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Modeling a temporal process as if it is Markovian assumes the present encodes all of a process’s
history. When this occurs, the present captures all of the dependency between past and future. We
recently showed that if one randomly samples in the space of structured processes, this is almost never
the case. So, how does the Markov failure come about? That is, how do individual measurements
fail to encode the past? And, how many are needed to capture dependencies between the past and
future? Here, we investigate how much information can be shared between the past and future,
but not be reflected in the present. We quantify this elusive information, give explicit calculational
methods, and draw out the consequences. The most important of which is that when the present
hides past-future correlation or dependency we must move beyond sequence-based statistics and
build state-based models.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey 02.50.Ga
Keywords: stochastic process, hidden Markov model, causal shielding, ε-machine, causal states, mutual
information.

I. INTRODUCTION

Until the turn of the nineteenth century, temporal
processes were almost exclusively considered to be inde-
pendently sampled at each time from the same statistical
distribution; each sample uncorrelated with its predeces-
sor. These studies were initiated by Jacob Bernoulli in the
1700s [1] and refined by Simeon Poisson [2] and Pafnuty
Chebyshev [3] in the 1800s, leading to the weak Law of
Large Numbers and the Central Limit Theorem. These
powerful results were the first hints at universal laws in
stochastic processes, but they applied only to independent,
identically distributed (IID) processes—unstructured pro-
cesses with no temporal correlation, no memory. More-
over, until the turn of the century it was believed that
these laws required independence. It fell to Andrei An-
dreevich Markov (1856–1922) to realize that independence
is not necessary. To show this he introduced a new kind of
sequence or “chain” of dependent random variables, along
with the concepts of transition probabilities, irreducibility,
and stationarity [4, 5].

Introducing his “complex chains” in 1907, Markov initi-
ated the modern study of structured, interdependent, and
correlated processes. Indeed, in the first and now-famous
application of complex chains, he analyzed the pair distri-
bution (2-grams) in the 20, 000 vowels and consonants in
Pushkin’s poem Eugeny Onegin and the 100, 000 letters in
Aksakov’s novel The Childhood of Bagrov, the Grandson
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[6, 7]. Since Markov’s time the study of complex chains
has developed into one of the most powerful mathemat-
ical tools, applied far beyond quantitative linguistics in
physics [8], chemistry [9], biology [10], finance [11], and
even in numerical methods of estimation and optimization
[12] and Google’s PageRank algorithm [13].
To study correlation in structured processes, we take

an information-theoretic view of Markovian complexity
arising from temporal interdependency between observed
symbols that are functions of chain states. That is, indi-
vidual observation symbols are not themselves the chain
states and therefore need not encode all the past. Specifi-
cally, we consider stationary, ergodic processes generated
by hidden Markov chains (HMCs); introduced in the mid-
twentieth century, as a generalization of Markov’s complex
chains, to model processes generated by communication
channels [14]. When are these hidden processes described
by finite Markov chains? When are they not Markovian?
What’s the informational signature in this case? And,
what are “states” in the first place? Can we discover them
from observations of a hidden process?

The following is the first in a series that addresses these
questions: which have been answered, which can be an-
swered, and which are open. Here, we concentrate on how
the present—a sequence of ` consecutive measurements—
statistically shields the past from the future, as a function
of `. We introduce the elusivity σ`µ as a quantitative
measure of the present failing to encode the past—a quan-
titative signature of Markov failure. We show how to
calculate it explicitly via a novel construction and then
describe and interpret its behavior through examples.
The methods introduced also lead to compact expressions
and efficient estimation of related measures—ephemeral,
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bound, and enigmatic informations—whose behaviors we
also explore. As an application we use the results to
reinterpret the persistent mutual information introduced
by Ref. [15] as a measure of “emergence” in complex
systems. Finally, we note that the sequel [16] is ana-
lytical, giving closed-form solutions and proving various
properties, including several of those used here.
To address Markov’s notion of complex chains, the

next section reviews the minimal necessary background:
measures of information content and correlation from in-
formation theory [17], their application to stochastic pro-
cesses via computational mechanics [18, 19], and a recent
analysis of the information content of the single time-step
present within the context of the past and future [20]. This
then sets the stage for a thorough analysis of Markovian
complexity: Generalizing the previous framework so that
the present can be an arbitrary duration. This gives rise
to our main new result: expressing the elusivity in terms
of a process’s causal states. Notably, this result draws on
the prior introduction of stochastic process models—the
so-called bi-machines—that are agnostic with respect to
the direction of time. We show how this leads to a simple
and efficient expression for the elusive information and
its companion measures. Those expressions, in turn, give
the basis for further analytical development and for em-
pirical estimation. With the general theory laid out, we
make the ideas and methods concrete by calculating the
elusivity and related quantities for a number of prototype
complex processes, characterizing the variety of their con-
vergence behaviors. Finally, we apply the insights gained
to evaluate a proposed information-theoretic measure of
emergence. We close by recapping the results and drawing
conclusions for future applications.

II. INFORMATION IN COMPLEX PROCESSES

A. Processes

We are interested in a general stochastic process P:
the distribution of all of a system’s behaviors or realiza-
tions {. . . x−2, x−1, x0, x1, . . .} as specified by their joint
probabilities Pr(. . . X−2, X−1, X0, X1, . . .). Xt is a ran-
dom variable that is the outcome of the measurement
at the time t, taking values xt from a finite set A of all
possible events. We denote a contiguous chain of ran-
dom variables as X0:` = X0X1 · · ·X`−1. Left indices are
inclusive; right, exclusive. We suppress indices that are
infinite. We consider only stationary processes for which
Pr(Xt:t+`) = Pr(X0:`) for all t and `.
Our particular emphasis in the following is that

a process Pr(X:0, X0:`, X`:) is a communication chan-
nel that transfers information from the past X:0 =

. . . X−3X−2X−1 to the future X`: = X`X`+1X`+2 . . . by
storing parts of it in the present X0:` = X0X1 . . . X`−1 of
length `. Of primary concern is whether X:0 → X0:` →
X`: forms a Markov chain in the sense of Ref. [21]:

Pr(X−m:0, X0:`, X`:n) =
Pr(X−m:0|X0:`) Pr(X`:n|X0:`) Pr(X0:`) ,

for all m,n ∈ Z+.

B. Channel Information

In analyzing this channel we need to measure a variety
of information metrics, each capturing a different aspect
of the information being communicated. The simplest is
Shannon entropy [21]:

H[X] = −
∑
x∈X

Pr(x) log2 Pr(x) . (1)

Three other information-theoretic measures based on the
entropy will be employed throughout. First, the con-
ditional entropy, measuring the amount of information
remaining in a variable X (alphabet X ) once the infor-
mation in a variable Y (alphabet Y) is accounted for:

H[X|Y ] = −
∑
x∈X
y∈Y

Pr(x, y) log2 Pr(x|y) . (2)

Second, the deficiency of the conditional entropy relative
to the full entropy is known as the mutual information,
characterizing the information that is contained in both
X and Y :

I[X :Y ] = H[X]−H[X|Y ]

=
∑
x∈X
y∈Y

Pr(x, y) log2
Pr(x, y)

Pr(x) Pr(y) . (3)

Last, we have the conditional mutual information, the
mutual information between two variables once the infor-
mation in a third (Z with alphabet Z) has been accounted
for:

I[X :Y |Z] =
∑
x∈X
y∈Y
z∈Z

Pr(x, y, z) log2
Pr(x, y|z)

Pr(x|z) Pr(y|z) . (4)

Perhaps the most naïve way of information-theoretically
analyzing a process, capturing the randomness and de-
pendencies in sequences of random variables, is via the
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block entropies:

H(`) = H[X0:`] . (5)

This quantifies the amount of information in a contiguous
block of observations. Its growth with ` gives insight into
a process’s randomness and structure [18, 22]:

H(`) ≈ E + hµ`, `� 1 . (6)

The asymptotic growth hµ, here, is a process’s rate of
information generation, or the Shannon entropy rate:

hµ = H[X0|X:0] , (7)

where the subscript µ denotes the specific probability
measure over bi-infinite strings, defining the process of
interest and its sequence probabilities. Lastly, the amount
of future information predictable from the past is the past-
future mutual information or excess entropy:

E = I[X:0 :X0:]
= H[X:0, X0:]−H[X:0|X0:] . (8)

The excess entropy naturally arises when considering chan-
nels with a length ` = 0 present, where it is effectively
the only direct information quantity over the variables
X:0 and X0:. It is well known that if the excess entropy
vanishes, then there is no information temporally commu-
nicated by the channel [18].
Generically, Eq. (8) is of the form ∞ −∞, which is

meaningless. In such situations one refers to finite se-
quences and then takes a limit:

lim
m,n→∞

(
H[X−m:0, X0:n]−H[X−m:0|X0:n]

)
.

Here, we generally use the informal infinite variables in
equations for clarity and simplicity unless the details of
the limit are important for the analysis at hand. To be
concrete, we write f(X:0) to mean lim

m→∞
f(X−m:0) and

f(X`:) to mean lim
n→∞

f(X`:n).

C. Information Atoms

The foregoing set up views a process as a channel that
communicates the past to the future via the present. Our
goal, then, is to analyze the channel’s properties as a
function of the present’s length `. The cases of ` = 0 and
` = 1 have already been addressed: ` = 0 in Ref. [23]
and ` = 1 in Ref. [20]. Our initial development closely
mirror theirs. We borrow notation, but must include a
superscript to denote the `-dependence of the quantities.

Broadly, our approach is to decompose the information in
a random variable—such as the present—into components
(atoms) associated with other random variables1. Our
immediate concern is that of monitoring the amount of
dependency remaining between the past and future if the
present is known. We use the mutual information between
the past and the future conditioned on the present to do
so—the elusivity that will soon become our focus:

σ`µ = I[X:0 :X`:|X0:`] (9)
= H[X:0|X0:`] + H[X`:|X0:`]−H[X:0, X`:|X0:`] .

Note that σ0
µ = E.

Next, extending Ref. [20], we decompose the length-`
present. When considering only the past, the information
in the present separates into two components: ρ`µ = I[X:0 :
X0:`], the information that can be anticipated from the
past, and h`µ = H[X0:`|X:0], the random component that
cannot be anticipated. Naturally, H[X0:`] = h`µ + ρ`µ.
Connecting directly to Ref. [20], our ρ1

µ is their ρµ and,
likewise, our h1

µ is their hµ.
If one also accounts for the future’s behavior, then the

random, unanticipated component h`µ breaks into two
kinds of information: one part b`µ = I[X0:` :X`:|X:0] that,
while a degree of randomness, is relevant for predicting
the future; and the remaining part r`µ = H[X0:`|X:0, X`:]
is ephemeral, existing only fleetingly in the present and
then dissipating, leaving no trace on future behavior.
The redundant portion ρ`µ of H[X0:`] itself splits into

two pieces. The first part, I[X:0 :X0:`|X`:]—also b`µ when
the process is stationary—is shared between the past and
the current observation, but its relevance stops there.
The second piece q`µ = I[X:0 :X0:` :X`:] is anticipated by
the past, is present currently, and also plays a role in
future behavior. Notably, this informational piece can be
negative [20, 25].

Due to a duality between set-theoretic and information-
theoretic operators, we can graphically represent the rela-
tionship between these various informations in a Venn-like
display called an information diagram [26]; see Fig. 1.
Similar to a Venn diagram, size indicates Shannon en-
tropy rather than set cardinality and overlaps are not set
intersection, but mutual information. Each area on the di-
agram represents one or another of Shannon’s information
measures.
As mentioned above, the past splits H[X0:`] yielding

two pieces: h`µ, the part outside the past, and ρ`µ, the part

1 It is important to note that we are only associating portions of a
random variable’s information with other random variables. It is
generically not possible to actually partition a random variable in
to several other random variables, each of which has an entropy
equal to the atom of interest [24].
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H[X:0] H[X`:]

H[X0:`]

σ`µ

r`µ

q`µ
b`µb`µ

FIG. 1. The process information diagram that places the
present in its temporal context: the past (X:0) and the future
(X`:) partition the present (X0:`) into four components with
quantities r`µ, q`µ, and two with b`µ. Notably, the component
σ`µ, quantifying the hidden dependency shared by the past and
the future, lies outside of the present and so is not part of it.

ρ`µ

h`µ

H[X0:`]

(a) Decomposition due to
the past.

r`µ

q`µ
b`µ b`µ

H[X0:`]

(b) Decomposition due to
the past and the future.

FIG. 2. Alternative decompositions of the present information
H[X0:`].

inside. This partitioning arises naturally when predicting
a process [20]. To emphasize, Fig. 2a displays this de-
composition. If we include the future in the diagram, we
obtain a more detailed understanding of how information
is transmitted from the past to the future. The past and
the future together divide the present H[X0:`] into four
parts, as shown in Fig. 2b.

The process information diagram makes it rather trans-
parent in which sense r`µ is an amount of ephemeral in-
formation: its information lies outside both the past and
future and so it exists only in the present moment. It has
no repercussions for the future and is no consequence of
the past. It is the amount of information in the present
observation neither communicated to the future nor from
the past. With ` = 1, this has been referred as the resid-
ual entropy rate [27], as it is the amount of uncertainty
that remains in the present even after accounting for ev-
ery other variable in the time series. It has also been
studied as the erasure information [28] (there H−), as it
is the information irrecoverably erased in a binary erasure

channel.
The bound information b`µ is the amount of sponta-

neously generated information present now, not explained
by the past, but that has consequences for the future. In
this sense it hints at being a measure of structural com-
plexity [20, 27], though we discuss more direct measures
of structure shortly.
Due to stationarity, the mutual information I[X0:` :

X`:|X:0] between the present X0:` and the future X`:
conditioned on the past X:0 is the same as the mutual
information I[X0:` :X:0|X`:] between the present X0:` and
the past X:0 conditioned on the future X`:. Therefore
they are both of size b`µ, as shown in Fig. 1. This lends a
symmetry to the process information diagram that need
not exist for nonstationary processes.

D. Elusivity

Two components remain in the process information
diagram—two that have not been significantly analyzed
previously. The first is q`µ = I[X:0 :X0:` :X`:]—the three-
way mutual information (or co-information [25]) shared
by the past, present, and future. Notably, unlike Shan-
non entropies and two-way mutual information, q`µ (and
co-informations in general) can be negative. The other
component σ`µ = I[X:0 :X`:|X0:`], the quantity of primary
interest here (shaded in Fig. 1) is the information shared
between the past and the future that does not exist in the
present. Since it measures dependency hidden from the
present, we call it the elusive information or elusivity for
short. Generally, it indicates that a process has hidden
structures that are not appropriately captured by the
present—that is, by finite random-variable blocks. In this
case, and as we discuss at length towards the end, one
must build models whose elements, which we call “states”
below, represent how a process’s internal mechanism is
organized.
A process’s internal organization somehow must store

all the information from the past that is relevant for
generating the future behavior. Only when the observed
process is Markovian is it sufficient to keep the track
of just the current observable or block of observables.
For the general case of non-Markovian processes, though,
information relevant for prediction is spread arbitrarily far
back in the process’s history and so cannot be captured
by the present regardless of its duration. This fact is
reflected in the existence of σ`µ. When σ`µ > 0 for all `,
the description of the process requires determining its
internal organization. This is one reason to build a model
of the mechanism that generates sequences rather than
simply describe a process as a list of sequences.
There are two basic properties that indicate the elu-
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sivity’s importance. The first is that σ`µ decreases mono-
tonically as a function of the present’s length `. That
is, dependency cannot increase if we interpolate more
random variables between the past and future.

Proposition 1. For k > 0, σ`µ ≥ σ`+kµ .

Proof.

σ`µ = I[X:0 :X`:|X0:`]
= I[X:0 : (X`:`+k, X`+k:)|X0:`]
= I[X:0 :X`:`+k|X0:`] + I[X:0 :X`+k:|X0:`, X`:`+k]
= I[X:0 :X`:`+k|X0:`] + σ`+kµ ,

and by the non-negativity of conditional mutual informa-
tions [17], σ`µ ≥ σ`+kµ .

The second property is that σ`µ indicates how poorly the
present X0:` shields the past X:0 and future X`:. When
it does, they are conditionally independent, given the
present, and σ`µ vanishes. Due to this, it can be used to
detect a process’s Markov order R: the smallest R for
which Pr(X0:|X:0) = Pr(X0:|X−R:0).

Proposition 2. σ`µ = 0 ⇐⇒ ` ≥ R.
Proof. By the definition of the Markov order R, a length-
R block is a sufficient statistic [29] for X:0 about X0::

Pr(X0:|X−R:0) = Pr(X0:|X:0, X−R:0) ,

and therefore also obeys [17]:

I[X:0 :X0:] = I[X−R:0 :X0:] .

Hence:

I[X:0 :X0:] = I[(X:−R, X−R:0) :X0:]
= I[X−R:0 :X0:] + I[X:−R :X0:|X−R:0]

implies:

I[X:−R :X0:|X−R:0] = σRµ = 0 ,

due to stationarity.

To calculate σ`µ, recall its definition as a conditional
mutual information:

σ`µ = I[X:0 :X`:|X0:`]

=
∑

x:0∈X:0
x0:`∈X0:`
x`:∈X`:

Pr(x:) log2
Pr(x:0, x`:|x0:`)

Pr(x:0|x0:`) Pr(x`:|x0:`)
,

where we used the notational shorthand for the bi-infinite
joint distribution Pr(x:) = Pr(x:0, x0:`, x`:).

Note that for an order-R Markov process, if ` ≥ R the
past and the future are independent over range R [22] and
so Pr(X:0, X`:|X0:`) = Pr(X:0|X0:`) Pr(X`:|X:0). With
this, it is clear that σ`µ vanishes in such cases. This
property has been discussed in prior literature as well
[30].
Anticipating the needs of our calculations later, we

replace conditional distributions with the joint ones:
Pr(x:0, x`:|x0:`) = Pr(x:)/Pr(x0:`) and Pr(x:0|x0:`) =
Pr(x:0, x0:`)/Pr(x0:`), obtaining:

σ`µ =
∑

x:0∈X:0
x0:`∈X0:`
x`:∈X`:

Pr(x:) log2
Pr(x0:`) Pr(x:)

Pr(x:0, x0:`) Pr(x0:`, x`:)
. (10)

Notably, all the terms needed to compute σ`µ are either
Pr(x:0, x0:`, x`:) or marginals thereof. Our next goal,
therefore, is to develop the theoretical infrastructure nec-
essary to compute that distribution in closed form.
Similar expressions, which we use later on but do not

record here, can be developed for the other information
measures h`µ, r`µ, b`µ, and q`µ.

III. STRUCTURAL COMPLEXITY

To analytically calculate the elusive information σ`µ and
related measures we must go beyond the information the-
ory of sequences and introduce computational mechanics,
the theory of process structure [19]. The representation it
uses for a given process is a form of hidden Markov model
(HMM) [31]: the ε-machine, which consists of a set S
of causal states and a transition dynamic T . ε-Machines
satisfy three conditions: irreducibly, unifilarity, and proba-
bilistically distinct states [32]. Irreducibly implies that the
associated state-transition graph is strongly connected.
Unifilarity, perhaps the most distinguishing feature, means
for each state σ ∈ S and each observed symbol x there
is at most one outgoing transition from S labeled x ∈ A.
Critically, unifilarity enables one to directly calculate
various process quantities, such as conditional mutual in-
formations, using properties of the hidden (causal) states.
Notably, many of these quantities cannot be directly cal-
culated using the states of general (nonunifilar) HMMs.
Finally, an HMM has probabilistically distinct states when,
for every pair of states S and S ′, there exists a word w
such that the probability of observing w from each state
is distinct: Pr(w|S) 6= Pr(w|S ′). An irreducible, unifilar
model with probabilistically distinct states is minimal in
the sense that no model with fewer states or transitions
generates the process. An HMM satisfying these three
properties is an ε-machine.
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A. Constructing the ε-Machine

Given a process, how does one construct it’s ε-machine?
First, the set of a process’s forward causal states:

S+ = X:/∼+
ε (11)

is the partition defined via the causal equivalence relation:

x:t∼+
ε x
′
:t ⇔ Pr(Xt:|X:t = x:t) = Pr(Xt:|X:t = x′:t) .

(12)

That is, each causal state σ+ ∈ S+ is an element of the
coarsest partition of a process’s pasts such that every
x:0 ∈ σ+ makes the same prediction Pr(X0:|·). In fact,
the causal states are the minimal sufficient statistic of the
past to predict the future. We define the reverse causal
states:

S−t = Xt:/∼−ε . (13)

by similarly partitioning the process’s futures:

xt:∼−ε x′t: ⇔ Pr(X:t|Xt: = xt:) = Pr(X:t|Xt: = x′t:) .
(14)

Second, the causal equivalence relation provides a natu-
ral unifilar dynamic over the states. For each state σ and
next symbol x, either there is a successor state σ′ such
that the updated past x:t+1 = x:tx ∈ σ′, for all x:t ∈ σ,
or x:t+1 does not occur. Due to causal-state equivalence,
every past within a state collectively either can or cannot
be followed by a given symbol. Moreover, since the causal
states form a partition of all pasts, there is at most one
causal state to which each past can advance.
For a general HMM with states ρ ∈ R, its symbol-

labeled transition matrix T (x) has elements that give the
probability of going from state ρ to state ρ′ and generating
the symbol x:

T
(x)
ρρ′ ≡ Pr(Xt = x,Rt+1 = ρ′|Rt = ρ) . (15)

Furthermore, the internal-state dynamics is governed by
the stochastic matrix T =

∑
x

T (x). Its unique left eigen-

vector π, associated with eigenvalue 1, gives the asymp-
totic state probability Pr(ρ). By extension, the transition
matrix giving the probability of a word w = x0x1 · · ·x`−1
of length ` is the product of transition matrices of each
symbol in w:

T (w) ≡
∏
xi∈w

T (xi)

= T (x0)T (x1) · · ·T (x`−1) . (16)

H[X:0]

H[X0:`]

H[X`:]

H[S+
0 ] H[S−

` ]

FIG. 3. Mutual information I[X:0 : X0:`] between the past and
the present (shaded) is equivalent to the mutual information
I[S+

0 : X0:`] between the forward causal state and the present.

B. Rendering σ`µ Finitely Computable

We can put the forward and reverse causal states to use
since they are proxies for a process’s semi-infinite pasts
and futures, respectively. See, e.g., Fig. 3. In this way,
we transform Eq. (9) into a form containing only finite
sets of random variables. We calculate directly:

σ`µ = I[X:0 : X`:|X0:`]
= I[X:0 : (X0:`, X`:)]− I[X:0 : X0:`]
= I[X:0 : X0:]− I[X:0 : X0:`]
(a)= I[S+

0 : S−0 ]− I[S+
0 : X0:`]

= I[S+
0 : S−0 ]− (I[S+

0 : X0:` : S−0 ] + I[S+
0 : X0:`|S−0 ])

(b)= I[S+
0 : S−0 ]− I[S+

0 : X0:` : S−0 ]
= I[S+

0 : S−0 |X0:`]
= I[S+

0 : S−0 : S−` |X0:`] + I[S+
0 : S−0 |X0:`,S−` ]

(c)= I[S+
0 : S−0 : S−` |X0:`]

= I[S+
0 : S−` |X0:`]− I[S+

0 : S−` |X0:`,S−0 ]
(d)= I[S+

0 : S−` |X0:`]
− (H[S+

0 |X0:`,S−0 ]−H[S+
0 |S−0 , X0:`,S−` ])

= I[S+
0 : S−` |X0:`] . (17)

Above, (a) is true due to Eqs. (12) to (13) and Ref. [33],
(b) is true due to Eqs. (13) and (14), (c) is true due to
Eq. (14) and unifilarity, and finally (d) is true due to
both entropy terms being equal to H[S+

0 |S−0 ] by Eqs. (13)
and (14). That is, S−0 informationally subsumes both X0:`
and S−` when it comes to X:0 and, therefore, also when it
comes to S+

0 . All other equalities are basic information
identities found in Ref. [21].
In this way, Eq. (17) says that Eq. (10) becomes, in
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terms of causal states, a new expression for elusivity:

σ`µ =
∑

σ+
0 ∈S

+
0

x0:`∈X0:`
σ−

`
∈S−

`

Pr(σ+
0 , x0:`, σ

−
` ) log2

Pr(x0:`) Pr(σ+
0 , x0:`, σ

−
` )

Pr(σ+
0 , x0:`) Pr(x0:`, σ

−
` )

.

(18)

We transformed the key distribution Pr(x:0, x0:`, x`:) over
random variables X:0 and X`: with cardinality of the con-
tinuum to Pr(σ+

0 , x0:`, σ
−
` ) over S+ and S− with typically

smaller cardinality. When the causal states are finite or
countably infinite, the benefit is substantial. We will now
turn our attention to computing this joint distribution.

Since the distribution is over both forward and reverse
causal states, we must track both simultaneously. The
key tool for this is Ref. [34]’s bidirectional machine or
bimachine. We point the reader there for details regarding
their construction and properties. One feature we need im-
mediately, though, is that bimachine states ρt = (σ+

t , σ
−
t )

are pairs of forward and reverse causal states.
Generally, given an HMM with states ρ ∈ R, we can

construct the distribution of interest if we can find a
way to build distributions of the form Pr(ρi, w, ρj): the
probability of being in state ρi, generating the word w, and
ending in state ρj . The word transition matrix (Eq. (16))
gives exactly this and allows us to build the distribution
directly:

Pr(ρi, w, ρj) = (π ◦ 1i)T (w)1ᵀ
j , (19)

where ρi and ρj are the states of an arbitrary HMM, a ◦ b
is the Hadamard (elementwise) product of vectors a and b,
and 1i is the row vector with all its elements zero except
for the ith, which is 1.
Applying Eq. (19) to the bimachine, we arrive at the

distribution Pr((S+
0 ,S−0 ), X0:`, (S+

` ,S−` )), which can be
marginalized to Pr(S+

0 , X0:`,S−` ), the distribution needed
to compute Eq. (18). Figure 4 illustrates this distribution
for a present of length ` = 3 in the setting of the process’s
random variable lattice and the forward and reverse causal
state processes.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·S+
−4

S−
−4

S+
−3

S−
−3

S+
−2

S−
−2

S+
−1

S−
−1

S+
0

S−
0

S+
1

S−
1

S+
2

S−
2

S+
3

S−
3

S+
4

S−
4

X−4 X−3 X−2 X−1 X0 X1 X2 X3

FIG. 4. Random variable lattice illustrating the relationship
between forward causal states S+

t , observed symbols Xt, and
reverse causal states S−t . The variables in the distribution
Pr(S+

−1, X−1:2,S−2 ) are highlighted. In particular, elusivity
σ3
µ is the mutual information between the two shaded cells

(S+
−1 and S−2 ) conditioned on the hatched cells (X−1:2 =

X−1X0X1).

C. Companion Atomic Measures

Causal-state expressions for h`µ, r`µ, b`µ, and q`µ that we
use in the following are:

h`µ = H[X0:`|S+
0 ] ,

r`µ = H[X0:`|S+
0 : S−` ] ,

b`µ = I[X0:` : S+
0 |S−` ] , and

q`µ = I[S+
0 : X0:` : S−` ] .

These are derived in ways paralleling that above for σ`µ
and so we do not give detail. They, too, also depend on
the joint distribution above in Eq. (19) and its marginals.

IV. EXAMPLES

Let’s consider several example processes, to illustrate
calculation methods and to examine the behavior of σ`µ
and companion measures.

A. Golden Mean Process

As the first example we analyze the Golden Mean (GM)
Process, whose ε-machines and bimachine state-transition
diagrams are given in Fig. 5. The GM Process consists of
all bi-infinite strings such that no consecutive 1s occur,
with probabilities such that either symbol is equally likely
following a 0. A stochastic generalization of subshifts of
finite type [35] this process can be described by a Markov
chain with order R = 1. Due to Prop. 2 we expect σ1

µ = 0.
To verify this, we compute each term of Eq. (18) using
the edges of the bimachine, Fig. 5c, and the invariant
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A B0: 1
2

1: 1
2

0:1
0:0

(a) Forward ε-machine.

C D0: 1
2

1: 1
2

0:1
0:0

(b) Reverse ε-machine.

A:C

B:C A:D

0: 1
2

0: 1
20: 1

2

0: 1
2

1:1
(c) Bimachine.

FIG. 5. The several faces of the Golden Mean (GM) Pro-
cess. Each representation consists of states (labeled circles)
and transitions (arrows) labeled “symbol : probability”. The
bimachine is effectively the Cartesian product of the forward
and reverse machines, though constructed here for forward-
time generation, and therefore is generically nonunifilar. For
example, the state B:C means that the machine is in the super-
position of forward state B and reverse state C. Going forward
(rightward in Fig. 4) we know that state B must output a 0
and transition to state A. Being in reverse state C we must
have transitioned to there on a 0 coming from either state C
or state D. Thus, we have transitions from B:C to both A:C
and A:D on a 0.

state distribution π =
(

1/3, 1/3, 1/3
)
:

Pr(0) Pr(A, 0, C)
Pr(A, 0) Pr(0, C) =

2/3 · 1/6
1/3 · 1/3

= 1 ,

Pr(0) Pr(A, 0, D)
Pr(A, 0) Pr(0, D) =

2/3 · 1/6
1/3 · 1/3

= 1 ,

Pr(0) Pr(B, 0, C)
Pr(B, 0) Pr(0, C) =

2/3 · 1/6
1/3 · 1/3

= 1 ,

Pr(0) Pr(B, 0, D)
Pr(B, 0) Pr(0, D) =

2/3 · 1/6
1/3 · 1/3

= 1 , and

Pr(1) Pr(A, 1, C)
Pr(A, 1) Pr(1, C) =

1/3 · 1/3
1/3 · 1/3

= 1 .

A B0: 1
2

1: 1
2

1:1
0:0

(a) The Even Process.

A

B C

0:1

1:1

0: 1
2

1: 1
2

(b) The Noisy Period Three (NP3)
Process.

C

B

A

E

D

0: 1
2

1: 1
2

0:1

1:1

0: 1
2

1: 1
2

0:1

(c) The Noisy Random Phase-Slip (NRPS)
Process.

FIG. 6. ε-Machines for the Example Processes.

We see that the argument of each log2 in Eq. (18) is 1,
confirming that σ1

µ = 0.

B. Information Measures versus Present Length

We now investigate the behavior of σ`µ and its com-
panions q`µ, b`µ, and r`µ for several example processes: the
aforementioned GM, the Even, the Noisy Period-Three
(NP3), and the Noisy Random Phase-Slip (NRPS) Pro-
cesses. The ε-machines for the latter are shown in Fig. 6.
Each exhibits different convergence behaviors with ` for
the differing measures; see the graphs in Fig. 7. We now
turn to characterizing each of them.
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σ`µ
q`µ

b`µ r`µ

Golden Mean; Even; NP3; NRPS

FIG. 7. Information measures as a function of the present’s
length `. Since the examples are stationary, finitary processes,
both σ`µ and q`µ converge to zero with increasing ` and b`µ
converges to a constant value of E. And so, the growth of
H(`) is entirely captured in r`µ, and it grows linearly with `.

We first consider σ`µ, seen in Fig. 7’s upper left panel.
While for each process σ`µ vanishes with increasing `, the
convergence behaviors differ. The Golden Mean Process
is identically zero at all lengths due to its order-1 Markov
nature, just noted. The NRPS Process, with a Markov
order of R = 5, has nonzero σ`µ for ` < 5 and zero σ`µ = 0
beyond. Finally, both the Even and Nemo Processes are
infinite-order Markov and so their σ`µ never exactly van-
ishes, though they converge exponentially fast. The next
section, Section IVC, analyzes exponential convergence
in more detail.
Next, consider q`µ and b`µ which, as it turns out, are

closely associated. To see why, first examine the large-`
limit:

lim
`→∞

I[X0:` : X`:] = E

= q∞µ + b∞µ .

Second, we can decompose stationary, finite-E processes
into two classes: those with state mixing and those with-
out. State mixing refers to the convergence of initial state
distributions to a unique invariant distribution, one that
in particular does not oscillate. The GMP, Even, and
NRPS Processes are examples of those with state mix-
ing, while the NP3 Process asymptotic state distribution
is period-3, when starting from typical initial distribu-
tions. With state mixingX:0 andX`: become independent

in the infinite-` limit, and so q∞µ = 0 and we conclude
b∞µ = E. That is, the entire contribution to excess en-
tropy comes from the bound information. Without state
mixing, though, b`µ = 0, and so q∞µ = E.

These two classes of convergence behavior are apparent
when comparing Fig. 7’s upper-right and lower-left panels.
In the upper-right, q`µ converges to zero for the GM, Even,
and NRPS Processes. The NP3 Process, in contrast,
limits to a constant value: it’s excess entropy E = log2 p,
where p = 3 is the period of the internal state cycle. In
the lower-left, b`µ limits to constant values for the three
state-mixing processes, while the NP3 Process b`µ is zero
for all `.
Finally, the ephemeral information r`µ, plotted in

Fig. 7’s lower-right panel, also depends on whether a
process is state mixing or not. If it is, then:

H(`) = E + `hµ

= q`µ + 2b`µ + r`µ

= 0 + 2E + r`µ .

That is, r`µ = −E + `hµ. Though, in the case of no state
mixing, we have:

H(`) = q`µ + 2b`µ + r`µ

= E + 0 + r`µ .

That is, r`µ = `hµ. So, in either case, r`µ grows linearly
asymptotically with a rate of hµ. If there is state mixing,
however, it has a subextensive part equal to −E.

C. Exponential Convergence of σ`µ

One way to classify processes is whether or not an
observer can determine the causal state a process is in
from finite or infinite sequence measurements. If so, then
the process is synchronizable. All of the previous examples
are synchronizable. References [36, 37] proved that for
any synchronizable process described by a finite-state
HMM, there exist constants K > 0 and 0 < α < 1 such
that:

hµ(`)− hµ ≤ Kα`, for all ` ∈ N , (20)

where:

hµ(`) = H(`)−H(`− 1) .
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FIG. 8. σ`µ (solid) and its asymptote (dashed) for (a) Nemo
Process with K = 0.6 and α = 0.64 and (b) Even Process
with K = 1 and α = 0.71.

Note that hµ(1) = ρ1
µ. One well known identity [18] is

that the sum of the hµ(`) terms is the excess entropy:

E =
∞∑
k=1

(hµ(k)− hµ) (21)

= ρ1
µ +

∞∑
k=2

(hµ(k)− hµ) . (22)

This provides a new identity [16]:

σ1
µ =

∞∑
k=2

(hµ(k)− hµ) , (23)

which can be generalized to:

σ`µ =
∞∑

k=`+1
(hµ(k)− hµ) . (24)

Applying the bound from Eq. (20) to each term, we
find:

∞∑
k=`+1

(
hµ(k)− hµ

)
≤

∞∑
k=`+1

Kαk .

The right-hand side, being a convergent geometric series,
yields:

σ`µ ≤
Kα`+1

1− α ,

or simply:

σ`µ ≤ K ′α` . (25)

We now drop the prime, simplifying the notation. Thus,
the elusive information vanishes exponentially fast for

A

B C

1: 1
2

0: 1
2

0:1

0: 1
2

1: 1
2

FIG. 9. The Nemo Process.

synchronizable processes.
Figure 8 compares σ`µ with its best-fit exponential

bound for two different processes: the Nemo Process
shown in Fig. 9 and the Even Process. For each, the solid
line is σ`µ and the dashed is the fit. Estimated values for
the Nemo Process are K = 0.6 and α = 0.64. The fit pa-
rameters for the Even Process are K = 1.0 and α = 0.71.
They were estimated in accordance with the conditions
stated for Eq. (20). The fits validate the convergence in
Eq. (25).

V. MEASURES OF EMERGENCE?

The elusive information σ`µ conditions on a present of
length `. What if we do not condition, simply ignoring the
present? It becomes the persistent mutual information
(PMI) [15, 38]:

PMI(`) = I[X:0 : X`:] . (26)

Notably, PMI(∞) was offered up as a measure of “emer-
gence” in general complex systems. Our preceding analy-
sis, though, gives a more nuanced view of this interpre-
tation, especially when emergence is considered in light
of structural criteria introduced previously [39, 40]. Our
framework reveals that PMI(`) is not an atomic measure;
rather it consists of two now-familiar components:

PMI(`) = q`µ + σ`µ . (27)

Which component is most important? Are both? Which
is associated with emergence? Both?

Section IVC showed that synchronizable processes have
σ`µ → 0. So, for this broad class at least, PMI(∞) = q∞µ .
Based on extensive process surveys that we do not report
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on here, we conjecture that σ∞µ = 0 holds even more
generally. And so, it appears that PMI(∞) generally is
dominated by the multivariate mutual information q∞µ .
Moreover, recalling the analysis of q`µ for the Noisy Period-
3 Process shown in the upper-right panel of Fig. 7, it
appears that PMI(∞) is only sensitive to periodicity or
noisy periodicity, giving log2 p, where p is the period.
As a test of our conjecture that the elusive informa-

tion vanishes and that PMI(∞) is dominated by q∞µ , we
applied our information-measure estimation methods to
the symbolic dynamics generated by the Logistic Map of
the unit interval as a function of its control parameter r.
Figure 10 plots the results. Indeed, the elusive informa-
tion does vanish. Thus, we conclude that PMI(∞) is a
property of q∞µ .

In addition, our simulation results reproduced those in
Ref. [15]’s PMI(∞) analysis of the Logistic Map; though,
their estimation method for PMI(∞) differs markedly.
Here, we calculate via the Logistic Map symbolic dy-
namics; there, joint distributions over the continuous
unit-interval domain were used. Both investigations lead
to the conclusion that PMI(∞) is equal to (the logarithm
of) the number of chaotic “bands” cyclically permuted or
the period of the periodic orbit at a given parameter value.
In short, PMI(∞) is a measure of non-mixing dynamics.
Given the restricted form of structure (periodicity) to

which it is sensitive, PMI(∞) cannot be taken as a gen-
eral measure for detecting the emergence of organization
in complex systems. No matter, though a quarter of a
century old, the statistical complexity [41]—a direct mea-
sure of structural organization and stored information—
continues to fill the role of detecting emergent organi-
zation quite well. Moreover, computational mechanics’
ε-machines directly show what the emergent organization
is.

VI. CONCLUSION

We first defined the elusive information and developed
a closed-form analytic expression to calculate it from a
process’s hidden Markov model. The sequel [16] shows
how to use spectral methods [42] to develop alternative
closed-form expressions for the elusive information and
its companions, giving exact expressions and a direct
understanding of the origin of their convergence behaviors.
Investigating how the present shields the past and fu-

ture is essentially a study of what Markov order means
for structured processes. It gives much insight into the
process of modeling building and even into general con-
cerns about the emergence of organization in complex
systems. First, this study of Markovian complexity gives
a common ground on which to contrast structural infer-

3.2 3.4 3.6 3.8 4
0

2

4

6

r

[b
its

]

PMI(∞)
σ∞

µ

q∞
µ

FIG. 10. Persistent mutual information PMI(∞), elusivity σ∞µ ,
and multivariate mutual information q∞µ of the Logistic Map
symbolic dynamics as a function of map control parameter
r. Recall that the symbolic dynamics does not see period-
doubling until r is above the appearance of the associated
superstable periodic orbit. This discrepancy in the appearance
of periodicity as a function of r does not occur when the map
is chaotic. (Cf. Fig. 1 of Ref. [15].)

ence and emergence, showing that we should not conflate
these two distinct questions. Second and perhaps most
constructively, though, it sheds light on the challenges
of inference for complex systems. In particular, when
σ`µ > 0 sequence statistics are inadequate for modeling
and so we must employ state-based models to properly,
finitely represent a process’s internal organization.
The results show rather directly how present observ-

ables typically do not contain all of the information that
correlates the past and the future. One consequence is
that instantaneous measurements are not enough. This
means, exactly, that Markov chain models of complex
physical systems are fundamentally inadequate, though
eminently helpful and simplifying when they are appro-
priate representations. When predicting the behavior and
structure of complex systems, the larger consequence is
that we must build state-based models and not use mere
look-up tables or sequence histograms. That said, states
are little more than a conditional coarse-graining of se-
quences into subsets that are more compactly predictive
than sequences alone. And this means, in turn, that mon-
itoring only prediction performance is inadequate. We
must also monitor model complexity, not as an antidote to
over-fitting, but as a fundamental goal for both prediction
and understanding hidden mechanisms. This, we believe,
most fully respects Markov’s contribution to the sciences.
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