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ABSTRACT

Delay-coordinate reconstruction is a proven modeling
strategy for building effective forecasts of nonlinear time
series. The first step in this process is the estimation of
good values for two parameters, the time delay and the
embedding dimension. Many heuristics and strategies
have been proposed in the literature for estimating these
values. Few, if any, of these methods were developed
with forecasting in mind, however, and their results are
not optimal for that purpose. Even so, these heuristics—
intended for other applications—are routinely used when
building delay coordinate reconstruction-based forecast
models. In this paper, we propose a new strategy for
choosing optimal parameter values for forecast methods
that are based on delay-coordinate reconstructions. The
basic calculation involves maximizing the shared infor-
mation between each delay vector and the future state of
the system. We illustrate the effectiveness of this method
on several synthetic and experimental systems, showing
that this metric can be calculated quickly and reliably
from a relatively short time series, and that it provides a
direct indication of how well a near-neighbor based fore-
casting method will work on a given delay reconstruction
of that time series. This allows a practitioner to choose
reconstruction parameters that avoid any pathologies, re-
gardless of the underlying mechanism, and maximize the
predictive information contained in the reconstruction.

I. INTRODUCTION

The method of delays is a well-established technique
for reconstructing the state-space dynamics of a system
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from scalar time-series data[1–3]. The task of choosing
good values for the free parameters in this procedure has
been the subject of a large and active body of literature
over the past few decades, e.g.,[4–15]. The majority of
these techniques focus on the geometry of the reconstruc-
tion. A standard method for selecting the delay τ , for
instance, is to maximize independence between the coor-
dinates of the delay vector while minimizing overfolding
and reduction in causality between coordinates[5]; a com-
mon way to choose an embedding dimension is to track
changes in near-neighbor relationships in reconstructions
of different dimensions[14].

This heavy focus on the geometry of the delay recon-
struction is appropriate when one is interested in quanti-
ties like fractal dimension and Lyapunov exponents, but
it is not necessarily the best approach when one is build-
ing a delay reconstruction for the purposes of prediction.
That issue, which is the focus of this paper, has received
comparatively little attention in the extensive literature
on delay reconstruction-based prediction[16–21]. In the
following section, we propose a robust, computationally
efficient method called time delayed active information
storage, Aτ , that can be used to select parameter values
that maximize the shared information between the past
and the future—or, equivalently, that maximize the re-
duction in uncertainty about the future given the current
model of the past. The implementation details, and a
complexity analysis of the algorithm, are covered in Sec-
tion III. In Section IV, we show that simple prediction
methods working with Aτ -optimal reconstructions—i.e.,
constructions using parameter values that follow from
the Aτ calculations—perform better, on both real and
synthetic examples, than those same forecast methods
working with reconstructions that are built using the tra-
ditional methods mentioned above. Finally, in Section V
we explore the utility of Aτ in the face of different data
lengths and prediction horizons.
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II. SHARED INFORMATION AND DELAY
RECONSTRUCTIONS

The information shared between the past and the fu-
ture is known as the excess entropy[22]. We will de-

note it here by E = I[
←−
X ;
−→
X ], where I is the mutual

information[23] and
←−
X and

−→
X represent the infinite past

and the infinite future, respectively. E is often difficult to
estimate from data due to the need to calculate statistics
over potentially infinite random variables[24]. While this
is possible in principle, it is too difficult in practice for all
but the simplest of dynamics[25]. In any case, the excess
entropy is not exactly what one needs for the purposes of
prediction, since it is not realistic to expect to have the
infinite past or to predict infinitely far into the future.
For our purposes, it is more productive to consider the
information contained in the recent past and determine
how much that explains about the not-too-distant future.
To that end, we define the state active information stor-
age:

AS = I[Sj ;Xj+p] ,

where Sj is an estimate of the state of the system at
time j and Xj+p is the state of the system p steps in the
future. In the case that the state estimate S takes the
form of a delay vector with delay τ , we will refer to it as
the time delayed active information storage and use the
symbol Aτ .

This can be neatly visualized—and compared to tra-
ditional methods like time-delayed mutual information,
multi-information and the so-called co-information[26]—
using the I-diagrams of Yeung[23]. Figure 1 shows an
I-diagram of time-delayed mutual information for a spe-
cific τ . In a diagram like this, each circle represents
the uncertainty in a particular variable. The left circle
in Figure 1, for instance, represents the average uncer-
tainty in observing Xj−τ (i.e., H[Xj−τ ], where H is the
Shannon entropy[23]); similarly, the top circle represents
H[Xj+p], the uncertainty in the pth future observation.
Each of the overlapping regions represents shared uncer-
tainty: e.g., in Figure 1, the shaded region represents
the shared uncertainty between Xj and Xj−τ . More pre-
cisely, the shaded region schematizes the quantity

I[Xj ;Xj−τ ] = H[Xj ] +H[Xj−τ ]−H[Xj , Xj−τ ]

= H[Xj ]−H[Xj |Xj−τ ]

= H[Xj−τ ]−H[Xj−τ |Xj ].

If the X are trajectories in reconstructed state space,
then tuning the reconstruction parameters (e.g., τ)
changes the size of the overlap regions—i.e., the amount
of information shared between the coordinates of the de-
lay vector. This notion can be put into practice to select
good values for those parameters. Notice, for instance,
that minimizing the shaded region in Figure 1—that is,
rendering Xj and Xj−τ as independent as possible—
maximizes the total uncertainty that is explained by the

H[Xj+p]

H[Xj−τ ] H[Xj ]

FIG. 1: An I-diagram of the time-delayed mutual
information. The circles represent uncertainties (H) in

different variables; the shaded region represents
I[Xj ;Xj−τ ], the time-delayed mutual information

between the current state Xj and the state τ time units
in the past, Xj−τ . Notice that the shaded region is
indifferent to H[Xj+p], the uncertainty about the

future.

combined model [Xj , Xj−τ ]T (the sum of the area of the
two circles). This is precisely the argument made by
Fraser and Swinney in [5]. However, it is easy to see
from the I-diagram that choosing τ in this way does not
explicitly take into account explanations of the future—
that is, it does not reduce the uncertainty about Xt+p.
Moreover, the calculation does not extend to three or
more variables, where minimizing overlap is not a trivial
extension of the reasoning captured in the I-diagrams.

The obvious next step would be to explicitly in-
clude the future in the estimation procedure. One ap-
proach to this would be to work with the so-called co-
information[26],

C = I[Xj ;Xj−τ ;Xj+p] ,

As depicted in Figure 2a, this is the intersection ofH[Xj ],
H[Xj−τ ] and H[Xj+p]. It describes the reduction in un-
certainty that the two past states, together, provide re-
garding the future. While this is obviously an improve-
ment over the time-delayed mutual information of Fig-
ure 1, it does not take into account the information that
is shared between Xj and the future but not shared with
the past (i.e., Xj−τ ), and vice versa. The so-called multi-
information,

M =
∑

i∈{j,j−τ,j+p}

(H[Xi])−H[Xj , Xj−τ , Xj+p] , (1)

depicted in Figure 2b addresses this shortcoming, but
it also includes information that is shared between the
past and the present, but not with the future. This is
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not terribly useful for the purposes of prediction. More-
over, the multi-information overweights information that
is shared between all three circles—past, present, and
future—thereby artificially over-valuing information that
is shared in all delay coordinates. In the context of pre-
dicting Xt+p, the provenance of the information is irrel-
evant and so the multi-information also seems ill-suited
to the task at hand.

More generally, the multi-information has been used in
a similar manner to the time-delayed mutual information
above in estimating τ : e.g., for a three dimensional em-
bedding, attempting to minimize M[Xj ;Xj−τ ;Xj−2τ ].
As can be seen in Eq. 1, minimizing the multi-information
is equivalent to maximizing the entropy, and with a max-
imal entropy, the delay vectors are in some sense max-
imally informative because dependencies among the di-
mensions have been minimized. While on the surface
this may seem a boon to prediction, consider the issue
of predicting the state of the system at time j + τ : if
the coordinates of the delay vector are maximally inde-
pendent, they will also be independent of the value being
predicted. In light of this, we can conclude that the min-
imal multi-information approach is not well aligned with
the goal of prediction.

Aτ addresses all of the issues raised in the previous
paragraphs. By treating the generic delay vector as a
joint variable, rather than a series of single variables,
Aτ captures the shared information between the past,
present, and future independently (the left and right col-
ored wedges in Figure 3), as well as the information that
the past and present, together, share with the future (the
center wedge). By choosing delay reconstruction param-
eters that maximize Aτ , then, one can explicitly maxi-
mize the amount of information that each delay vector
contains about the future.

To make all of this more concrete and tie it back to
state-space prediction of dynamical systems, consider the
following example: let Sj be a two-dimensional delay re-
construction of the time series, Sj = [xj , xj−τ ]T . In this
case, Aτ becomes I[[Xj , Xj−τ ]T ;Xt+p], which describes
the reduction in uncertainty about the system at time
j + p, given the state estimate [Xj , Xj−τ ]T . One can es-
timate a τ value for the purposes of reconstructing the
dynamics from a given time series, for instance, by cal-
culating Aτ for a range of τ and choosing the first max-
imum (i.e., minimizing the uncertainty about the pth fu-
ture observation). One can then apply any state-space
forecasting method to the resulting reconstruction in or-
der to predict the future course of that time series. In
Section IV, we explore that claim using Lorenz’s classic
method of analogues[21], but it should be just as appli-
cable for other predictors that utilize state-space recon-
structions, such as the methods used in[16–18, 20].

Notice that both the definition of the state active in-
formation storage, AS , and its use in optimizing forecast
algorithms are general ideas that are easily extensible to
other state estimators. For example, in the case of tra-
ditional delay-coordinate embedding, the state estimator

H[Xj+p]

H[Xj−τ ] H[Xj ]

(a)

H[Xj+p]

H[Xj−τ ] H[Xj ]

(b)

FIG. 2: Two possible generalizations of the mutual
information. (a) The co-information, C[Xj+1;Xj ;Xj−τ ].

(b) An I-diagram of the multi-information,
M[Xj , Xj−τ ;Xj+p]. The centermost region is more

darkly shaded here to reflect the extra weight that that
region carries in the calculation.

is the m-dimensional delay vector, i.e.,

Sj = [Xj , Xj−τ , . . . , Xj−(m−1)τ)]
T

with m chosen to meet the appropriate theoretical re-
quirements [1, 3], resulting in our Aτ . We demonstrate
this approach in Section IV. If the time series is pre-
processed (e.g., via a Kalman filter[27], a low-pass filter
and an inverse Fourier transform[28], or some other local
linear transformation[6, 16–18, 20] ), the state estima-

tor simply becomes Sj = ~̂xj where ~̂xj is the processed
m-dimensional delay vector. As we demonstrate in Sec-
tion IV B, one can even use AS to optimize parameter
choices for forecast methods that use reconstructions that
are not embeddings—i.e., those whose dimensions do not



4

H[Xj+p]

H[Xj−τ ] H[Xj ]

FIG. 3: An I-diagram of Aτ , the quantity proposed in
this paper: I[[Xj , Xj−τ ];Xj+p]. This quantity captures
the shared information between the past, present, and
future independently, as well as the information that
the past and present, together, share with the future.

meet the traditional requirements for preserving dynam-
ical invariants like the Lyapunov exponent.

III. EFFICIENT ESTIMATION OF Aτ

To calculate Aτ from a real-valued time series, one
must first symbolize those data. Simple binning is not
a good solution here, as it is known to cause severe
bias if the bin boundaries do not create a generating
partition[29]. A useful alternative is kernel estimation
[30, 31], in which the relevant probability density func-
tions are estimated via a function Θ with a resolution or
bandwidth r that measures the similarity between two
points in X × Y space. (For Aτ , X would be Sj and
Y would be Xj+p.) Given points {xi, yi} and {x′i, y′i} in
X × Y , one can define:

p̂r(xi, yi) =
1

N

N∑
i′=1

Θ

(
xi − x′i
yi − y′i

− r
)
,

where Θ(x > 0) = 0 and Θ(x ≤ 0) = 1. That is, p̂r(xi, yi)
is the proportion of the N pairs of points in X×Y space
that fall within the kernel bandwidth r of {xi, yi}, i.e.,
the proportion of points similar to {xi, yi}. When | · |
is the max norm, this is the so-called box kernel. This
too, however, can introduce bias[32] and is dependent on
the choice of bandwidth r. After these estimates, and
the analogous estimates for p̂(x), are produced, they are
then used directly to compute local estimates of mutual
information for each point in space, which are then aver-
aged over all samples to produce the mutual information
of the time series. For more details on this procedure,
see[32].

A better way to calculate I[X;Y ] and esti-
mate Aτ is the Kraskov-Stügbauer-Grassberger (KSG)
estimator[29]. This approach dynamically alters the ker-
nel bandwidth to match the density of the data, thereby
smoothing out errors in the probability density function
estimation process. In this approach, one first finds the
kth nearest neighbor for each sample {x, y} (using max
norms to compute distances in x and y), then sets kernel
widths rx and ry accordingly and performs the pdf esti-
mation. There are two algorithms for computing I[X;Y ]
with the KSG estimator[32]. The first is more accurate
for small sample sizes but more biased; the second is
more accurate for larger sample sizes. We use the second
of the two in the results reported in this paper, as we
have fairly long time series. Our algorithm sets rx and
ry to the x and y distances to the kth nearest neighbor.
One then counts the number of neighbors within and on
the boundaries of these kernels in each marginal space,
calling these sums nx and ny, and finally calculates

I[X;Y ] = ψ(k)− 1

k
− 〈ψ(nx) + ψ(ny)〉+ ψ(n) ,

where ψ is the digamma function[33]. This estimator has
been demonstrated to be robust to variations in k as long
as k ≥ 4[32].

In this paper, we employ the Java Information Dy-
namics Toolkit (JIDT) implementation of the KSG
estimator[32]. The computational complexity of this im-
plementation is O(kN logN), where N is the length of
the time series and k is the number of neighbors being
used in the estimate. While this is more expensive than
traditional binning (O(N)), it is bias corrected, allows
for adaptive kernel bandwidth to adjust for under- and
over-sampled regions of space, and is both model and
parameter free (aside from k, to which it is very robust).

IV. APPLYING Aτ TO SELECT
RECONSTRUCTION PARAMETERS

In this section, we demonstrate how to use Aτ to
choose parameter values for delay-reconstruction forecast
models. We do this for several synthetic examples, as well
as for sensor data from several laboratory experiments.
For the discussion that follows, we use the term “Aτ -
optimal” to refer to the parameter values (m and τ) that
provided the best match between the forecast and the
true continuation.

To evaluate a forecast model, we divide the signal
into two parts: the initial training signal {xj}nj=1—the
first n elements of the time series—and the test signal
{c`}k+n+1

`=n+1 , where k is the length of the prediction. We
build a delay reconstruction from the xj (i.e., a sequence
of points [xj , xj−τ , . . . , xj−(m−1)τ)]

T ), use it to generate

a prediction {x̂`}k+n+1
`=n+1 , and then use the Mean Absolute

Scaled Error[34] to compare the prediction to the test
signal:
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MASE =

k+n+1∑
`=n+1

|x̂` − c`|
k

n−1
∑n
j=2 |xj − xj−1|

MASE is a normalized measure: the scaling term in
the denominator is the average in-sample forecast error
for a random-walk prediction—which uses the previous
value in the observed signal as the forecast—calculated
over the training signal. That is, MASE < 1 means
that the prediction error in question was, on the aver-
age, smaller than the in-sample error of a random-walk
forecast on the training portion of the same data. Anal-
ogously, MASE > 1 means that the corresponding pre-
diction method did worse, on average, than the random-
walk method.

While its comparative nature may seem odd, this error
metric allows for fair comparison across varying methods,
prediction horizons, and signal scales, making it a stan-
dard error measure in the forecasting literature—and a
good choice for the study described in the following sec-
tions, which involve a number of very different signals.

A. Synthetic examples

In this Section, we apply Aτ to some standard
synthetic examples, both maps (Hénon, logistic) and
flows: the classic Lorenz system[35] and the more-recent
“Lorenz 96” atmospheric model[36]. We construct the
traces for the Lorenz experiments using a standard
fourth-order Runge-Kutta solver on the associated differ-
ential equations, with a timestep of 1

64 , for 60,000 time
steps. For the maps, we simply iterate the difference
equations 60,000 times. In all cases, we discard the first
10,000 points of each trajectory to remove transient be-
havior, then sample individual state variables to produce
different scalar time-series data sets. We reconstruct the
dynamics from those traces using different values of the
dimension m and delay τ and compute Aτ for each of
those reconstructed trajectories. We then use Lorenz’s
classic method of analogues (LMA) [21] to generate fore-
casts of each trace, compute their MASE scores as de-
scribed above, and discuss their relationships to the Aτ
values for the corresponding time series. For simplicity,
in this initial discussion we perform a series of one-step-
ahead predictions, rebuilding the model at each step.
For the Aτ calculations, this means that we estimate
I[Sj , Xj+1], with Sj = [Xj , Xj−τ , . . . , Xj−(m−1)τ)]

T . In
Section V B we expand this discussion by increasing the
prediction horizon; in Section V A, we consider the effects
of the length of the traces.

Flow examples

The Lorenz 96 system[36] is defined by a set of K dif-
ferential equations in the state variables ξ1 . . . ξK :

ξ̇k = (ξk+1 − ξk−2)(ξk−1)− ξk + F

for k = 1, . . . ,K, where F ∈ R is a constant forcing term
that is independent of k. In the following discussion we
focus on two parameter sets, {K = 22, F = 5} and {K =
47, F = 5}, which produce low- and high-dimensional
chaos, respectively. See [37] for an explanation of this
model and the associated parameters.

Figure 4a shows a heatmap of the Aτ values for recon-
structions of a representative trajectory from this system
with {K = 22, F = 5}, for a range of m and τ . Not
surprisingly, this image reveals a strong dependency be-
tween the values of the reconstruction parameters and
the reduction in uncertainty about the near future that
is provided by the reconstruction. Very low τ values,
for instance, produce delay vectors that have highly re-
dundant coordinates, and so provide substantial informa-
tion about the immediate future. As mentioned in the
first Section of this paper, standard heuristics only focus
on minimizing redundancy between coordinates, choos-
ing the τ value that minimizes the mutual information
between the first two coordinates in the delay vector.
For this Lorenz 96 trajectory, the approach of Fraser &
Swinney [5] yields τ = 26, while standard dimension-
estimation heuristics [14] suggest m = 8. The Aτ value
for a delay reconstruction built with those parameter val-
ues is 3.463. This is not, however, the Aτ -optimal recon-
struction; choosing m = 2 and τ = 1, for instance, results
in a higher value (Aτ = 5.303)—i.e., signficantly more
reduction in uncertainty about the future. This may be
somewhat counter-intuitive, since each of the delay vec-
tors in the Aτ -optimal reconstruction spans far less of the
data set and thus one would expect points in that space
to contain less information about the future. Figure 4a
suggests, however, that this in fact not the case; rather,
that uncertainty increases with both dimension and time
delay.

The question at issue in this paper is whether that re-
duction in uncertainty about the future correlates with
improved accuracy of an LMA forecast built from that
reconstruction. Since the Aτ -optimal choices maximize
the shared information between the state estimator and
Xj+1, one would expect a delay reconstruction model
built with those choices to afford LMA the most lever-
age. To test that conjecture, we performed an exhaus-
tive search with m = 2, . . . , 15 and τ = 1, . . . , 50. For
each {m, τ} pair, we used LMA to generate forecasts
from the corresponding reconstruction, computed their
MASE scores, and plotted the results in a heatmap sim-
ilar to the one in Figure 4a. As one would expect, the
MASE and Aτ heatmaps are generally antisymmetric.
This antisymmetry breaks down somewhat for low m and
high τ , where the forecast accuracy is low even though
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FIG. 4: The effects of reconstruction parameter values
on Aτ and forecast accuracy for the Lorenz 96 system.
(a) Aτ values for different delay reconstructions of a
representative trace from the Lorenz 96 system with
{K = 22, F = 5}. (b) MASE scores for LMA forecasts
on different delay reconstructions of a representative
trace of the Lorenz 96 system with {K = 22, F = 5}.

the reconstruction contains a lot of information about
the future.

We suspect that this is due to a combination of over-
folding (due to too-large values of τ) and projection (low
m). Even though each point in such a reconstuction
may contain a lot of information about the future, the
false crossings created by this combination of effects pose
problems for a near-neighbor forecast strategy like LMA.
The improvement that occurs if one adds another dimen-
sion is consistent with this explanation. Notice, too, that
this effect only occurs far from the maximum in the Aτ

surface—the area that is of interest if one is using Aτ to
choose parameter values for reconstruction models.

In general, though, maximizing the redundancy be-
tween the state estimator and the future does appear
to minimize the resulting forecast error of LMA. Indeed,
the maximum on the surface of Figure 4b (m = 2, τ = 1)
is exactly the minimum on the surface of Figure 4a. The
accuracy of this forecast is more than five times higher
(MASE = 0.0737) than that of a forecast constructed
with the parameter values suggested by the standard
heuristics (0.3787). Note that the optima of these sur-
faces may be broad: i.e., there may be ranges of m and τ
for which Aτ and MASE are optimal, and roughly con-
stant. In these cases, it makes sense to choose the lowest
m on the plateau, since that minimizes computational
effort, data requirements, and noise effects; see [38] for a
full discussion of this.

While the results discussed in the previous paragraph
do provide a preliminary validation of the claim that
one can use Aτ to select good parameter values for de-
lay reconstruction-based forecast strategies, they only in-
volve a single example system. Similar experiments on
traces from the Lorenz 96 system with different param-
eter values {K = 47, F = 5} (not shown) demonstrate
identical results—indeed, the heatmaps are visually in-
distinguishable from the ones in Figure 4. Figure 5 shows
heatmaps of Aτ and MASE for similar experiments on
the classic “Lorenz 63” system[35]:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

with the typical chaotic parameter selections: ρ =
28, σ = 10, and β = 8/3. As in the Lorenz 96 case,
the heatmaps are generally antisymmetric, confirming
that maximizing Aτ is roughly equivalent to minimizing
MASE. Again, though, the antisymmetry is not perfect;
for high τ and low m, the effects of projecting an over-
folded attractor cause false crossings that trip up LMA.
As before, adding a dimension mitigates this effect by
removing these false crossings. Both the Lorenz 63 and
Lorenz 96 plots show a general decrease in predictability
for large m and high τ , with roughly hyperbolic equipo-
tentials dividing the colored regions[39]. The locations
and heights of these equipotentials differs because the
two signals are not equally easy to predict. This matter
is discussed further at the end of this section.

Numerical Aτ and MASE values for LMA forecasts
on different reconstructions of both Lorenz systems are
tabulated in the top three rows of Table I, along with
the reconstruction parameter values that produced those
results. The data in this table bring out two important
points. First, as suggested by the heatmaps, the m and τ
values that maximize Aτ (termed mAτ and τAτ in the ta-
ble legend) are close, or identical, to the values that min-
imize MASE (mE and τE) for all three Lorenz systems.
This is notable because—as discussed in Section V A—
the former can be estimated quite reliably from a small
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TABLE I: MASE values for various delay reconstructions of the different examples studied here. MASEH is the
representative accuracy of LMA forecasts that use delay reconstructions with parameter values (mAτ and τAτ )

chosen via standard heuristics for the corresponding traces—the methods of false neighbors [14] and time-delayed
mutual information [5], respectively. Similarly, MASEAτ is the accuracy of LMA forecasts that use reconstructions
built with the m and τ values that maximize Aτ , and MASEE is the error of the best forecasts for each case, found

via exhaustive search over the m, τ parameter space. ∗∗: on these signals the standard heuristics failed.

Signal MASEH τH mH MASEAτ τAτ mAτ MASEE τE mE

Lorenz-96 K = 22 0.3787 26 8 0.0737 1 2 0.0737 1 2

Lorenz-96 K = 47 1.007 31 10 0.1156 1 2 0.1156 1 2

Lorenz 63 0.2215 12 5 0.0509 1 3 0.0506 1 2

Hénon Map ∗∗ ∗∗ ∗∗ 3.814e-04 1 2 3.814e-04 1 2

Logistic Map ∗∗ ∗∗ ∗∗ 1.680e-05 1 1 1.680e-05 1 1

sample of the trajectory in only a few seconds of compute
time, whereas the exhaustive search that is involved in
computing mE and τE for Table I required close to 30
hours of CPU time per signal. A second important point
that is apparent from the Table is that delay reconstruc-
tions built using the traditional heuristics—the values
with the H subscript—were comparatively ineffective for
the purposes of LMA-based forecasting. This is notable
because that is the default approach in the literature on
state-space based forecasting methods for dynamical sys-
tems.

A close comparison of Figures 4 and 5 brings up an-
other important point: some time series are harder to
forecast than others. Figure 6 breaks down the details
of the two suites of Lorenz-96 experiments, showing the
distribution of Aτ and MASE values for all of the re-
constructions. Although there is some overlap in the
K = 47 and K = 22 histograms—i.e., best-case forecasts
of the former are better than most of the forecasts of the
latter—the K = 47 traces generally contain less infor-
mation about the future and thus are harder to forecast
accurately.

Map examples

Delay reconstruction of discrete-time dynamical sys-
tems, while possible in theory, can be problematic in
practice. Although the embedding theorems do apply
in these cases, the heuristics for estimating m and τ of-
ten fail. The time-delayed mutual information of [5], for
example, may decay exponentially, without showing any
clear minimum. And the lack of spatial continuity of the
orbit of a map violates the underlying idea behind the
method of [14]. State space-based forecasting methods
can, however, be very useful in generating predictions of
trajectories from systems like this—if one has a recon-
struction that is faithful to the true dynamics.

In view of this, it would be particularly useful if one
could use Aτ to choose embedding parameter values for

maps. This section explores that notion using two canon-
ical examples, shown in the bottom two rows of Table I.
For the Hénon map,

xn+1 = 1− ax2n + yn

yn+1 = bxn

with a = 1.4 and b = 0.3, the Aτ -optimal parameter
values were m = 2 and τ = 1. As in the flow exam-
ples, these were identical to the values that minimized
MASE. These parameter values make sense, of course;
a first-return map of the x coordinate is effectively the
Hénon map, so [xj , xj−1] is a perfect state estimator (up
to a scaling term). But in practice, of course, one rarely
knows the underlying dynamics of the system that gen-
erated a time series, so the fact that one can choose
good reconstruction parameter values by maximizing Aτ
is notable—especially since standard heuristics for that
purpose fail in this system.

The same pattern holds for the logistic map, xn+1 =
rxn(1 − xn), with r = 3.65: the Aτ -optimal parameter
values coincide with the minimum of the MASE surface.
As in the Hénon example, these values (m = 1 and τ = 1)
make complete sense, given the form of the map. But
again, one does not always know the form of the system
that generated a given time series. In the case of the
logistic map, the standard heuristics fail, but Aτ clearly
indicates that one does not actually need to reconstruct
these dynamics—rather, near-neighbor forecasting on the
time series itself is the best approach.

B. Selecting reconstruction parameters of
experimental time series

The results in the previous section provide a prelim-
inary verification of the conjecture that maximizing Aτ
minimizes forecast accuracy of LMA, for both maps and
flows. While experiments with synthetic examples are
useful, they do not call the really important aspect of
that research question: whether Aτ is a useful way to
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FIG. 5: The effects of reconstruction parameter values
on Aτ and forecast accuracy for the Lorenz 63 system.
(a) Aτ values for different delay reconstructions of a
representative trace from the Lorenz 63 system. (b)
MASE scores for LMA forecasts on different delay

reconstructions of a representative trace of the Lorenz
63 system.

choose parameter values for delay reconstruction-based
forecasting of real-world data, where the time series are
noisy and perhaps short, and one does not know the di-
mension of the underlying system—let alone its govern-
ing equations. In this section, we turn our attention to
that question using experimental data from two different
dynamical systems: a far-infrared laser and a laboratory
computer-performance experiment.

A Far-Infrared Laser

A canonical test case in the forecasting literature is the
so-called “Dataset A” from the Santa Fe Institute pre-
diction competition[16], which was gathered from a far-
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FIG. 6: Histograms of Aτ and MASE values for
representative traces from the Lorenz 96

{K = 22, F = 5} and {K = 47, F = 5} systems for all
{m, τ} values in Figures 4 and 5. (a) Aτ . (b) MASE.

infrared laser. As in the synthetic examples in the previ-
ous section, the Aτ and MASE heatmaps (Figure 7) are
largely antisymmetric for this signal. Again, there is a
band across the bottom of each image because of the com-
bined effects of overfolding and projection. Note the re-
semblance between Figures 7 and 5: the latter resemble
“smoothed” versions of the former. It is well known[16]
that the SFI A dataset is well described by the Lorenz 63
system with some added noise, so this similarity is both
unsurprising and reassuring. LMA forecasts using the
Aτ -optimal reconstruction of this trace were more accu-
rate than similar forecasts using a reconstruction built
using traditional heuristics (MASEAτ = 0.0592 versus
MASEH = 0.0733) and only slightly worse than the op-
timal value (MASEE = 0.0538). However, the values
of {mAτ , τAτ } and {mE , τE} are not identical for this
signal. This is because the optima in the heatmaps in
Figure 7 are bands, rather than unique points—as was
the case in the synthetic examples in Section IV A. In
a situation like this, a range of {m, τ} values are sta-
tistically indistinguishable, from the standpoint of the
forecast accurary afforded by the corresponding recon-
struction. The values suggested by the Aτ calculation
(mAτ = 9 and τAτ = 1) and by the exhaustive search
(mE = 7, τE = 1) were all on this plateau[40]. Again,
it appears that one can use Aτ to choose good parame-
ter values for delay reconstruction-based forecasting, but
SFI A is only a single trace from a fairly simple system.
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FIG. 7: The effects of reconstruction parameter values
on Aτ and forecast accuracy for “Dataset A” from the
Santa Fe Institute time-series prediction competition.

(a) Aτ values for different delay reconstructions of SFI
Dataset A. (b) MASE scores for LMA forecasts on

different delay reconstructions of SFI Dataset A.

Computer Performance Dynamics

Laboratory experiments on computer performance dy-
namics have shown that these high-dimensional nonlinear
systems exhibit a range of interesting deterministic dy-
namical behaviors[41, 42]. Both hardware and software
play roles in these dynamics; changing either one can
cause bifurcations from periodic orbits to low- and high-

dimensional chaos. This rich range of behavior makes
computer performance dynamics an ideal final test case
for this paper.

Collecting observations of the performance of a run-
ning computer requires some significant engineering.
Basically, one programs the microprocessor’s onboard
hardware performance monitor to observe the quanti-
ties of interest, then stops the program execution at
100,000-instruction intervals—the unit of time in these
experiments—and reads off the contents of those regis-
ters. Interested readers can find a detailed description of
this custom measurement infrastructure in[42, 43]. The
signals that are produced by this apparatus are scalar
time-series measurements of system metrics like proces-
sor efficiency (e.g., IPC, which measures how many in-
structions are being executed, on the average, in each
clock cycle) or memory usage (e.g., how often the pro-
cessor had to access the main memory during the mea-
surement interval).

Here, for conciseness, we focus on processor perfor-
mance traces from two different programs, one simple
and one complex, running on the same Intel i7-based
computer. The first is four lines of C (col major) that
repeatedly initializes a 256×256 matrix in column-major
order. The second is a much more complex program: the
403.gcc compiler from the SPEC 2006CPU benchmark
suite[44]. The performance traces of these two programs
contained 147,925 points and 45,545 points, respectively.
Since computer performance dynamics result from a com-
position of hardware and software, these two experiments
involve two different dynamical systems, even though the
programs are running on the same computer. But since
other effects could be at work—housekeeping by the op-
erating system, etc.—we repeated each experiment 15
times for a total of 30 traces. We have performed similar
forecast experiments using other processor and memory
performance metrics gathered during the execution of a
variety of programs on several different computers [45].
Our preliminary analysis indicates that the results de-
scribed in the rest of this section hold for those traces as
well.

As in the previous examples, heatmaps of MASE and
Aτ for the col major time series (Figure 8b) are largely
antisymmetric. And again, reconstructions using the Aτ -
optimal parameter values allowed LMA to produce highly
accurate forecasts of this signal: MASEAτ = 0.0509,
compared to the optimal MASEE = 0.0496. There are
several major differences between these plots and the pre-
vious ones in this paper, though, beginning with the ver-
tical stripes. These are due to the dominant unstable
periodic orbit of period 3 in the chaotic attractor in the
col major dynamics. When τ is a multiple of this pe-
riod (τ = 3κ), the coordinates of the delay vector are
not independent, which lowers Aτ and makes forecast-
ing more difficult. (There is a nice theoretical discussion
of this effect in [3].) Conversely, Aτ spikes and MASE
plummets when τ = 3κ−1, since the coordinates in such
a delay vector cannot share any prime factors with the
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FIG. 8: The effects of reconstruction parameter values
on Aτ and forecast accuracy for a representative trace

from a computer-performance dynamics experiment
tracing the processor load during the execution of a

simple program that repeatedly initializes a matrix in
column-major order. (a) Aτ values for different delay

reconstructions of a col major trace. (b) MASE scores
for LMA forecasts on different delay reconstructions of

a col major trace.

period of the orbit. The band along the bottom of both
images is, again, due to a combination of overfolding and
projection.

Another difference between the col major heatmaps
and the ones in Figures 4, 5, and 7 is the apparent over-
all trend: the “good” regions (low MASE and high Aτ )
are in the lower-left quadrants of those heatmaps, but in
the upper-right quadrant of Figure 8. This is partly an
artifact of the difference in the color-map scale, which
was chosen here to bring out some important details of
the structure, and partly due to that structure itself.
Specifically, the optima of the col major heatmaps—the

large dark red and blue regions in Figures 8a and 8b,
respectively—are much broader than the ones in the
earlier sections of this paper, perhaps because the sig-
nal is so close to periodic. (This was also the case to
some extent in the SFI A example, for the same rea-
son.) This geometry makes precise comparisons of Aτ -
optimal and MASE-optimal parameter values somewhat
problematic, as the exact optima on two almost-flat but
slightly noisy landscapes may not be in the same place.
Indeed, the Aτ values at {mAτ , τAτ } and {mE , τE} were
within a standard error across all 15 traces of col major.

And that brings up an interesting tradeoff. For practi-
cal purposes, what one wants is {mAτ , τAτ } values that
produce a MASE value that is close to the optimum
MASEE . However, the algorithmic complexity of most
nonlinear time-series analysis and prediction methods
scales badly with m. In cases where the Aτ maximum is
broad, then, one might want to choose the lowest value of
m on that plateau—or even a value that is on the shoul-
der of that plateau, if one needs to balance efficiency over
accuracy. Indeed, forecasts with m = 2 appear to work
surprisingly well for many nonlinear dynamical systems,
including the col major data[38]. Fixing m = 2 amounts
to marginalizing the heatmaps in Figure 8, which pro-
duces a cross section like the ones shown in Figure 9. The
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FIG. 9: MASE and Aτ for LMA forecasts of m = 2
delay reconstructions of all 15 col major traces, plotted

as a function of τ . The blue dashed curves show the
averages across all trials; the red dotted lines are that
average ± the standard deviation. (a) Aτ values for
delay reconstructions of the col major traces with

m = 2 and a range of values of τ . (b) MASE scores for
LMA forecasts of delay reconstructions of the

col major traces with m = 2 and a range of values of τ .

antisymmetry between Aτ and MASE is quite apparent
in these plots; the global maximum of the former coin-
cides with the global minimum of the latter, at τ = 2.
The average MASE score of col major forecasts con-
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structed with m = 2 and this τ value is 0.0649. This
is not much lower than the overall optimum of 0.0496—
a value from a forecast whose free parameters required
almost six orders of magnitude more CPU time to com-
pute. As an important aside: these results suggest that
one could bypass even more of the computational effort
that is involved in delay reconstruction-based forecasting
by simply working in two dimensions, i.e., by calculating
Aτ across a range of τs, rather than across a 2D {m, τ}
space. This approach is discussed further in [38].

The correspondence between MASE and Aτ also
holds true for other marginalizations: i.e., the minimum
MASE and the maximum Aτ occur at the same τ value
for all m-wise slices of the col major heatmaps, to within
statistical fluctuations. The methods of [5] and [14], in-
cidentally, suggest τH = 2 and mH = 12 for these traces;
the MASE of an LMA forecast on such a reconstruction
is 0.0530, which is somewhat better than the best result
from the m = 2 marginalization, although still short of
the overall optimum. The correspondence between τH
and τAτ is coincidence; for this particular signal, maxi-
mizing the independence of the coordinates happened to
maximize the information about the future contained in
each delay vector. Them = 12 result is not coincidence—
and quite interesting, in view of the fact that the m = 2
forecast is so good. It is also surprising in view of the
huge number of transistors—potential state variables—
in a modern computer. As described in [42], however,
the hardware and software constraints in these systems
confine the dynamics to a much lower-dimensional man-
ifold. All of these issues, and their relation to the task of
prediction, are explored in more depth in [38].

The col major program is what is known in the
computer-performance literature as a “micro-kernel”—a
extremely simple example that is used in proof-of-concept
testing. The fact that its dynamics are so rich speaks
to the complexity of the hardware (and the hardware-
software interactions) in modern computers; again, see
[42, 43] for a much deeper discussion of these issues.
Modern computer programs are far more complex than
this simple micro-kernel, of course, which begs the ques-
tion: what does Aτ tell us about the dynamics of truly
complex systems like that—programs that the computer-
performance community models as stochastic systems?

For 403.gcc, the answer is, again, that Aτ appears to
be an effective and efficient way to assess predictability.
It has been shown[45] that this time series shares little
to no information with the future: i.e., that it cannot
be predicted using delay reconstruction-based forecast-
ing methods, regardless of τ and m values. The exper-
iments in [45] required dozens of hours of CPU time to
establish that conclusion; Aτ gives the same results in a
few seconds, using much less data. The structure of the
heatmaps for this experiment, which are shown in Fig-
ure 10, is radically different. The patterns visible in the
previous MASE plots, and the antisymmetry between
Aτ and MASE plots, are absent from Figure 10, reflect-
ing the lack of predictive content in this signal. Note, too,
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FIG. 10: The effects of reconstruction parameter values
on Aτ and forecast accuracy for a representative trace

from a computer-performance dynamics experiment
using the 403.gcc benchmark. (a) Aτ values for

different delay reconstructions of a 403.gcc trace. (b)
MASE scores for LMA forecasts on different delay

reconstructions of a 403.gcc trace.

that the color maps are different in this Figure. This
reflects the much lower values of Aτ for this signal: a
maximum Aτ of 0.7722 for 403.gcc, compared to 5.3026
for Lorenz 96 with K = 22. Indeed, the MASE surface
in Figure 10b never dips below 1.0[46]. That is, regard-
less of parameter choice, LMA forecasts of 403.gcc are
no better than simply using the prior value of this scalar
time series as the prediction. The uniformly low Aτ val-
ues in Figure 10a are an effective indicator of this—and,
again, they can be calculated quickly, from a relatively
small sample of the data. It is to that issue that we turn
next.
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V. DATA REQUIREMENTS AND PREDICTION
HORIZONS

In some real-world situations, it may be impractical to
rebuild forecast models at every step, as we have done in
the previous sections of this paper—because of compu-
tational expense, for instance, or because the data rate
is very high. In these situations, one may wish to pre-
dict p time steps into the future, then stop and rebuild
the model to incorporate the p points that have arrived
during that period, and repeat. In chaotic systems, of
course, there are fundamental limits on prediction hori-
zon even if one is working with infinitely long traces of
all state variables. A key question at issue in this section
is how that effect plays out in forecast models that use
delay reconstructions from scalar time-series data. And
since real-world data sets are not infinitely long, it is im-
portant to understand the effects of data length on the
estimation of Aτ .

A. Data Requirements for Aτ Estimation

The quantity of data used in a delay reconstruction
directly impacts the usefulness of that reconstruction.
If one is interested in approximating the correlation di-
mension via the Grassberger-Procaccia algorithm, for in-
stance, it has been shown that one needs 10(2+0.4m) data
points[47, 48]. Those bounds are overly pessimistic for
forecasting, however. For example, Sugihara & May [20]
used delay-coordinate reconstructions with m as large
as seven to successfully forecast biological and epidemi-
ological time-series data sets that contain as few as 266
points. A key challenge, then, is to determine whether
one’s time series really calls for as many dimensions and
data points as the theoretical results require, or whether
one can get away with fewer dimensions—and how much
data one needs in order to figure all of that out.

We claim that Aτ is a useful solution to those chal-
lenges. As established in the previous sections, calcu-
lations of this quantity can reveal what dimension one
needs to build a good delay reconstruction for the pur-
poses of LMA forecasting of nonlinear and chaotic sys-
tems. And, as alluded to in those sections, Aτ can be
estimated accurately from a surprisingly small number
of points. The experiments in this section explore that
intertwined pair of claims in more depth by increasing
the length of the Lorenz 96 traces and testing whether
the information content of the state estimator derived
from standard heuristics converges to the Aτ -optimal
estimator[49].

Figure 11 shows the results. When the data length
is short, the m = 2 state estimator had the most infor-
mation about the future. This makes perfect sense; a
short time series cannot fully sample a complicated ob-
ject, and when an ill-sampled high-dimensional manifold
is projected into a low dimensional space, infrequently
visited regions of that manifold can act effectively like

noise. From an information-theoretic standpoint, this
would increase the effective Shannon entropy rate of each
of the variables in the delay vector. In the I-diagram in
Figure 3, this would manifest as drifting apart of the two
circles, decreasing the shaded region that one needs to
maximize for effective forecasting.

If that reasoning is correct, longer data lengths should
fill out the attractor, thereby mitigating the spuri-
ous increase in the Shannon entropy rate and allowing
higher-dimensional reconstructions to outperform lower-
dimensional ones. This is indeed what one sees in Fig-
ure 11. For both the K = 22 and K = 47 traces, once
the signal is 2 million points long, the four-dimensional
estimator has caught up to and even exceeded the two-
dimensional case. Note, though, that the optimal Aτ of
the m = 8 reconstruction model is still lower than in the
m = 2 or m = 4 cases, even at the right-hand limit of
the plots in Figure 11. That is, even with a time series
that contains 4× 106 points, it is more effective to use a
lower dimensional reconstruction to make an LMA fore-
cast. But the really important message here is that Aτ
allows one to determine the best reconstruction parame-
ters for the available data, which is an important part of
the answer to the challenges outlined at the beginning of
this section.

Something very interesting happens in the m = 2 re-
sults for Lorenz 96 model with K = 47: the Aτ curve
reaches a maximum value around 100,000 points and
stops increasing, regardless of data length. What this
means is that this two-dimensional reconstruction con-
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FIG. 11: Aτ versus data length for traces from the
Lorenz-96 system using τ = 1 in all cases. Blue circles
corresponds to an embedding dimension m = 2, purple
diamonds to m = 4, and red xs to m = 8. (a) Optimal
Aτ for traces from the {K = 22, F = 5} Lorenz 96

system. (b) Optimal Aτ for traces from the
{K = 47, F = 5} Lorenz 96 system.
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tains as much information about the future as can be
ascertained from these data, suggesting that increasing
the length of the training set would not improve fore-
cast accuracy. To explore this, we constructed LMA
forecasts of different-length traces (100,000–2.2 million
points) from this system, then reconstructed their dy-
namics with different m values and the appropriate τAτ
for each case. Form = 2, bothAτ andMASE results did
indeed plateau at 100,000 points—at 5.736 and 0.0809,
respectively. As before, more data does afford higher-
dimensional reconstructions more traction on the predic-
tion problem: the m = 4 forecast accuracy surpassed
m = 2 at around 2 million points (MASE = 0.0521). In
neither case, by the way, did m = 8 catch up to either
m = 2 or m = 4, even at 4 million data points. Of course,
one must consider the cost of storing the additional vari-
ables in a higher-dimensional reconstruction model, par-
ticularly in data sets this long, so it may be worthwhile in
practice to settle for the m = 2 forecast—which is only
slightly less accurate and requires only 100,000 points.
This has another major advantage as well. If the time
series is non-stationary, a forecast strategy that requires
fewer points can adapt more quickly.

B. Choosing reconstruction parameters for
increased prediction horizons.

So far in this paper, we have considered forecasts that
were constructed one step at a time and studied the corre-
spondence of their accuracy with one-step-ahead calcula-
tions of Aτ . In this section, we consider longer prediction
horizons (p) and explore whether one can use a p-step-
ahead version of Aτ—i.e., I[Sj , Xj+p], with p > 1—to
choose parameter values that maximize the information
contained in each delay vector about the value of the time
series p steps in the future.

One would expect the Aτ -optimal {m, τ} values for a
given time series to depend on the prediction horizon. It
has been shown, for instance, that longer-term forecasts
generally do better with larger τ [6], and conversely[38].
It makes sense that one might need to reach different dis-
tances into the past (via the span of the delay vector) in
order to reduce the uncertainty about events that are fur-
ther into the future[16]. These effects are corroborated
by Aτ . Figure 12 demonstrates this in the context of
the Lorenz 96 system with K = 22, focusing on m = 2
for simplicity. The topmost trace in this figure is for the
p = 1 case—i.e., a horizontal slice of Figure 4a made at
m = 2. The maximum of this curve is the optimal τ value
(τAτ ) for this reconstruction. The overall shape of this
trace reflects the monotonic increase in the uncertainty
about the future with τ that is noted on page 5. The
other traces in Figure 12 show Aτ as a function of τ for
p = 2, 3, . . . , down to p = 100 at the bottom of the figure.
The lower traces do not decrease monotonically; rather,
there is a slight initial rise. This is due to the point made
above about the span of the delay vector: if one is pre-
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FIG. 12: The effect of prediction horizon (p) on Aτ of
the K = 22 Lorenz 96 system for a fixed reconstruction
dimension (m = 2). The traces in the image, starting

from the top, correspond to prediction horizons of p = 1
to p = 100.

dicting further into the future, it may be useful to reach
further into the past. In general, this causes the optimal
τ to shift to the right as prediction horizon increases,
going down the plot—i.e., longer prediction horizons re-
quire a greater τ (cf. [6]). For very long horizons, the
choice of τ appears to matter very little. In particular,
Aτ is fairly constant and quite low for 5 < τ < 50 when
p > 30—i.e., regardless of the choice of τ , there is very
little information about the p-distant future in any de-
lay reconstruction of this signal for p > 30. This effect
should not be surprising, and it is well corroborated in
the literature. However, it can be hard to know a priori,
when one is confronted with a data set from an unknown
system, to know what prediction horizon makes sense.
Aτ offers a computationally efficient way to answer that
question.

Figure 13 shows a similar exploration of the other side
of that question: the effects of the reconstruction dimen-
sion on Aτ , with τ fixed at 1. The m = 2 state estima-
tor contains more information about the future for short
prediction horizons. This ties back to the discussion at
the end of Section IV B: low-dimensional reconstructions
can work quite well for short prediction horizons. How-
ever, Figure 13 shows that the full reconstruction is bet-
ter for longer horizons. This is not terribly surprising,
since a higher reconstruction dimension allows the state

p

0 10 20 30 40 50 60 70 80 90 100

A
τ

1

2

3

4

5

6

FIG. 13: The effect of prediction horizon (p) on Aτ of
the K = 22 Lorenz 96 system for a fixed time delay
(τ = 1) and two different reconstruction dimensions.

The red line is m = 2 and the blue is mH = 8, the value
suggested for this signal by the technique of false

neighbors.
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estimator to capture more information about the past.
Finally, note that Aτ decreases monotonically with pre-
diction horizon for both m = 2 and mH . This, too, is
unsurprising. Pesin’s relation[50] says that the sum of
the positive Lyapunov exponents is equal to the entropy
rate, and if there is a non-zero entropy rate, then gener-
ically observations will become increasingly independent
the further apart they are. This explanation also applies
to Figure 12, of course, but it does not hold for signals
that are wholly (or nearly) periodic.

Recall that the col major dynamics in Section IV B
were chaotic, but with a dominant unstable periodic
orbit—which had a variety of interesting effects in the
results. Figure 14 explores the effects of prediction hori-
zon on those results. Not surprisingly, there is some pe-
riodicity in the Aτ versus p relationships, but not for the
same reasons that caused the stripes in Figure 8b. Here,
the peaks in Aτ occur at multiples of the period. That
is, the m = 2 state estimator can forecast with the most
success when the value being predicted is in phase with
the delay vector. Note that this effect is far stronger for
m = 2 than mH , simply because of the instability of that
periodic orbit; the visits made by the chaotic trajectory
to that orbit are more likely to be short than long. As ex-
pected, Aτ decays with prediction horizon—but only at
first, after which it begins to rise again, peaking at p = 69
and p = 71. This may be due to a second higher-order
unstable periodic orbit in the col major dynamics.

In theory, one can derive rigorous bounds on predic-
tion horizon. The time at which Sj will no longer have
any information about the future can be determined by
considering:

R(p) =
I[Sj ;Xj+p]

H[Xj+p]
,

i.e., the percentage of the uncertainty in Xj+p that can be
reduced by the delay vector. Generically, this will limit to
some small value equal to the amount of information that
the delay vector contains about any arbitrary point on
the attractor. Given some criteria regarding how much
information above the “background” is required of the
state estimator, one could use the R(p) versus p curve to
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FIG. 14: The effect of prediction horizon (p) on Aτ of
the col major for a fixed time delay (τ = 1) and two
different reconstruction dimensions. The red line is

m = 2 and the blue is mH = 12, the value suggested for
this signal by the technique of false neighbors.

determine the maximum practical horizon.
In practice, one can select parameters for delay

reconstruction-based forecasting by explicitly including
the prediction horizon in the Aτ function, fixing the hori-
zon p at the required value, performing the same search
as we did in earlier sections over a range of m and τ , and
then choosing a point on (or near) the optimum of that
Aτ surface. The computational and data requirements
of this calculation, as shown in Section V A, are far su-
perior to those of the standard heuristics used in delay
reconstructions.

VI. CONCLUSION

In this paper, we have described a new metric for
quantifying how much information about the future is
contained in a delay reconstruction. Using a number of
different dynamical systems, we demonstrated a direct
correspondence between the Aτ value for different de-
lay reconstructions and the accuracy of forecasts made
with Lorenz’s method of analogues on those reconstruc-
tions. Since Aτ can be calculated quickly and reliably
from a relatively small amount of data, without needing
to know anything about the governing equations or the
state space dynamics of the system, that correspondence
is a major advantage, in that it allows one to choose
parameter values for delay reconstruction-based forecast
models without doing an exhaustive search on the param-
eter space. Significantly, Aτ -optimal reconstructions are
better, for the purposes of forecasting, than reconstruc-
tions constructed using standard heuristics like mutual
information and the method of false neighbors, which can
require large amounts of data, significant computational
effort, and expert human interpretation. Aτ allows one
to answer other questions regarding forecasting with the-
oreticaly unsound models[38]—e.g., why one can obtain
a better forecast using a low-dimensional reconstruction
than with a full embedding. It also allows one to un-
derstand bounds on prediction horizon without having
to estimate Lyapunov spectra or Shannon entropy rates,
which are difficult to obtain for arbitrary real-valued time
series. That, in turn, allows one to tailor one’s recon-
struction parameters to the amount of available data and
the desired prediction horizon—and to know if a given
prediction task is just not possible.

The explorations in this paper involve a simple near-
neighbor forecast strategy and state estimators that are
basic delay reconstructions of raw time-series data. The
definition and calculation of Aτ do not involve any as-
sumptions about the state estimator, though, so the re-
sults presented here should also hold for other state es-
timators. For example, it is common in time-series pre-
diction to pre-process one’s data: for example, low-pass
filtering or interpolating to produce additional points.
Calculating Aτ after performing such an operation will
accurately reflect the amount of information in that new
time series—indeed, it would reveal if that pre-processing
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step destroyed information. And we believe that the ba-
sic conclusions in this paper extend to other state-space
based forecast schemas besides Lorenz’s method of ana-
logues, such as those used in [16–18, 20, 28]—although
Aτ may not accurately select optimal parameter values
for strategies that involve post-processing the data (e.g.,
GHKSS[51]). We are in the process of exploring this.

There are many other interesting potential ways to
leverage Aτ in the practice of forecasting. If the Aτ -
optimal τ = 1, that may be a signal that the time series
is undersampling the dynamics and that one should in-
crease the sample rate. One could use the more general
form AS at a finer grain to optimizing τ individually
for each dimension, as suggested in [52–54] where op-
timal optimal values are selected based on criteria not
directly related to prediction. To do this, one could de-
fine Sj = [Xj , Xj−τ1 , Xj−τ2 , . . . , Xj−τm−1

] and then sim-

ply maximize AS using that state estimator constrained
over {τi}m−1i=1 .
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