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The reduced dynamics for dark and bright soliton chains in the one-dimensional nonlinear
Schrödinger equation is used to study the behavior of collective compression waves correspond-
ing to Toda lattice solitons. We coin the term hypersoliton to describe such solitary waves riding on
a chain of solitons. It is observed that in the case of dark soliton chains, the formulated reduction
dynamics provides an accurate an robust evolution of travelling hypersolitons. As an application
to Bose-Einstein condensates trapped in a standard harmonic potential, we study the case of finite
dark soliton chain confined at the center of the trap. When the central chain is hit by a dark soliton,
the energy is transferred through the chain as a hypersoliton that in turn ejects a dark soliton on
the other end of the chain that, as it returns from its excursion up the trap, hits the central chain
repeating the process. This periodic evolution is an analogue of the classical Newton’s cradle.

I. INTRODUCTION

Bose-Einstein condensation occurs when a dilute gas
of bosonic atoms is cooled below a critical temperature
where a considerable fraction of the atoms occupy the
same quantum state according to Bose-Einstein statis-
tics. Bose-Einstein condensates (BECs) were first theo-
rized by Bose and Einstein in the 1920s [1] but not exper-
imentally realized until 1995 [2, 3] for which the 2001 No-
bel Prize in Physics was awarded [4]. Typically, rubidium
or sodium atoms are used and are cooled to nanokelvin
temperatures using a combination of laser an evaporative
cooling. The condensate is held in position by a combi-
nation of magnetic and optical traps. For sufficiently
low temperatures, the mean field dynamics of BECs in
a quasi-one-dimensional (1D) trap can be accurately de-
scribed by the so-called Gross-Pitaevskii (GP) equation
that is a variant of the nonlinear Schrödinger (NLS) equa-
tion incorporating the external trapping potential [5]. By
appropriately adimensionalizing time, length and energy
(see Ref. [5] for details), it is possible to cast the 1D GP
equation as

i ut = −1

2
uxx + g |u|2u+ VMT u, (1)

where the rescaled condensate wavefunction is given by
u(x, t), VMT(x) is the effective 1D (magnetic) trapping
potential confining the BEC and g = ±1 indicates
whether the atoms have an attractive (g = −1) or repul-
sive (g = +1) scattering length. This 1D reduction of the
system is achieved by the so-called cigar-shaped external
trapping potential for which two transverse directions are
tightly confining (such that, effectively, only the ground
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state along these direction is possible) while the longitu-
dinal (in our case x) direction is loosely trapped allowing
for the dynamics of Eq. (1) to evolve along this direction.
Since the experimental realization of Bose-Einstein

condensation, the study of this new form of matter has
been the focus of intensive theoretical and experimental
efforts [5–7]. BECs continue to be a testbed for accessing
quantum mechanics at a macroscopic level allowing for
direct observation of matter-wave solitons [5, 8]. Under
strong transverse confinement in two spatial directions,
a BEC can be rendered effectively quasi-1D [5]. In this
case, depending on the sign of the scattering length be-
tween the BEC entities (usually alkali atoms), it is pos-
sible to observe bright [9–11] (for attractive interactions)
and dark [12–15] (for repulsive interactions) solitons. In
the present work, we are interested in studying the collec-
tive dynamics of chains of these 1D solitons and, specif-
ically, the possibility of stable solutions that coherently
propagate compression waves along the soliton chain.
Solitons are ubiquitous nonlinear waves that occur in

a wide range of physical systems such as plasmas, molec-
ular chains, optical fibers, and long water waves [16]. In
many physically relevant setups solitons are extremely ro-
bust (with respect to parametric perturbations) and sta-
ble (with respect to configuration perturbations). They
can interact elastically with other solitons, travel long
distances, and travel through inhomogeneities with min-
imal deformation and dispersion. This striking stability
relies on the balance between dispersion and nonlinear-
ity. For instance, in the absence of external trapping
(VMT = 0) and for the case of an attractive condensate
(g = −1), the homogeneous background GP (1) accepts
exact bright soliton (BS) solutions of the form [5, 17]

ubs = a sech(a(x− ξ(t))) ei (vx+φbs(t)), (2)

where a is the amplitude (and inverse width) of the soli-
ton, ξ(t) = vt+ξ0 is its position (ξ0 being its initial loca-
tion) and its phase is given by φbs(t) = (a2 − v2)t/2+φ0
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(φ0 being its initial phase). On the other hand, in the
case of a repulsive condensate, for a homogeneous and
stationary background density, the GP equation (1) ac-
cepts exact dark soliton (DS) solutions of the form [18, 19]

uds =
√
n0 [B tanh(

√
n0B (x− ξ(t))) + iA] eiφds(t), (3)

where n0 is the density of the constant background that
supports the DS, ξ(t) is its position as defined above for
a BS and its phase is given by φds(t) = −n0t + φ0 (φ0

being its initial phase). The parameters of the DS are
related by the following expressions: A2 + B2 = 1 and
v = A

√
n0.

In this work we study the collective dynamics of chains
of interaction bright and dark solitons. The manuscript
is organized as follows. The next section is devoted to
summarizing the dynamical reduction where the evolu-
tion of a chain of well separated and nearly identical soli-
tons can be reduced, for both BSs and DSs, to a chain of
effective particles connected with nonlinear springs mod-
elled by the fundamental Toda lattice on the soliton’s
positions. Section III is devoted to constructing appro-
priate initial conditions for the original GP equation to
support Toda lattice solitons riding on chains of BSs and
DSs, a.k.a hypersolitons. We present numerical results
from direct integration of the GP equation which very
closely match the solutions of the corresponding Toda
lattice prediction. We describe the robustness of the con-
structed hypersoliton solutions and present some typical
collision scenarios. Also, in this section, motivated by
the presence of harmonic trapping in typical BEC exper-
iments, we study the effects of considering a finite soliton
chain that is confined at the bottom of the external po-
tential. Specifically, we present numerical results for a
finite chain of DSs supported by an external harmonic
trap giving rise to dynamics that are akin to the oscilla-
tions of the classical Newton’s cradle. Finally, in Sec. IV
we summarize our results and present possible avenues
for further research.

II. DYNAMICAL REDUCTION FOR SOLITON
CHAINS

For completeness, in this section we summarize estab-
lished results on the dynamical reduction for chains of
BSs and DSs. As it is know, under suitable conditions,
both systems reduce to a Toda lattice on the position of
the solitons. Hence, as shown below, by initializing the
soliton train’s positions and velocities according to the
Toda lattice soliton, a travelling compression pulse can
be sustained. We also present in this section some nu-
merical results elucidating the stability properties of such
chains and contrast the corresponding dynamical stabil-
ity between BS and DS chains.

A. Bright soliton chains

The BS solution (2) describes the coherent evolution
of a density heap on a zero background in an attractive
quasi-1D BEC in the absence of an external confining po-
tential. When an external trapping potential is included
and/or in the presence of other BSs, the BS is perturbed
inducing a deformation of its shape. However, under
small perturbations, and noting that BSs are robust, it is
possible to approximately describe the dynamics of the
BS by the ansatz (2) as long as its amplitude, width,
position, velocity and phase are dynamically adjusted to
follow accurately the actual solution of the system. For
instance, in the presence of a magnetic trap of the form

VMT(x) =
1

2
Ω2 x2, (4)

where the strength of the trap Ω is small (compared to
the soliton width), a single BS solution will undergo left-
to-right periodic oscillations of frequency Ω [20–23]. On
the other hand, the presence of another BS, provided
that both solitons have similar amplitudes and veloci-
ties and that their separation is large compared to their
widths [ensuring that their shape can still be approxi-
mated by Eq. (2)], their interaction dynamics can be re-
duced to a set of coupled ordinary differential equations
(ODEs) [24–29]. These reduced ODEs depend on all the
parameters of the solitons. Namely, defining a vector of
time dependent parameters Pi = (ai, ξi, vi,φi) for the
i-th soliton containing, respectively, its amplitude, posi-
tion, velocity and phase, the dynamics for the BSs can
be approximately described (under the above mentioned
conditions) by a set of coupled ODEs on the parameters
Pi as follows [24–27]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧj = 4a2j(Sj,j−1 − Sj,j+1),

v̇j = −4a2j(Cj,j−1 − Cj,j+1),

ξ̇j = vj − 2(Sj,j−1 + Sj,j+1),

δ̇j =
a2
j+v2

j

2 − 2vj(Sj,j−1 + Sj,j+1)

+ 6 νj(Cj,j−1 + Cj,j+1),

(5)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Sj,n = e−|an(ξj−ξn)|an sin(sj,nφj,n),

Cj,n = e−|an(ξj−ξn)|an cos(φj,n),

φj,n = δj − δn − vn(ξj − ξn),

sj,j−1 = 1 = −sj,j+1.

(6)

It is important to mention that for the above reduction to
be valid it is necessary that the following conditions are
satisfied: (a) All BSs must have similar amplitudes and
velocities; specifically it is required that |aj−an| ≪ ā and
|vj−vn| ≪ v̄ where ā and v̄ are, respectively, the average
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thus, we only show the reduced ODE orbit up to the
first collision time. On the other hand, for intermediate
times, the OOP chain (top right panel) does not suffer
from the collision of BSs as it assumes that all BSs are al-
ways OOP. The resulting reduced ODE dynamics closely
follows the original GP dynamics for short times, but
later deteriorates since, as explained earlier, the BSs lose
the OOP synchronization. Nonetheless, for intermedi-
ate times, while the BSs are kept separated, the reduced
ODE model does reproduce the original GP dynamics.
In contrast to the BS chain, the DS chain does not

suffer from phase-induced instabilities since DSs always
repel each other. As a result, the reduced ODE model
for the DS chain (12) provides a very robust model for
the GP dynamics under extended time evolutions for
any initial condition provided the DSs are initially well-
separated. An example of the dynamics from the reduced
Toda lattice ODE (12) and the original GP model is de-
picted in Fig. 3, where a collection of DSs placed at ran-
dom locations with random initial velocities evolves in
time. The top panel depicts the Toda lattice orbits over-
layed upon the corresponding GP solution. The middle
and bottom panels depict, respectively, the orbits and
their difference between the original GP and the reduced
Toda lattice models. It is clear from the figure that the
Toda lattice model gives an accurate prediction of the
DS positions for the original GP system for relatively
long times.

III. TODA LATTICE SOLITONS

A. Preliminaries

Before constructing Toda lattice solitons on the chains
of bright and dark solitons, let us review the form of these
solutions for completeness. The Toda lattice is one of the
most popular models in physics since, by construction, it
was designed as to prescribe a chain of nonlinear oscilla-
tors with completely integrable evolution [32]. As such,
the Toda lattice possesses some exact solutions that are
the foundation for building more complex solutions. In
particular, the Toda lattice possesses periodic and local-
ized solutions [32]. Here we focus on the latter type of
solutions referred to as Toda solitons. The Toda lattice’s
equations of motion

ÿn = VTL(yn+1 − yn)− VTL(yn − yn−1),

= Ae−b(yn−yn−1) −Ae−b(yn+1−yn),
(13)

originate from the interaction of nearest neighbors in a
one-dimensional chain of coupled, unit mass, particles at
positions yn, interacting through the potential

VTL(∆y) =
A

b
e−b∆y +A∆y. (14)

Here, ∆y is the separation between particles and A and
b are positive parameters prescribing, respectively, the

strength and decay of the inter-particle interactions. By
following the evolution of the particles through their mu-
tual separation

∆yn = yn+1 − yn, (15)

and defining sn ≡ d(∆yn)/dt and pn ≡ dyn/dt so that
sn−1−sn = pn, the equations of motion can be rewritten
in term of Sn =

∫
sndt as

ln

(
1 +

S̈n

a

)
=

b

m
(Sn+1 − 2Sn + Sn−1) . (16)

Then, it is straightforward to find solitary kink solutions
for this system in the form:

sn = ±β

b
tanh (nκ± βt) + const, (17)

where the kink velocity is c = β/κ and its amplitude β
is given by

β =
√
Ab sinhκ, (18)

where the width of the kink κ is a free parameter. It
should be noticed that this solution is stable and it cor-
responds to a compression wave that travels through the
lattice [32].

B. Toda lattice solitons: hypersolitons

We now seek to use the soliton solution for the Toda
lattice (see previous section) to construct a Toda lattice
soliton on the reduced lattice equations for the bright and
dark soliton chains. Let us consider an equilibrium con-
figuration consisting of a chain of N equidistant solitons
with separation r0 = 2L/N in the periodic domain x ∈
[−L,L]. Both OOP[55] BS and DS chains are reduced,
respectively, to the Toda lattice chains (9) and (12) where
the Toda lattice potential parameters are given in terms
of soliton amplitude a for the BS chain and in terms of the
background density n0 for the DS chain. It is worth men-
tioning that the uniform pre-compression experienced by
the periodic chain effectively corresponds to a rescaling
on the strength of the Toda lattice potential A. This is
evident when rescaling the soliton positions by a factor
γ, yn = γỹn, then the exponential interaction terms be-
come Ae−b(yn−yn−1) = Ae−bγ(ỹn−ỹn−1) = Ã e−b(ỹn−ỹn−1)

where Ã = Ae−bγ .
Let us start by initializing the chain of BSs such that

the initial positions and initial velocities satisfy the cor-
responding Toda soliton (17). An example of this case is
depicted in Fig. 4 for N = 10 BSs in the periodic chain
x ∈ [−43, 43]. The top panels depict the initial condition
for the displacements from equilibrium between solitons
rn = ξn − ξn−1 − r0 (left subpanel) and their respective
initial velocities ṙn. As it is evident from these pan-
els, the kink (17) corresponds to a localized compression
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model has not only been validated numerically, but it has
been used to predict the normal modes of vibration for
a small number of DSs in actual experiments [42, 43]. In
fact, the Toda lattice with the on-site potential (19) pos-
sesses a steady state solution emerging from the balance
of the mutual repulsions between the DSs and the attrac-
tion of the external trap towards the trap’s center. This
compressed steady state train of N DSs has N distinct
normal modes of vibration corresponding to the normal
modes of vibration of N coupled masses through (linear)
springs with springs at each end attached to rigid walls.
For example, for N = 2 there exist 2 normal modes of
vibration corresponding to the in-phase and out-of-phase
modes of vibration of the DSs [43].

Instead of studying further the normal modes men-
tioned above, we opt here to emulate the dynamics of a
classical Newton’s cradle using a chain of solitons. The
idea is to start with an initial stationary chain of N DSs
at the bottom of the parabolic trap and then drop a sin-
gle, outer, DS from a position higher up in the trapping
potential. This outer DS will experience the force of the
trapping potential and ride down the external trap to
collide with the stationary DS chain. The collision ex-
cites a moving hypersoliton within the inner DS chain.
When the hypersoliton reaches the opposite extreme of
the inner DS chain, a single DS is expelled outward. This
new outer DS will ride up and down the trap until it
hits the inner DS chain thus repeating the process of a
soliton analogue of the classical Newton’s cradle. It is
relevant to note at this stage that a similar idea was ex-
perimentally achieved in a 1D Bose gas of 87Rb atoms
by initially splitting a wavepacket into two wavepackets
with opposite velocities. These packets then evolve by
going up and down the trap and periodically colliding at
the center [44]. Also, in Ref. [45], the authors propose
another quantum analogue of a Newton’s cradle using
a BEC by partitioning the wavefunction using a peri-
odic optical lattice potential. In contrast, our method to
create a Newton’s cradle is based on the effective non-
linearity of the GP model and the repulsive interaction
dynamics between dark solitons.

It is also worth mentioning that there is some volume
of work that has studied the concept of hypersolitons and
Newton’s cradles in similar settings to the one we present
here. For instance, the work of Ref. [46] showed that in
an NLS model with third order dispersion, an initial large
bright spot (i.e., the coalescence of multiple solitons into
a single hump) “melts” into a chain of approximately
equidistant solitons for which a dominant one traverses
the chain in a manner akin to the hypersolitons hereby
presented. A similar study was presented more recently
in Ref. [47] in the context of PT -symmetric nonlinear
couplers. However, in these two works [46, 47] the ab-
sence of an external potential, confining the motion of the
hypersolitons, precluded the observation of multiple peri-
odic collisions as in the classic Newton’s cradle and only
allowed for the hypersoliton to traverse once through the
soliton chain. Furthermore, in these works, the authors

FIG. 8: (Color online) Hypersoliton Newton’s cradle. A DS
soliton (leftmost one) is released at various distances away
from a stationary lattice of 12 DSs placed at the center of
the parabolic trapping potential (4) with Ω = 0.01. The DS
is released at a distance equivalent to (a) 3r0 (left column
of panels), (b) 12r0 (middle column of panels), and (c) 20r0
(right column of panels) where r0 is the separation between
the central DSs. All panels have the same meaning and layout
as previous figures.

used bright solitons for the chain and thus, as described
above, obtained only transient behavior as eventually the
BS chain becomes unstable. Perhaps closer in spirit to
the Newton cradle that we describe below is the work
of Ref. [48] where the authors propose a setting equiva-
lent to ours that include an external harmonic trap but
with bright solitons which, again, leads to instabilities
that preclude the observation of the desired cradle oscil-
lations for extended periods of time. In contrasts, as we
show below, by using the stable dark soliton chain inside
a harmonic trap, we are able to produce dynamics akin to
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a)

b)

c)

d)

e)

FIG. 9: (Color online) Schematic of the mechanism for the
loss of the hypersoliton Newton’s cradle through the synchro-
nization of the outer DS [see red (gray) circle] with the central
DS chain [see black circles]. (a) Release of a DS from the left
with a stationary DS chain in the central region. (b) After the
hypersoliton travels through the chain, the rightmost DS is
ejected to the right. The remaining central DS chain is now
asymmetric with respect to the center (see vertical dashed
line) and starts moving to the right. (c) Both outer DS and
central DS chain perform half an oscillation after their re-
spective excursion up the trap. (d) After the DS collides
and transfers its energy (through a propagating hypersoliton
through the central DS chain) the leftmost DS is ejected. The
central DS chain still has the extra energy of moving towards
the left. (e) Both the DS and the central chain now oscillate
in the same direction (although slightly out-of-phase). This
process continues until the energy of the outer DS is com-
pletely transferred to the central chain and all that remains
is a central chain undergoing left-to-right oscillations in the
in-phase normal mode.

the classic Newton’s cradle that persists for long times.
Figure 8 depicts three different attempts at recreat-

ing a Newton’s cradle-type evolution with our setup. In
these examples, we use a stationary DS chain of N = 12
DSs placed at the center of a magnetic trap of strength
Ω = 0.01, namely ω = 0.01/

√
2 [see Eq. (19)]. The

stationary inner DS chain is obtained by a standard
fixed-point iteration (Newton’s) method initialized with
a chain of DSs with zero velocities positioned at the
steady state locations. Once the stationary inner lat-
tice is found, an extra, outer, DS is seeded away from it.
The distance of the outer DS to the inner DS chain is
varied and the resulting evolution is analyzed. The three
cases depicted in Fig. 8 correspond to, from left to right,
an initial distance of the outer DS of (a) 3r0, (b) 12r0,
and (c) 20r0 where r0 is the distance between the two
innermost DSs of the central chain. For case (a), cor-
responding to a short dropping distance of the DS, the
Newton’s cradle dynamics is observed for a couple of pe-

riods but apparently the outer DS is “absorbed” by the
inner chain resulting in a larger inner chain (i.e., N + 1
DSs) that simply oscillates in the in-phase normal mode.
The mechanism whereby the outer DS is absorbed by the
inner lattice hinges on the fact that, although DS colli-
sion are elastic, there is a shift in the path of the DSs
with respect to the before and after collision trajectories
as was shown before (see discussion on the last collision
depicted in Fig. 7). The details of the outer DS “absorp-
tion”, or rather the energy exchange between the outer
DS dynamics and the inner DS chain, is explained in
Fig. 9. This energy transfer is more clearly visible in the
left-bottom panel of Fig. 8 depicting the time derivative
of the (square root of the) density. In this panel, it is clear
that during the first hypersoliton excursion through the
inner DS chain, there is practically no scattering of en-
ergy in the inner chain. However, as explained in Fig. 9,
just after the hypersoliton ejects the first DS, the inner
chain has an extra DS on the left and is missing one DS
on the right and thus, it is no longer close to equilib-
rium and starts to oscillate. This is clearly visible in the
bottom-left panel of Fig. 8 for 300 < t < 500 where the
inner chain moves synchronously. This energy transfer
mechanism continues until all the energy of the outer DS
is completely depleted and the outer DS is absorbed by
the inner lattice that oscillates with its in-phase normal
mode (results not shown here).

In order to avoid, or minimize, the energy transfer be-
tween the outer DS and the inner DS chain, it is nec-
essary to decouple the dynamics of the outer DS and
the inner DS chain. This is achieved by increasing the
dropping distance of the outer DS. As can be seen in the
case depicted in the middle column of panels in Fig. 8,
the excursion of the outer DS has very little effect on
the inner chain motion. This can be explained because
in this case, the outer DS travels faster through the in-
ner chain and thus, the latter has less time to develop
its in-phase normal mode. Furthermore, as the period
of the outer DS is different from the period of the in-
ner chain in-phase mode, subsequent excursions of the
outer DS do not synchronize with the in-phase mode.
The outer DS has a different period in the presence of
the inner DS chain because its trajectory in (x, t) is the
concatenation of sinusoids (when the outer DS is trav-
eling up and down the external trap on its own) and
straight paths (when the hypersoliton traverses the in-
ner chain).[56] Therefore, let us effectively consider the
two involved dynamics, namely the outer soliton oscil-
lations and the inner chain oscillations, as two coupled
oscillators. These oscillators can synchronize provided
that their periods are close to each other and that the
coupling is sufficiently strong [49]. This is precisely what
happens for a relatively small dropping distance as de-
picted in the first case of Fig. 8. However, as we increase
the dropping distance, the two coupled oscillators have
increasingly different frequencies and, at the same time,
the coupling is reduced as the interaction time between
the two, given by the time it takes for the hypersoliton
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FIG. 10: (Color online) Long term evolution of the hypersoli-
ton Newton’s cradle corresponding to the case depicted on
the middle column of Fig. 8. Notice the beating of energy
exchange between the outer DS and the central chain. All
panels have the same meaning and layout as previous figures.

to traverse the inner chain, is reduced because of a faster
hypersoliton speed. Thus, in principle, there should be a
threshold drop-off distance for which the Newton’s cra-
dle should be self-maintained. This is what seems to be
occurring in the case depicted in the middle column of
Fig. 8 where apparently a very small amount of energy is
transferred to the inner chain. To ensure that this small
transfer does not destroy the Newton’s cradle, we depict
in Fig. 10 the same case as in the middle column of Fig. 8,
but for a longer time. As can be seen from the figure,
there is indeed a transfer of energy from the outer DS to
the inner chain for t < 9, 000. However, the roles are in-
verted after this time and then the inner chain transfers
back the energy to the outer DS! This produces a beating
phenomenon common for coupled oscillators with differ-
ent periods. This periodic energy transfer between the
outer DS and the inner chain seems to persists for very
long times (results not shown here) providing a mecha-
nism for a stable, long-lived, Newton’s cradle dynamics.
Finally, the last column of Fig. 8 depicts an example

with an even larger drop-off distance. In this case, the
outer DS also interacts with the edge of the BEC cloud
and produces sounds waves that remove energy from the
former and thus, finally settling to a Newton’s cradle
with slightly lower oscillation amplitude with some back-
ground radiation (sound waves) prevailing in the conden-
sate for long times (results not shown here). It is impor-
tant to mention at this stage that an experiment capable
of reproducing the Newton’s cradle shown above should
require a relatively large extent (longitudinal Thomas-
Fermi radius) of the BEC cloud when compared to the
typical width of the dark solitons (proportional to the
so-called healing length of the condensate). Breaching
this requirement could induce an inner DS chain with
a high level of pre-compression —due to the trapping—
that would bring the DSs too close to each other so that
the approximations used in deriving the effective Toda
lattice model would no longer hold.

IV. CONCLUSIONS AND OUTLOOK

We construct coherent structures consisting of com-
pression waves riding on chains of bright (BS) and dark
(DS) solitons of the GP model. Namely, a soliton rid-
ing on a chain of solitons and thus dubbed a hypersoli-
ton. We use the established reduction for the dynamics
of chains of BSs and DSs to a Toda lattice on the soli-
tons’ positions, i.e., the solitons are modelled as a chain
of nonlinearly coupled masses. Then, the corresponding
Toda lattice solitons (compression waves on the lattice)
can be initialized on the original GP model using the well-
known exact Toda lattice soliton solution. We show how
BS chains are inherently unstable due to phase desyn-
chronization between consecutive BSs and thus are poor
candidates for supporting hypersolitons. In contrast, DS
chains are stable and DSs, being topologically charged,
never lose their phases and thus are always mutually
repelled from each other. We successfully craft hyper-
soliton solutions riding on DS chains of the original GP
model for a wide range of parameter values. These hyper-
solitons are robust and stably travel at a constant speed
without deformation nor radiation. Additionally, we con-
struct multiple hypersolitons and observe their elastic
collisions in different head-on and chasing collisions sce-
narios. Finally, inspired by the classical Newton’s cradle,
we study the dynamics of finite DS chains trapped inside
the customary parabolic external potential relevant in ex-
perimental Bose-Einstein condensates. This is achieved
by letting a free, outer, soliton hit a stationary inner DS
chain creating a hypersoliton wave travelling through the
latter. As the hypersoliton reaches the end of the inner
chain, a single DS is expelled and allowed to rise and fall
down the external trap hitting the inner chain repeating
the process in a manner akin to the classical Newton’s
cradle. We study the effects of the drop-off distance on
the formation of the Newton’s cradle dynamics and ar-
gue, in terms of the theory of coupled oscillators, that a
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minimal drop-off distance is required for the creation of
self-sustained Newton’s cradle oscillations.
The present work could be extended in a few inter-

esting directions. For example the effects of finite tem-
peratures in a condensate give rise to dissipation due
to coupling with the thermal (non condensed) fraction.
This dissipation can be modelled at the level of the
GP equation by the so-called phenomenological dissipa-
tion [18, 19] and it is responsible for anti-damping terms
in the reduced equations of motion of the DSs. It would
be interesting to analyze the effects of such a dissipative
term on the dynamics of hypersolitons. On the other
hand, condensates can be supported by two or more cou-
pled components with linear and/or nonlinear coupling
terms between them [5]. These coupled models give rise
to coupled complexes with dark or bright solitons coupled
to dark or bright solitons in the other component(s), thus
giving rise to the so called dark-dark and dark-bright

solitons [50–53]. The dynamically reduced models for
these coupled systems take the form of coupled Toda lat-
tices [54]. It would be interesting to explore the possibil-
ity to construct hypersolitons and study their stability in
systems with several components.
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