

w(j; t)−
s(t)

a
(7)

since the number of street criminals is s(t) and their
weight is given by 1/a. The total probability of adding a
criminal to a senior node is thus given by Eq. 7, normal-
ized with respect to the total weight

∑
j∈C(t) w(j; t). We

can now write our iterative equation for s(t + 1). The
number of added new street criminals is given by the
probability of adding a street criminal to a senior one as
described above, multiplied by the total number of avail-
able new criminals at each time step, given by k. Using
a = 1 we find

s(t+ 1) ≃ s(t) +

∑
j∈C(t) w(j; t)− s(t)∑

j∈C(t) w(j; t)
k. (8)

We can use this relationship to heuristically determine
the weight of the entire tree

∑
j∈C(t) w(j; t) at long times.
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Figure 7. The total weight of the network
∑

j∈C(t) w(j; t) as a

function of time averaged over 100 runs for k = 10, 20, 30, 40.
At the onset the network consisted of the kingpin alone; sim-
ulations were stopped when the total number of criminals ex-
ceeded 5 × 103. We fit the data to a linear form Wt + w0

and find that the extrapolated values of W shown in the
figure legend are in excellent agreement with the ones pre-
dicted from Eq. 10, given by W = 6.39, 12.79, 19.18, 25.57 for
k = 10, 20, 30, 40, respectively.

The latter can be assumed to scale linearly, since the total
number of members of the network grows at the same
rate, and at least a fraction of nodes P∞(d = 0) will
be associated to a finite, unitary weight. We thus posit∑

j∈C(t) w(j; t) ≃ Wt as t → ∞. We also use s(t) ≃ rst

as t → ∞ so the recursion relation Eq. 8 at long times
becomes

rs ≃
W − rs

W
k, (9)

yielding

W ≃
krs

k − rs
≃

kP∞(d = 0)

1− P∞(d = 0)
, (10)

and where the last term is obtained via rs ≃ kP∞(d = 0).
In Fig. 7 we plot the total weight of the network as a
function of time for k = 10, 20, 30, 40 and find that it
scales linearly, as we had assumed. We also find that the
corresponding numerical fits yield good agreement with
the estimates from Eq. 10.

IV. POLICE PURSUIT

In this section, we introduce police agents to our model
and describe the pursuit mechanisms they are engaged in
on a network that is concurrently growing in time. The
ultimate goal of law enforcement is to reach the kingpin,

capture him or her, and dismantle the expanding criminal
organization. The ultimate goal of the criminal enterprise
is to expand as much as possible. As discussed earlier, it
is reasonable to assume that the global structure of the
network is unknown to law enforcement agents who can
begin their “investigative” activities only at the bottom
of the network, populated by street criminals. Once a
criminal network is formed, at every time step t we choose
a random street criminal in S(t) as the initial search node
for the officer. This street criminal is now considered to
be under investigation. The officer can decide whether
to “arrest” the criminal in question or move to one of
its associates, chosen among the nodes that are linked
to the current suspect. In the next subsection we will
illustrate three different ways of making this strategic
decision. For now, we note that if the choice to arrest
the current suspect is made, the latter is removed and
this particular investigative round at time t is complete.
If the choice to migrate to a linked criminal is made, the
pursuit continues: the officer is now faced with the same
decision on whether to arrest or continue investigating.
We impose that a node that has already been visited by
law enforcement cannot be visited again. A sequence of
investigative choices thus lead to a self-avoiding random
walk on the criminal network at time t. The pursuit
ends if an arrest is made or if the officer reaches either
the kingpin or another street criminal.

If the kingpin is reached, we consider the attempts of
law enforcement to be successful: the criminal organi-
zation has been dismantled at time t and the process is
terminated. Vice-versa, if the investigative unit ends on
another criminal in S(t), we consider law enforcement
intervention at this time to have failed: no arrests will
be made, and the network stays unchanged. Finally, if
law enforcement decides to perform an arrest on a given
node, all of its underlings in the hierarchal structure will
be removed as well. Note that since the node at which
the arrest takes place can be a few links removed from
the original starting point, an arrest does not necessarily
imply that the first street criminal to be investigated will
be removed as well. The case of an arrest may be con-
sidered a partial success, since eliminating a few nodes
on the hierarchical structure may make the kingpin more
vulnerable in future time steps. After the pursuit phase
at time t is completed and assuming the kingpin has not
been reached, the criminal network is grown according to
the recruitment methods described in the previous sec-
tion. Pursuit and recruitment are then iterated at time
t+ 1 and until the network reaches a given size n∗, with
the network evolving dynamically in time. Note that
since at the onset of our simulation the only criminal
present is the kingpin, we do not introduce the police
pursuit at time t = 0, since the kingpin would be ar-
rested immediately and the criminal organization would
not grow. Rather we consider an existing network, as
shown in Fig. 8 for a full ternary tree of height three with
forty criminals, as the initial configuration on which the
pursuit is started. A full ternary network is one where
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all nodes, except street criminals, have exactly three un-
derlings. A complete ternary network is one where all
nodes, except street criminals and the nodes immedi-
ately above them, have exactly three underlings. We use
these full or complete networks as initial conditions for
an “unthreatened” criminal organization, prior to police
intervention, and assume that once law enforcement in-
vestigations have begun the network grows according to
the recruitment rules described in the previous section.
Our pursuit model could be adjusted to model differ-

ent scenarios. For instance, a biased random walk might
be more appropriate to describe the motion of law en-
forcement if disruptors are privy to intelligence regard-
ing the hierarchical criminal structure, or they may wish
to re-investigate criminals during their pursuit based on
incoming information.

A. Pursuit Strategies

We now discuss the possible strategies that law en-
forcement may employ when deciding whether to arrest
a criminal or continue investigating other, neighboring
nodes. As already discussed, the police is assumed not
to have full knowledge of the entire organization but
only of the criminals under investigation and their linked
nodes. Because this is a dark network, the pursuit pro-
cess may be unsuccessful with law enforcement reaching
street criminals that are low on the criminal hierarchy,
representing a dead-end.
The first possible pursuit method we consider is the

fixed investigation number strategy, where starting from
a given street criminal, a disruptor will investigate p suc-
cessive nodes before making an arrest, assuming it has
not encountered any new street criminals along its self-
avoiding random walk. This strategy will be denoted by
QA(p). The second method is the minimum out degree
strategy, where law enforcement officials will keep inves-
tigating until a node of at least out degree q is reached,
similarly assuming the self-avoiding random walk does
not lead to other street criminals. In this case, it is as-
sumed that police agents are seeking to maximize the
influence of the criminal to be arrested, since the higher
q is, the more direct underlings the suspect will be affil-
iated to. We denote this strategy by QD(q). Finally, we
consider the persistent investigative strategy where the
pursuit is stopped only upon reaching the kingpin or a
dead-end street-criminal. This third and final strategy
will be denoted by QI . In Fig. 8, we show a disruptor
pursuing strategy QA(q = 3) on an initial full ternary
tree of height three.
The above pursuit strategies reflect certain real-world

objectives of law enforcement. QA(p) for example, may
be used by agencies that regularly make arrests, possibly
after investigation resources have been depleted, to show
results to the general public in order to garner support
[56]. Signaling the presence of authorities via periodic
arrests may also serve to deter the network’s growth [57].

QD(q) may reflect the oft-pursed strategy of capturing
high ranking criminals to optimally disrupt strong hi-
erarchical operations [42, 50]. Lastly, QI can represent
law enforcement’s choice to minimize violence. Since the
arrest of a high ranking criminal could lead to deadly
confrontation or to a network’s violent reorganization,
keeping all investigative operations covert until the king-
pin is reached may generate the least violence [18, 48]. Of
these strategies, we expect QI to be the most expensive,
as it either eradicates the network by kingpin capture or
the network is left untouched. Since no intermediate ar-
rests are performed, the network can effectively grow as
if law enforcement were not present until the kingpin is
reached. The above strategies are related by

lim
p→∞

QA(p) = lim
q→∞

QD(q) = QI , (11)

QA(1) = QD(1). (12)

Note that as the parameters p and q increase, the chosen
strategies become more and more covert and demanding,
involving more investigations and aiming at higher level
arrests, so that QA and QD approach QI . Also, note
that under strategy QA(1) law enforcement will remove
the node directly above the street criminal selected as the
initial investigative point. This is the same result that
would arise from strategy QD(1), since all nodes above
street criminals have at least one linked criminal, i.e. the
street criminal itself.
We can evaluate each strategy’s performance for sev-

eral recruitment indices k using numerical simulations.
Runs were continued until either the kingpin was ar-
rested, eradicating the criminal network, or the king-
pin was not arrested and the network exceeded a total,
given population size n∗. The latter scenario represents
the case of a vast organization permeating all society.
In Fig. 9 we plot the network eradication probability for
QA(p), QD(q) and QI as a function of the recruitment
index k, for various choices of p, q and for various thresh-
olds of criminal population n∗. In all cases, as can be ex-
pected, the probability of capturing the kingpin decreases
with k, as the rate of adding new criminals becomes faster
than any disruption attempts by law enforcement. We
also define Beat(Q), the “beat number” of strategy Q,
as the maximum recruitment index k of the network for
which law enforcement will reach the kingpin with unit
probability across the simulations performed. The eradi-
cation probabilities and Beat(Q) depend on the total size
of the network n∗ as can be seen from Fig. 9. Beat(Q)
increases with n∗ especially for small and intermediate
values of k. Here, growth occurs at a relatively slow rate
and although increasing n∗ allows for more criminals to
join the organization, there will also be a relatively large
number of police pursuits during the slow dynamics, al-
lowing for greater eradication probabilities. Given a fixed
value of n∗, we can compare different strategies and their
results. From the left hand panels of Fig. 9 that illustrate
results for the fixed investigation number strategy QA(p)
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Figure 8. The pursuit process as described in our text. We start the network as a full ternary tree of height three with forty
criminals, as shown by the light colored nodes. (Left) At time t = 1 a law enforcement agent begins an “investigation” from
the highlighted yellow criminal on the lower right branch of the network, without having full knowledge of the network. The
investigative trail involves three other nodes, highlighted in red and linked by a self-avoiding random walk, marked by a solid
line. The last node, surrounded by a dark ring, is the criminal that is arrested. (Right) Once a criminal is arrested and removed
from the network all related underlings in the hierarchy are removed as well. In this case, all removed nodes are depicted in
blue and have a darker boundary. We note that not all criminals arrested were investigated and vice-versa.

we note that for large k values the eradication proba-
bility increases with the number of investigations p. In
this case the network is rapidly expanding and allowing
more investigations before an arrest is made also allows
for the possibility of arresting senior, highly nested crimi-
nals with many underlings, greatly undermining network
structure and size. For small values of k few criminals
are added at each time step and each node will have few
underlings. Small values of p restrict law enforcement
to activity close to street level, where nodes have low
hierarchical value and allow for modest but progressive
node removal. Increasing p, when p is small, is beneficial
as can be seen by comparing the p = 1, 2 curves. How-
ever, when k is small, increasing p to larger values may
not be the best strategy: since each node has few un-
derlings, higher values of p increase the possibility that
the self-avoiding random walk performed by law enforce-
ment reaches a dead-end, effectively leaving the network
untouched. This is the case for example for QA(p = 6)
and QA(p = 8) for which the eradication probability is
smaller than for QA(p = 1) and QA(p = 2) for small
k values. Similar trends arise for the minimum out de-
gree strategy QD(q) as shown in the right hand panels of
Fig. 9. Here, for large values of k the best strategy is to
set a target of relatively large q before performing an ar-
rest, while for lower values of k moderate q values are pre-
ferred, due the possibility of reaching dead-ends during
the pursuit. The intermediate panels in Fig. 9 show re-
sults stemming from the persistent investigative strategy
QI , which corresponds to QA(p → ∞) and QD(q → ∞).
Comparing the respective panels of Fig. 9 shows that the

optimal approach from the perspective of law enforce-
ment, whether engaged in the fixed investigation number
pursuit QA(p) or in the minimum out degree strategy
QD(q), is to adjust arrest criteria to an optimal p∗ or q∗

depending on the recruitment rate k, if this variable is
known or estimates are available.

The results discussed so far depend on initial condi-
tions, which can be chosen to be any full or complete
tree with b branches and height h. To analyze different
initial conditions, we can vary the values of b, h that de-
scribe the “unthreatened”, police-free tree. Note that full
trees have a total number of (bh+1− 1)/(b− 1) criminals;
the case of a full ternary tree of height three discussed
above corresponds to b = h = 3 with forty initial crim-
inals. For a fixed number of criminals, the larger b, the
smaller h and the less hierarchical the initial tree is. The
choice of b = 1 is the limiting case of a linear chain:
here, strategy QD(q > 1) will lead to a unitary eradica-
tion probability since all nodes will have out degree one
and at the onset of the pursuit phase law enforcement
will proceed until the kingpin is reached, regardless of
the number of total criminals and of h. The eradication
probability decreases on a binary initial tree with b = 2,
since now dead-ends may be encountered. Further in-
creasing b leads to diminishing eradication probabilities
due to the possibility of more unsuccessful pursuits. Once
a sufficiently large value for b is reached however, h will
be small enough, that reaching the kingpin may become
more feasible. These two opposing trends are expected
to lead to a minimum in the eradication probability. We
find the critical value of b at the threshold between the
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Figure 9. The network eradication probability as a function of the recruitment index k, obtained by averaging over 10,000
simulations for different strategies. We consider a total population of n∗ = 500, 1000, 2000 individuals and halt our simulations
when the criminal network reaches this size. We specify the Beat(Q) of each strategy as the maximum value of the recruitment
index k for which the network is eradicated with probability one, over all simulations. Note that QI is the limiting strategy
for QA(p → ∞) and QD(q → ∞). Our results reveal that the optimal strategy for fast growing networks with large k is to
use investigative strategies with large values of p, q while for slower growing networks with small values of k, moderate values
of p, q yield higher probabilities of eradicating the network. Note that curves for QA(p = 1) and QD(q = 1) are the same and
that the QI curve is the limit for QA(p → ∞) = QD(q → ∞).
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Figure 10. Varying initial conditions prior to law enforcement intervention. (Left) Eradication probabilities on a complete
initial tree with b branches and forty criminals for k = 30 and law enforcement strategy QD(q = 3). On a linear chain (b = 1)
the eradication probability is one, since no dead-ends will be reached. Increasing b allows for more dead-ends to be encountered
so that the eradication probability decreases until a threshold value of b when the height of the network becomes small enough
to allow for easier access to the kingpin. Here b = 3. (Right) Eradication probabilities using full initial trees with b branches
and height h as initial conditions and using strategy QD(q = 3). The initial number of criminals is (bh+1

− 1)/(b − 1). For
all values of k eradication is higher for lower values of b, h indicating that best results will be obtained with law enforcement
intervening on initially contained networks, as can be expected. Qualitatively similar results arise for other strategies QD(q)
and QA(p).

two trends to depend on the initial number of criminals.
In the left hand panel of Fig. 10 for example we show the
eradication probability for QD(q = 3) on an initial net-
work of forty criminals with varying b and with a fixed
value of k = 30. The complete trees we created were as
regular as possible, with all second-to-last nodes sharing
the same number of underlings as possible. The choice
b = 3 is the full ternary tree case we have analyzed in
detail above. Note the minimum for intermediate values
of b. Similar trends arise also for QA(p) although the de-
crease in the eradication probability is less pronounced
for small b. In the middle and right hand panels of Fig. 10
we consider initial networks made of full trees with fixed
b and varying h and vice-versa. We expect increases in
b or h to lead to lower eradication probabilities since the
number of initial criminals will be larger. In the middle
panel of Fig. 10 we show an initial network of height h = 4
with branching b = 1, representing a chain of criminals,
with b = 2, representing a binary tree, and with b = 4
representing a quaternary one. As expected, the eradi-
cation probability decreases with k for all b, and with b
for fixed k. On the right hand panel of Fig. 10 we find
similar results for an initial full binary tree with b = 2
and with heights h = 2, 4, 6. The eradication probability
decreases with k for all h, and with h for fixed k as well.

B. Strategic Costs and Time to Eradication

In the previous subsection, we implicitly assumed that
all pursuit strategies could be conducted with any value
of p, q indistinctly. Here we quantify the efficiency of var-

ious investigative methods by associating a cost measure
to each of them. We assume that investigating crimi-
nals requires the expenditure of societal resources, while
arresting criminals can be considered a gain, since an ar-
rest will weaken the criminal network and the prospect
of future crime will lessen. We thus evaluate cost as the
number of investigations performed by law enforcement
within a given pursuit phase minus the number of crim-
inals removed within the same pursuit, if this difference
is positive. Otherwise, if the number of investigations is
lower than the number of arrests, we let costs be zero.
For example, in the left hand panel of Fig. 8 four nodes
are investigated, the street criminal (depicted in yellow),
and three senior members (depicted in red). During the
arrest phase, in the right hand panel of Fig. 8, four crim-
inals are eliminated (depicted in blue). At this iteration,
the costs associated with investigating four criminals are
balanced by the benefits associated with removing four
criminals, so we tally costs as zero. Total costs are then
calculated as the cumulative cost required to reach the
kingpin throughout the duration of the simulation, as-
suming the network is eradicated. If the network is not
eradicated, we can still record the cumulative costs until
the entire population n∗ has joined the criminal organiza-
tion. However, we do not discuss cases where the kingpin
is not reached, since here costs will be proportional to the
number of rounds until the n∗ criminals are incorporated
in the network. Note that dead-ends in this context are
very expensive, since there are no net gains in a pursuit
that leads to no arrests. In the upper panel of Fig. 11 we
plot the total cost incurred by authorities conditioned on
the network being dismantled for a total population size
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Figure 11. (Top) Costs incurred by law enforcement conditioned on kingpin capture as a function of the recruitment index k.
Shades in the data points represent the probabilities of network eradication. We considered 10000 simulations and allowed the
network to grow to n∗ = 1000. Note the emergence in maxima for all curves, due to the conditional nature of cost evaluations.
As k increases, the network grows more rapidly and so does the number of investigations necessary for eradication. Upon
reaching a threshold in k, eradication becomes less likely especially in the latter growth stages so that for large enough k either
the kingpin is captured in the early stages of network growth, with little costs, or it will never will be. The requirement for
quick capture with growing k for large k is associated with decreases in the cost function, leading to the maxima in k. (Bottom)
The mean eradication time as a function of k for various strategies. Similarly as for the above panel, the conditional nature of
the process is manifest from the emergence of maxima in all curves. Note that curves for QA(p = 1) and QD(q = 1) are the
same and that the QI curve is the limit for QA(p → ∞).

n∗ = 1000 and for various pursuit methods QA(p) and
QD(q) starting on an initial full ternary tree. We also
depict the probability of kingpin capture and criminal
network eradication as shades in the data points. Costs
are identically zero for QA(p = 1) and QD(q = 1) since in
these cases there will be two investigations and two crimi-
nals removed at every time step. Similarly, costs stay low
for low values of p, q across both strategies. For example
for both QA(p = 2) and QD(q = 3) total expenditures
are very small, indicating that the number of investiga-
tions is at most comparable to the number of criminals
removed throughout the entire network evolution.

For intermediate values of p, q we note that curves in
the upper panels of Fig. 11 are monotonically decreasing,
as can be seen for QA(p = 3), QA(p = 4) and QD(q = 4).
To understand this behavior, we note that several dis-
tinct trends arise upon increasing k for small values of k.

On one hand, the likelihood of reaching costly dead-ends
increases. Here, larger values of k represent faster net-
work growth, with more nodes being added at every time
step. Each criminal is thus linked to a greater number
of underlings and the probability of moving higher up in
the hierarchy decreases. In this case, it is very likely for
law enforcement to eventually reach a dead-end, and for
costs to increase. On the other hand, if dead-ends are
not reached and arrests are performed, larger k values
imply that more underlings will be eliminated per pur-
suit, leading to decreasing costs. Of these two trends,
for intermediate values of p, q, the most important is the
greater elimination of criminals with increasing k. Here,
pursuits are short-lived so that the self-avoiding random
walks performed by law enforcement have a slightly lower
chance of incurring in dead-ends, compared to higher
values of p, q. As a result, the number of criminals ar-
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rested at each time step is contained, but almost always
will criminals be arrested, leading to the monotonically
decreasing curves in the upper panels of Fig. 11. Con-
versely, as p, q increase further, pursuits are longer with
dead-ends becoming more likely and more costly, failing
to limit network growth. Here, increasing k for small k
leads to higher costs, as can be seen from the QA(p = 5)
and QD(p = 5), QD(p = 6) curves. Note that the same
trend arises for QI , which is the limiting behavior for
QA(p → ∞) and QD(p → ∞). As k increases even fur-
ther, although the likelihood of reaching dead-ends in-
creases, the gains in eliminating more criminals prevails
and all curves show decreasing costs with increasing k
leading to a maximum for intermediate p, q.

These behaviors are valid for small and intermediate
values of k, when the likelihood of eradication is almost
unitary. Beyond a certain threshold in k however, the
eradication probability decreases for all choices of p, q
and the probability that the entire society is taken over
by organized crime increases. In this case, either the
network is eradicated at its early stages of growth, or
it will never be. Compounded with the above consider-
ations, the decrease in the cost curves for all values of
p, q for large k are indicative of the conditional nature of
the process: as k increases beyond a certain threshold, it
becomes less and less likely to be able capture the king-
pin and the process must occur more and more swiftly
with less investigations, so that costs decrease as a func-
tion of k regardless of p, q. In the lower panel of Fig. 11
we plot the time of first eradication of the network as
a function of recruitment index k and find trends that
support these considerations. The time of first eradica-
tion is always non-monotonic: it increases in k before
decreasing again, with the non-monotonicity stemming
from the conditional manner in which eradication times
are evaluated. For small k, increasing k requires more
time steps in capturing the kingpin but beyond a certain
threshold, eradication must be quick or it will never oc-
cur at all, leading to decreasing first eradication times.
Indeed, peaks in the eradication time curves correlate to
drops in the eradication probability, as can be seen from
the shaded colors in the lower panels of Fig. 11. Note
that for small to intermediate k values increasing eradi-
cation times may be coupled with lower costs, indicating
that while more time steps are required to reach the king-
pin, criminals are being eliminated from the network in
a more efficient way.

It is important to note that these results are highly de-
pendent on the network configuration on which the pur-
suit was initiated: different initial conditions will yield
different eradication probabilities, costs and eradication
times. We simulated different initial tree configurations
and found that given an initial number of criminals, here
set at forty, more hierarchical structures (complete lin-
ear or binary trees, with lower b values) allow for better
results in terms of maximizing eradication probabilities
and minimizing costs and eradication times as discussed
in the previous subsection. In general, initial networks a

lower number of initial criminals, with either lower b or
h allow for shorter eradication times and lower costs, as
can be expected.

C. Best strategies

From the above results we can try to identify a best strat-
egy for network eradication. As discussed above, erad-
ication probabilities decrease with k. Law enforcement
cannot influence k values, as this is an intrinsic feature
of the criminal organization and may depend, for exam-
ple, on kingpin charisma or on rewards offered by the
network to its members. Indeed, on dark networks, law
enforcement may only have best guesses for k. We thus
assume that law enforcement agencies may only select
which strategy to use given a preset value of p = q = q∗

that is not exceedingly large since for q∗ → ∞ all strate-
gies are the same. Fig. 9 shows that for very small and
very large values of k, given a full ternary tree as initial
condition, eradication probabilities do not change signifi-
cantly across strategies. However, for intermediate values
of k, the minimum out degree strategy QD(q

∗) is asso-
ciated with slightly larger eradication probabilities com-
pared to the fixed investigation number strategy QA(q

∗).
This can be seen for example by comparing curves for
QA(p = 3) and QD(q = 3) and in particular by noting
that Beat(QD(p = 3)) > Beat(QA(q = 3)) for all values
of n∗. From this perspective, given that typical k values
are not known to law enforcement, it is optimal to uti-
lize strategy QD(q∗) for a given value of q∗. The choice
of what q∗ to select, if there is any information known
on the rate of growth of the criminal organization is to
use lower values of q∗ for slowly growing organizations,
with lower values of k, and larger q∗ in the opposite case.
If one is interested in lowering costs, for example when
the criminal organization is not engaged in activities that
are deemed to be especially dangerous for the community,
the best intervention method is to use the less sophisti-
cated investigative methods associates with lower values
of q∗, since these are associated with lower costs, albeit
to longer eradication times as well. Costs are lower for
QD(q∗) than forQA(q

∗) as can be seen from Fig. 11. Sim-
ilarly, if one is interested in lowering eradication times,
the minimum out degree strategy QD(q∗) always yields
better results than the fixed investigation number strat-
egy QA(q

∗).

V. CONCLUSION

The simple network model presented in this paper pro-
vides insight on the formation and active disruption of
growing, dark criminal networks. We focused on orga-
nized, hierarchical drug syndicates, such as the Medelĺın
and Sinaloa drug cartels [18–21, 41, 42, 48, 58], some fea-
tures of which were used to inform our modeling choices.
Other criminal associations that are hierarchically orga-
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nized and that our model could be adapted to study in-
clude the American and Sicilian Cosa Nostra mafia net-
works [59–61] and the Hells Angels biker gang [62].

The recruitment mechanism we used is a variation on
standard preferential attachment models, though there
are some important distinctions. For example, the re-
sulting out degree distribution we find is not heavy tailed
[63, 64] and appears to be independent of the recruitment
index k. We also found the distribution of criminal po-
sition relative to the kingpin to be well approximated by
a shifted gamma distribution with parameters depending
on the initial configuration, on the recruitment index k,
and on the maximum network size n∗. Our model yielded
a linear relationship between the number of street crimi-
nals and the recruitment rate k, for which we provided a
heuristic justification. A more rigorous framework could
be useful to determine the relationship between criminals
of higher degree than street criminals and k. This is a
more difficult task than what presented in this work for
street criminals, since the distribution would depend on
the exact topography of the network.

Law enforcement pursuit and arrest were modeled as
a dark network disruption problem. We introduced and
analyzed the efficacy of three investigative strategies that
could be used: QD(p) with a preset number of investiga-
tions p before an arrest is carried out, QA(q) by seeking
out a criminal with at least q connections, and QI by
reaching the kingpin. For a preset value of p = q = q∗

we can heuristically determine the most effective strat-
egy on a dark network to be QD(q∗), when the pursuit
ends upon reaching criminals with at least q∗ connec-
tions and for moderate values of q∗. Indeed, strategy
QD(q∗) yields comparable or larger eradication probabil-
ities than QA(q

∗). The optimal value of the arrest pa-
rameter q∗ will depend on the recruitment rate k and on
the overall population size n∗. For example, from Fig. 9
it appears that QD(8) is more effective than QD(3) only
when k & 40 for all values of n∗ with the opposite being
true for smaller values of k. Also in terms of minimizing
costs and decreasing eradication times strategyQD(q∗) is
more efficient than strategy QA(q

∗) as can be seen from
Fig. 11. This result is consistent with previous models
of fixed networks where the optimal disruptor strategy
includes seeking the nodes of highest detectable degree
[13, 14, 17].

We also find that as k increases and the network grows
at a faster rate, the eradication probability decreases
and either the kingpin is captured in the early stages
of network growth or it will never be. This result pro-
vides a mathematical foundation to the common-sense
notion of beneficial quick intervention and is in agree-
ment with previous results on attempts to dismantle op-
erational criminal networks. For example, in studies of
drug trafficking networks in the Netherlands every dis-
ruption strategy proposed was largely ineffective except
when performed during the nascent phase of the criminal
organization [12] . While the disruption and recruitment
processes analyzed in the latter work are different from

ours, we can draw a similar conclusion on the importance
of “proactively” attacking organized crime networks be-
fore they become too entrenched within society and erad-
ication proves more and more elusive.
In this work we have only modeled a professional net-

work of criminals. However, a social network may be
more useful to law enforcement officials [65], with the
possible inclusion of geo-spatial constraints. Our prefer-
ence mechanism can be generalized to directed networks
using the length of the shortest path to the kingpin as
input for node attachment when a tree structure is not
present. Moreover, adjusting the rate of criminal recruit-
ment might be more realistic for organized crime net-
works with external or economic pressures. The disrup-
tion strategies presented here could also be made adap-
tive so that at some time threshold, strategyQD(q) could
be abandoned in favor of strategy QA(p). All of these
could make this model more realistic and easier to vali-
date using criminal network data.
Finally, we performed simulations with forty initial

criminals varying the initial configurations prior to
police intervention. We found low branching, such as
linear or binary trees, lead to higher eradication prob-
abilities once law enforcement pursuits are introduced.
Similarly extremely large initial branching lead to
higher eradication probabilities. These results indicate
that the simplest networks to eradicate are those with
initially low b where once investigations begin, at the
early stages of the pursuit process, almost certainly the
kingpin will be reached, or those that grow in an almost
non-centralized manner where the many initial street
criminals provided by very high b allow for easy access to
the kingpin who is just one or two levels removed from
street activity. Extremely prudent (low b) or ambitious
(high b) kingpins are thus the most vulnerable. On the
contrary, the most robust initial networks are those that
grow enough levels and with enough criminal members
prior to police intervention to effectively shield the
kingpin from arrest as soon as the pursuit process is
initiated, thus allowing for a vigorous successive growth.

VI. CODE

We used NetworkX, NumPy, and SciPy for all the
simulations. d3.js was used for the network diagrams.
The code for the preferential attachment tree, the
dynamic game, and the simulations can be found at
https://github.com/cmarshak/GameOfPablos.
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