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We construct thermodynamic potentials for two superionic phases of water (with bcc and fcc
oxygen lattice) using a combination of density functional theory (DFT) and molecular dynamics
simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is
developed and parametrized with equation of state data from the DFT-MD simulations. A second
central aspect is the accurate determination of the entropy, which is done using an approximate
two-phase method based on the frequency spectra of the nuclear motion. The boundary between
the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from
DFT-MD is consistent with that directly derived from the simulations. Differences in the physical
properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich
giant planets are discussed.

PACS numbers: 05.70.Ce, 31.15.A-, 64.30.Jk, 64.70.-p

I. INTRODUCTION

Many planetary bodies contain large amounts of wa-
ter due to the high abundance of oxygen nuclei in pro-
toplanetary discs [1, 2]. The thermodynamic states in
the interior of our solar water-rich planets, the ice gi-
ants Uranus [3] and Neptune [4], range up to pressures of
10 Mbar and temperatures of several thousand degrees
Kelvin [5–10]. Under such extreme conditions, water is
predicted to form exotic superionic phases characterized
by a crystalline oxygen lattice and mobile protons [11–
15]. Although a direct experimental proof of the superi-
onic structure is still needed, there is strong indication of
its existence by a kink in the melting line of ice VII [16–
20]. Furthermore, static [21] and dynamic compression
techniques [22, 23] were used to measure the conductiv-
ity of dense proton-conducting states of water. Theoret-
ical conductivity calculations for superionic water (SIW)
can reproduce such measurements with reasonable accu-
racy [24, 25].

In a recent paper, it was predicted that SIW with an
fcc oxygen lattice is thermodynamically favored against
the phase with a bcc lattice for a wide range of pressures
and temperatures [15]. Moreover, it was claimed that
the diffusion coefficient of the protons depends signifi-
cantly on the type of the oxygen lattice, which would have
implication on the electrical conductivity and, possibly,
the magnetic field generation [10, 26] in water-rich giant
planets. Even though water never occurs as a pure com-
pound in planetary bodies, its thermophysical properties
under extreme conditions need to be well understood be-
fore considering more complex planetary mixtures that
contain additional elements.

Here we employ finite-temperature density functional
theory (FT-DFT) combined with molecular dynamics
(MD) simulations to construct analytic free energy func-
tions f(̺, T ) for the superionic phases with bcc and fcc

oxygen lattices. This is achieved by fitting equation of
state (EOS) data from the FT-DFT-MD simulations as
well as calculating the entropy with a multicomponent
two-phase thermodynamic model [27–29].
Having obtained the complete thermodynamic infor-

mation of the SIW phases, we then investigate the loca-
tion of transitions between them. The boundary to the
dense ices VII and X, for which a corresponding thermo-
dynamic potential is also available [30], is calculated as
well. It is in good agreement with that observed directly
in the MD simulations.
Finally, we discuss the differences between the thermo-

dynamic properties of the superionic phases. Additional
investigations show that the type of the oxygen lattice
in SIW has no significant influence on the diffusion co-
efficient, which is in contrast to the results of Wilson et

al. [15]. The thermodynamic functions constructed in
this work are intended to become part of a wide-range
EOS for water in the future.

II. THEORETICAL FOUNDATIONS

This section contains the principal information about
the theoretical basics of our work. It is divided into sev-
eral subsections that present the FT-DFT-MD method
in general and various aspects of the procedure used to
calculate the entropy.

A. Details of the FT-DFT-MD simulations

Based on the Born-Oppenheimer approximation, our
system of electrons, protons, and oxygen nuclei is inves-
tigated by performing MD simulations for the heavy par-
ticles with forces derived from an FT-DFT treatment of
the electrons [31–33] at each time step. The procedure is
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implemented in the Vienna ab initio simulation package
(VASP) [34–38]. For given density ̺ and temperature T ,
one obtains the EOS for the pressure pMD(̺, T ), inter-
nal energy uMD(̺, T ), in addition to various microscopic
properties of the electrons and ions.
We use the exchange-correlation functional of Perdew,

Burke, and Ernzerhof (PBE) [39] in our FT-DFT-MD
calculations. Previous work has shown that thermody-
namic properties derived with the PBE functional are in
very good agreement with shock-wave experiments that
probed extreme states of fluid water [40–44].
The standard PAW pseudopotentials [45, 46] provided

with VASP (hydrogen PAW-sphere radius: 0.52 Å, oxy-
gen PAW-sphere radius: 0.72 Å) are used with a plane-
wave cutoff of 900 eV. All FT-DFT-MD simulations are
performed with particle numbers of at least 54 water
molecules and at the Baldereschi k point [47]. Using
the Baldereschi point ensures excellent convergence of the
EOS also in the dense metallic bcc SIW that is compa-
rable to using the 2 × 2 × 2 Monkhorst-Pack grid [48].
This finding is in line with the extensive convergence
tests made in previous work [13, 14, 24]. All simulations
are run for 10 000 to 30 000 time steps of length 0.3 fs
after equilibration. Relatively long simulation runs are
required to reach an excellent statistical accuracy that is
necessary to calculate frequency spectra and small pres-
sure differences, which many of our results rely on. The
temperature is controlled with a Nosé-Hoover thermo-
stat [49, 50].
To calculate the EOS for the bcc SIW, we performed 75

FT-DFT-MD simulations at different densities between
2.25 and 15 g/cm3 and temperatures between 1500 and
12 000 K in its stability region using 54 molecules. In
case of the fcc SIW, we obtained 99 data points at differ-
ent densities and temperatures with 108 molecules. The
fcc SIW generally has a slightly extended stablity regime
toward lower temperatures than the bcc SIW. However,
it becomes unstable above 13 g/cm3 at all temperatures,
i.e., the oxygen lattice gets distorted, while the bcc SIW
can remain stable also beyond 15 g/cm3.
Additional FT-DFT-MD simulations were made at the

4000 K isotherm to calculate effective partial volumes
that are necessary to determine the entropy. Details on
those calculations are given in a subsequent section.

B. Frequency spectra of the nuclear motion

The key quantities in the calculation of the entropy
from MD simulations are the following spectra of vibra-
tional modes of the nuclei [51]:

Sα(ν) =
4mα

3kBT

∞
∫

0

dt cos(2πνt)〈~vα(t) · ~vα(0)〉 , (1)

where mα is the mass of a nucleus of species α and kB
is Boltzmann’s constant. The velocity autocorrelation
functions 〈~vα(t) · ~vα(0)〉 of the species α are calculated

from the nuclear motion in the FT-DFT-MD. There is
one frequency spectrum per species, formally normalized
to

∞
∫

0

dν Sα(ν) = 1 . (2)

This condition is satisfied to better than 1% in our sim-
ulations.
Apart from entropy calculations, we use the spectra

Sα(ν) to augment the internal energy of our FT-DFT-
MD simulations with a quantum correction. This pro-
cedure allows us to incorporate nuclear quantum effects,
e.g., from molecular vibrations into our EOS data. More
precisely, the classical harmonic oscillator energy kBT is
replaced by the respective quantum-statistical value for
each frequency interval as follows [51]:

uvc =
3

m

∑

α

Nα

∞
∫

0

dν Sα(ν)

×
[

hν

(

1

2
+

1

exp (hν/kBT )− 1

)

− kBT

]

. (3)

In the above formula, the total mass of the nuclei is de-
fined as m =

∑

α Nαmα, where Nα is the number of
nuclei of species α.
A similar expression can be obtained also for direct

calculations of the entropy [51]. However, it is limited to
applications to solid systems due to a divergence in the
harmonic entropy weighting function at zero frequency.

C. Calculation of the entropy

Calculating the nuclear entropy of fluids from MD sim-
ulations with the frequency spectra Sα(ν) requires an
elaborate formalism [27–29]. The respective procedure is
based on a separation of the properties of the fluid into a
gas-like and a solid-like fraction [27] and was developed
by Lin et al. [27]. The method involves a description
of the gas-like fraction consistently with a hard-sphere
model and of the solid-like fraction with the harmonic
oscillator model. Later, the formalism was substantially
improved by Desjarlais [29], so that an accuracy of better
than 0.1 kB/atom became achievable, which was demon-
strated in application to several liquid metals, including
calculations of the melting curves of sodium [29] and alu-
minum [52]. Moreover, the method of Lin et al. [27] was
also generalized to multicomponent systems, which then
requires a more extended treatment in order to derive
effective partial volumes of the individual species [28].
In this work, we use the combined extensions by Desjar-
lais [29] and Lai et al. [28] to calculate the entropy of
superionic water.
For clarity, we first compile the most important aspects

of the formalism in a compact way. For more detailed
derivations, we refer the interested reader to the original
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papers [27–29]. Note that the normalization of our spec-
tra Sα(ν), differs from that in the former literature, so
that the following expressions may carry corresponding
prefactors.
Our starting point is the formal separation of the fre-

quency spectra into gas-like, Sg
α(ν), and solid-like, Ss

α(ν),
parts:

Sα(ν) = fg
αS

g
α(ν) + (1− fg

α)S
s
α(ν) , (4)

where the fluidity factors fg
α determine the fractions of

the gas-like components. The specific entropy then takes
the form

snuc(̺, T ) =
1

m

∑

α

Nα

∞
∫

0

dν (5)

× [fg
αS

g
α(ν)W

g
α + (1− fg

α)S
s
α(ν)W

s
α(ν)] .

The weighting function of the solid-like part is taken from
the quantum-statistical harmonic oscillator model and
reads:

W s
α(ν) = 3kB

{

hν/kBT

exp(hν/kBT )− 1
− ln [1− exp(−hν/kBT )]

}

(6)
For the gas-like fraction one assumes a weighting function
from a hard-sphere model [53],

W g
α = kB

{

SIG
α

kB
+ ln

[

1 + γα + γ2
α − γ3

α

(1 − γα)3

]

+
3γ2

α − 4γα
(1 − γα)2

}

,

(7)
where the ideal gas term is

SIG
α

kB
=

5

2
− ln

[

(

h2

2πmαkBT

)3/2

neff
α fg

α

]

. (8)

In this multicomponent description [28], special attention
has to be paid to the effective particle densities

neff
α =

Nα

Vα
. (9)

The partial volumes Vα need to be determined separately,
which is described in the following section.
The effective hard sphere packing fractions γα are de-

rived by numerically solving the equation [29]

γ2/5
α ∆3/5

α =
2(1− γα)

3

2− γα
(10)

for given normalized diffusivities ∆α. The latter are de-
termined by the zero-frequency value of the spectra in
the following way:

∆α =
2

3
Sα(0)

√

πkBT

mα

(

neff
α

)1/3
(

6

π

)2/3

. (11)

At this point, an ansatz for the gas-like spectra Sg
α(ν) is

required. Lin et al. [27] chose a Lorentz function, which is

characteristic for an uncorrelated system of particles de-
scribed within the relaxation-time approximation. How-
ever, the slow ν−2 decay of such Lorentz spectra leads to
an overshooting of the total spectra at high frequencies.
This has the unphysical consequence that the residual
solid-like spectra Ss

α(ν) become negative. Moreover, the
entropies derived with Lorentz spectra are significantly
too high [29].
To remedy these problems, correlations need to be in-

cluded into the gas-like spectra, which can be achieved
by using an alternative ansatz derived within a memory
function formalism [29, 54–56]:

SGK
α (ν) =

2

K̂GK
α (2πνi) + 2πνi

+
2

K̂GK
α (−2πνi)− 2πνi

.

(12)
The employment of a Gaussian memory function [57]
leads to the following Laplace transform of the kernel [29]:

K̂GK
α (z) =

Aα

2

√

π

Bα
exp

(

z2

4Bα

)

erfc

(

z

2
√
Bα

)

, (13)

where erfc(x) is the complementary error function. The
constants Aα are given by

Aα =
4Bα

2 +

√

π
(

1 +
BαS2

α(0)

4γ
4/5
α ∆

6/5
α

)

. (14)

The remaining parameters Bα are formally determined
by moments of the spectra Sα(ν) [29]. In practice, the Bα

are obtained by manually matching the high-frequency
tail of SGK

α (ν) with that of the Sα(ν), which is a much
more efficient way.
The fluidity factors to be used in the above expressions

then read:

fg
α = fGK

α =
AαSα(0)

8

√

π

Bα
, (15)

and they differ from those one would obtain with
Lorentzian gas-like spectra [27].
Note that for all nuclear species α that are immobile

(like the oxygen in superionic water) the gas-like frac-
tion is fα = 0. The treatment of the respective contribu-
tion to the nuclear entropy is then performed purely with
the harmonic-oscillator weighting functions [51]. Conse-
quently, no ideal-mixing contribution to the entropy [28]
is added here because there is only a single fluid com-
ponent (hydrogen) in the MD. Therefore, for our special
case of SIW which has two species but no mixing, we
must multiply VH by N/NH in the ideal gas contribution
to the hydrogen entropy, Eq. (8), in order to preserve the
correct ideal gas limit, where VH/NH = VO/NO = V/N .
Furthermore, we do not take into account the nuclear

spin or isotopic entropies here. Those are not required
for our purpose of calculating phase boundaries because
the composition of nuclear species is conserved.
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Lastly, the electronic contribution to the specific en-
tropy is derived from the Fermi occupation numbers fi
of the electronic states from the DFT [33]:

sel(̺, T ) = −kB
m

〈

∑

i

[fi ln fi + (1− fi) ln(1 − fi)]

〉

.

(16)
The total specific entropy of our system then reads

stot(̺, T ) = snuc(̺, T ) + sel(̺, T ) . (17)

Obviously, the method employed here is approximate,
and there is no guarantee that it will produce re-
sults as accurate as coupling-constant integration meth-
ods [58, 59] may yield. On the other hand, its complexity
scales only linearly in dependence of the number of nu-
clear species. Another advantage is the capability to cap-
ture nuclear quantum effects in the entropy, which enter
via the weighting function of the solid-like component.
This allows us to consistently calculate phase boundaries
with solids described by a realistic EOS containing quan-
tum effects of the nuclear motion.

D. Calculation of the effective partial volumes

The partial volumes that enter Eq. (9) are crucial
quantities in entropy calculations from MDs with differ-
ent nuclear species. They are defined as [28]:

Vα = Nα

(

∂V

∂Nα

)

p,T,{Nβ}

= Nαξα . (18)

The total volume of the system is given by V =
∑

α Vα.
With the help of the scaling quantities ξα, which cor-
respond to the mean volume per particle of species α,
Eq. (9) can be recast into the convenient form

neff
α =

Nα

Vα
=

1

V ξα

∑

β

Nβξβ . (19)

That way, we easily observe that it is sufficient to deter-
mine only the ratios ξβ/ξα in the multicomponent case.
We do not rely on simple estimations for the ξα for the
extreme conditions of interest here, but instead calulate
them directly with the FT-DFT-MD method.
The ξα can theoretically be calculated by inserting or

removing very few particles iα or jα of the respective
species from the FT-DFT-MD simulations of standard
composition at constant pressure and temperature:

ξα =

(

∆V

∆Nα

)

p,T,{Nβ}

(20)

=
V (p, T,Nα + iα, {Nβ})− V (p, T,Nα − jα, {Nβ})

iα + jα
.

Ideally, one would choose both iα = jα = 1. In order to
circumvent the adjustment of the pressure in DFT-MD

simulations, we use the following transformation

(

∂V

∂Nα

)

p,T,{Nβ}

= −
(

∂p

∂Nα

)

V,T,{Nβ}

(

∂V

∂p

)

T,Nα,{Nβ}

=
V

KT

(

∂p

∂Nα

)

V,T,{Nβ}

, (21)

where the isothermal bulk modulus,

KT = −V

(

∂p

∂V

)

T,Nα,{Nβ}

= ̺

(

∂p

∂̺

)

T,Nα,{Nβ}

(22)

is introduced. For small changes in composition of the
fluid, we can then write:

ξα =
V

KT

(

∆p

∆Nα

)

V,T,{Nβ}

(23)

=
V

KT

p(V, T,Nα + iα, {Nβ})− p(V, T,Nα − jα, {Nβ})
iα + jα

.

One can eliminate the bulk modulus and obtain a simple
expression for the desired ratios:

ξβ
ξα

=

(

∆p

∆Nβ

)

V,T,Nα,{Nγ}

(

∆Nα

∆p

)

V,T,Nβ ,{Nγ}

. (24)

The above equation only requires the calculation of the
pressure differences with few DFT-MD simulations in the
NV T ensemble with inserted or removed particles. It is
very convenient to use for multicomponent fluid systems.

However, in the case of superionic water, it is not pos-
sible to insert or remove an oxygen atom from the lattice
without distorting it, which would lead to discontinuous
changes in the thermodynamic functions. Instead, we
directly use Eq. (18) and write

ξβ
ξα

=
Vβ

Nβ

Nα

Vα
. (25)

For a system with only two nuclear species, the following
expression can be easily derived using some of the above
relations:

ξβ
ξα

=
Nα

Nβ

V − Vα

Vα
=

Nα

Nβ

[

V

Nα

(

∆Nα

∆V

)

p,T,Nβ

− 1

]

.

(26)
We can once more use Eq. (21) and find the result:

ξβ
ξα

=
Nα

Nβ

[

KT

Nα

(

∆Nα

∆p

)

V,T,Nβ

− 1

]

. (27)

This expression does not contain any differences ∆Nβ

(here oxygen). It requires the isothermal bulk modulus
KT (̺, T ) instead, which can be derived from the EOS
straightforwardly.
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III. CONSTRUCTION OF THE

THERMODYNAMIC POTENTIALS

In this section, we use our EOS and entropy calcula-
tions to derive free energy functions for the bcc and fcc
SIW. The EOS of SIW is very similar to that of a dense
fluid and cannot be divided into cold curves and ther-
mal parts, as is usually done for crystalline solids [60].
For each phase, the resulting expressions are composed
of main parts fm(̺, T ) and nuclear quantum correction
parts fqc(̺, T ) in the following way:

f(̺, T ) = fm(̺, T ) + fqc(̺, T ) . (28)

The entropy constants, although determined in a sepa-
rate final step of the procedure, are included in the main
parts for convenience.
Note that we aim to reach a high precision for the

f(̺, T ) here because the differences in the thermody-
namic functions between the bcc and the fcc SIW are
small. In numbers, the pressures differ only by about
one percent or less, while the internal energies are typi-
cally different by no more than 0.5 kJ/g.

A. Main contribution from the FT-DFT-MD

The indispensible requirement for the construction of
a thermodynamic potential from MD simulations is the
availability of very well converged EOS data. Our basic
EOS quantities are the pressure pMD(̺, T ) and the inter-
nal energy uMD(̺, T ). In SIW, both quantities increase
almost linearly with the temperature. Most noteworthy,
both uMD(̺, T ) and the reduced pressure pMD(̺, T )/̺
show a fairly linear increase with the density in the
strongly compressed region between 10 and 15 g/cm3.
Both quantities are displayed in Fig. 1. Such a quasi-
linear dependence on the density is not an uncommon
observation for warm dense matter in an intermediate
region of compression [61–63], i.e., between the energy
minimum at ambient conditions and the Thomas-Fermi
limit.
Having these general considerations in mind, we make

the following generic ansatz for the free energy function:

fm(̺, T ) =
∑

ik

αikT
i/i0̺k/k0 +

∑

il

βilT
i/i0Ll

̺

+
∑

jk

γjkL
j
T̺

k/k0 +
∑

jl

δjlL
j
TL

l
̺

+
∑

k

εkT ln(T + T0)̺
k/k0

+
∑

l

ωlT ln(T + T0)L
l
̺, (29)

where i0 and k0 are preset suppressor constants and the
modified logarithms are defined as

L̺ = L̺(l) = ln [̺+ (l − 1)̺0] (30)

2 4 6 8 10 12 14 16
ρ [g/cm³]

-100
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300
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0
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J/

g]

FIG. 1. (Color online) Three isotherms of the reduced
pressure pMD(̺, T )/̺ (top panel) and the internal energy
uMD(̺, T ) (bottom panel) for bcc SIW. The circles indicate
the data from the FT-DFT-MD simulations while the lines
are the results from the fits (32) and (33). The temperatures
are 12000 K (black upper line), 8000 K (blue middle line)
and 4000 K (red lower line). Results for the fcc SIW are not
shown here because they would be mostly on top of that from
the bcc SIW.

and

LT = LT (j) = ln(T + jT0) . (31)

The smoothing constants ̺0 and T0 serve to remove un-
wanted logarithmic divergences at low values and are also
preset. The indexes j and l may run over positive inte-
gers, while the i and k may be any set of positive or
negative integers. The quantities αik, βil, γjk, δjl, εk,
and ωl are parameters to be determined in an automatic
fitting procedure.
Analytic expressions for our quantities of principal in-

terest are easily obtained by differentiation. These are
the reduced pressure

pm(̺, T )

̺
= ̺

(

∂fm
∂̺

)

T

, (32)

and the internal energy

um(̺, T ) = −T 2

(

∂(fm/T )

∂T

)

̺

, (33)

which are of same dimension as the free energy.
The ansatz (29) allows us to ensure that both the high-

density and the high-temperature limits are determined
by few terms containing the highest power of ̺ and T lnT
(or the highest power of T if imax > i0), respectively. In
addition, complex nonlinearities in the EOS can be cap-
tured by several terms containing powers of the modified

logarithms. Those terms are slowly varying functions and
contribute only at less extreme conditions of density and
temperature. In our particular cases of SIW, the natural
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choices for tuning the suppressor constants are i0 = imax

and k0 = kmax. The smoothing constants are set to
̺0 = 1 g/cm3 and T0 = 100 K.
The fitting of the remaining parameters is then per-

formed by formulating a linear optimization problem to
simultaneously minimize the least-squares differences to
all EOS data points for the reduced pressure (32) and
internal energy (33), which can be solved numerically.
One more important peculiarity to pay attention to is
the term αi0,0T . It is directly tied to the absolute en-
tropy and cannot be obtained this way because the term
disappears in both expressions (32) and (33). The pa-
rameter αi0,0 must be separately determined from the
entropy calculations, which is done in section III C.
Fits of both excellent fidelity and reasonable behavior

in extrapolation beyond the stability regions are achieved
for both phases of SIW, which is illustrated in Fig. 1. In
numbers, the mean deviation between the fit and the
pressure data is less than 0.1 %, while the internal ener-
gies are on average reproduced to better than 0.1 kJ/g.
This is yet somewhat larger than the statistical uncer-
tainties or those which stem from numerical convergence
parameters. Further reduction of these deviations would
have been possible by including additional higher order
terms. However, it would also have worsened the extrap-
olation behavior of the functions and inflated the number
of coefficients to handle. Therefore, the series were trun-
cated at, e.g., lmax = 4 for bcc and lmax = 5 for fcc SIW
because the EOS data set of the latter phase includes
slightly pronounced curvatures. The fit coefficients are
given in Table I. For convenience, we also include the
coefficient αi0,0 here, albeit that one is determined from
the entropy calculations described below.
To conclude this subsection, we note that the

ansatz (29) is of general usefulness for warm dense mat-
ter, e.g., dense fluids with a similarly shaped EOS, which
we checked in a number of tests with other materi-
als [63–65]. With few modifications, i.e., leaving out
the term containing ω1 and setting k0 = 3kmax/2 and
i0 = imax, it is possible to achieve compatibility with
both the Thomas-Fermi and the classical ideal gas lim-
its. A combination with additional terms that describe
EOS behavior at low densities [66], which is characterized
by various thermal dissociation and ionization processes,
seems achievable as well.

B. Nuclear quantum correction

Quantum effects of the nuclear motion cannot be ne-
glected when calculating the thermodynamic properties
of SIW. Equation (3) allows us to include such effects at
the same level as was recently done for the ices VII and
X [30] or earlier calculations for fluid water [44, 67]. In
the case of fluid ammonia, it was shown that the method
can capture effects of thermal dissociation that lead to
an increased decay of the nuclear quantum effects due to
the loss of intramolecular modes of vibration [61].

TABLE I. Coefficients αik, βil, γjk, δjl, εk, and ωl used in
Eqs. (29), (32) and (33) for bcc and fcc SIW. All units are
chosen in a way that entering the temperature in K and the
density in g/cm3 leads to results for fm(̺, T ) in kJ/g. The
remaining constants are k0 = 1, ̺0 = 1 g/cm3, and T0 =
100 K for both phases.

Coefficient bcc fcc

i0 = imax 1 2

α0,0 -3.63984992×102 -1.62279576×104

α0,1 1.43364427×103 7.42720416×104

α1,0 1.25922368×10−2 -4.03568116×102

α1,1 1.97035631×10−1 1.85798837×103

α2,0 - 9.44227280×100

α2,1 - -4.33817146×101

β0,1 -3.56056653×102 -2.27104207×104

β0,2 -1.44298289×103 -2.05737109×104

β0,3 5.59430175×102 -3.95998221×104

β0,4 -3.08323312×102 1.33150358×104

β0,5 - -4.09804698×103

β1,1 -1.43320849×10−1 -5.62582310×102

β1,2 -8.82509173×10−2 -5.40915927×102

β1,3 3.29148647×10−2 -9.56594334×102

β1,4 -3.74794358×10−2 3.17811925×102

β1,5 - -1.00389467×102

β2,1 - 1.29955635×101

β2,2 - 1.33967031×101

β2,3 - 2.13900668×101

β2,4 - -7.01319766×100

β2,5 - 2.28766744×100

γ1,0 3.35489536×101 3.50463307×103

γ1,1 -1.88285213×102 -1.61345494×104

δ1,1 5.58962773×101 4.93435639×103

δ1,2 1.72141931×102 4.46724428×103

δ1,3 -6.74546340×101 8.58645314×103

δ1,4 4.08435200×101 -2.88082484×103

δ1,5 - 8.88638310×102

ε0 -3.37183530×10−3 -7.63424649×10−1

ε1 -1.73302844×10−2 3.49923831×100

ω1 1.42836268×10−2 -1.04708374×100

ω2 6.32756867×10−3 -1.09013426×100

ω3 -2.33253788×10−3 -1.71244862×100

ω4 3.22127559×10−3 5.59947252×10−1

ω5 - -1.83720236×10−1

Here we investigate strongly correlated, compressed
systems at moderate temperatures which roughly cor-
respond to the characteristic vibrational temperatures of
water molecules or phonons in ice. Although the com-
pression of fluid water leads to dissociation of molecular
bonds and formation of SIW, the effective vibrational
frequencies in the system start to increase again near
3 g/cm3 due to the reduction of available configuration
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space. Beyond about 5 g/cm3, uvc(̺, T ) in SIW sur-
mounts the values one obtains from characteristic fre-
quencies of isolated water molecules [44]. Fig. 2 shows
the results obtained with Eq. (3). Differences between
the bcc and fcc phases occur only in the dense region
and are especially visible below 8000 K. Although the

2 4 6 8 10 12 14 16
ρ [g/cm³]

0

0.5

1

1.5

2

2.5

3

u vc
 [k

J/
g]

1000 K
2000 K
3000 K
4000 K
6000 K
8000 K
10000 K
12000 K

FIG. 2. (Color online) Isotherms of the quantum correction
to the internal energy from Eq. (3). Diamonds are results for
bcc and squares for fcc SIW, respectively. The solid/dashed
lines are generated with the fit Eq. (36) for bcc/fcc SIW. The
thin dotted lines are values from characteristic frequencies of
isolated water molecules [44]. All sets of curves and symols
behave systematically with the temperature indicated in the
legend. The highest curves correspond to the lowest temper-
ature, etc., see color code in the online version.

nuclear quantum correction is a relatively small contri-
bution to the EOS, it needs to be treated with the same
care as the main part. We do not have an expression
analogous to Eq. (3) to obtain a corresponding pres-
sure correction from the FT-DFT-MD simulations [68].
Nevertheless, it is possible to parametrize a meaningful
quantum-correction free energy function solely from the
data for uvc(̺, T ) when making the following ansatz:

fqc(̺, T ) =

=
∑

k

ηkT

[

ln
(

1− e−TE/T
)

+ ln

(

T + T1

TE

)]

̺k/k0

+
∑

l

ζlT

[

ln
(

1− e−TE/T
)

+ ln

(

T + T1

TE

)]

Λl
̺

+
∑

k

λk̺
k/k0 +

∑

l

κlΛ
l
̺ . (34)

The idea behind Eq. (34) is to have its temperature de-
pendence determined by harmonic oscillator correction
functions (with removed low-temperature divergences).
It turns out that a single characteristic temperature TE

is sufficient to produce excellent fits to the data. In the
high-temperature limit, fqc(̺, T ) converges to a small
constant value, which vanishes against the main contri-
bution fm(̺, T ). The density dependence is of similar

generic form as that of the main part (29), but with
somewhat simpler logarithmic terms,

Λ̺ = ln(̺+ ̺0) , (35)

that always approach constant values at low densities.
The corresponding expression for the internal energy

is obtained by differentiation of Eq. (34), and it contains
exactly the same parameters:

uqc(̺, T ) = −T 2

(

∂(fqc/T )

∂T

)

̺

=
∑

k

ηk

(

TE

eTE/T − 1
− T 2

T + T1

)

̺k/k0

+
∑

l

ζl

(

TE

eTE/T − 1
− T 2

T + T1

)

Λl
̺

+
∑

k

λk̺
k/k0 +

∑

l

κlΛ
l
̺ . (36)

After setting the basic parameters to k0 = 1, ̺0 =
1 g/cm3, T1 = 100 K and preoptimizing the characteristic
temperature to a value of TE = 4500 K, the parameters
ηk, ζl, λk, and κl were fitted with an automatic routine.
The fit curves are included in Fig. 2, and they reproduce
most of the data within about 0.01 kJ/g, which is a neg-
ligible source of error. The fits behave very reasonably
also in extrapolation. Table II contains the numerical
values of the optimized parameters.

TABLE II. Coefficients ηk, ζl, λk, and κl used in Eqs. (34)
and (36) for bcc and fcc SIW. All units are chosen in a way
that entering the temperature in K and the density in g/cm3

leads to results for fqc(̺, T ) in kJ/g. The remaining constants
are k0 = 1, ̺0 = 1 g/cm3, TE = 4500 K, and T1 = 100 K for
both phases.

Coefficient bcc fcc

η0 1.66311177×10−3 2.48398711×10−3

η1 1.27391534×10−3 9.66256285×10−4

ζ1 -8.43618254×10−4 -2.16049076×10−3

ζ2 -1.62214854×10−3 -6.05171608×10−4

λ0 3.09204736 4.97616755

λ1 2.75926296 2.09621409

κ1 -1.43268130 -4.39664120

κ2 -3.56990330 -1.35920623

The corresponding pressure, pqc = ̺2(∂fqc/∂̺)T ,
amounts to less than 1% of that of the FT-DFT-MD
simulations, pMD(̺, T ), in most cases. It becomes more
significant only for the cool and dense states of SIW.

C. Entropy constant

In the previous subsections, we have accomplished the
parametrization the thermodynamic potentials f(̺, T )
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for SIW with the exception of the entropy constants
s0 = αi0,0 in Eq. (29), so that the relative behavior of
the entropy

s(̺, T ) = −
(

∂f

∂T

)

̺

= −
(

∂(fm + fqc)

∂T

)

̺

(37)

is already fixed. In principle, a single calculation of the
entropy for each phase of SIW would now be sufficient to
complete the construction of their thermodynamic po-
tentials. In order to examine the performance of the
elaborate formalism to determine the entropy from the
FT-DFT-MD simulations (see section II C), we calculate
it for several states at the 4000 K isotherm.
The first step is the determination of the volume

weighting ratios ξO/ξH . The only way to accomplish this
for SIW is via Eq. (27) because it is not possible to insert
or remove oxygen atoms without destroying its lattice.
Moreover, we found out that inserting hydrogen atoms
in simulation boxes for either phase of SIW leads to a
deformation of the oxygen lattices as well. The removal
of hydrogen atoms is the only possible way to obtain
a smooth derivative of pressure by the particle number
NH , which is required to evaluate Eq. (27). In particular,
we removed 2 hydrogen atoms out of 108 from the bcc
SIW and 2 out of 216 from the fcc phase, respectively,
at constant volume. We verified that the decrease in the
pressure is linear for such small changes of NH with ad-
ditional test simulations in which only 1 or 4 hydrogen
atoms were removed. The bulk moduli were calculated
via Eq. (22) using the analytically parametrized EOS for
SIW.
The results for ξO/ξH along the 4000 K isotherm are

shown in the lower panel of Fig. 3, and there are signifi-
cant differences between the fcc and bcc phases of SIW.
In the fcc phase, the ratio takes a density-independent
value of ξO/ξH ≈ 3.7 for all densities at which the fcc lat-
tice structure is dynamically stable, i.e., up to 9 g/cm3.
In bcc SIW, the effective volume of a hydrogen atom
shrinks significantly under compression compared to that
of an oxygen atom. This can be understood with the re-
arrangement of the protons, which relocate from ice X
positions into octahedreal sites under compression [14].
This rearrangement allows the system to yield internally
and, thus, to stabilize its structure up to high densities
far beyond 15 g/cm3. It is has a very pronounced effect
on the ξO/ξH ratio in bcc SIW up to 7 g/cm3, albeit
it is not discontinuous. The lines drawn in the lower
panel of Fig. 3 are guides to the eye. The rearrangement
of protons is also accompanied by a metallization transi-
tion [24]. Electron-proton pair correlation functions show
a delocalization of electrons with increasing density [24].
No such proton rearrangement or metallization happens
in the fcc phase.
The uncertainty in the ratios ξO/ξH amounts to 5% or

less for each individual calculation. To further suppress
this source of error, we use the values from the simple
fits displayed as lines in the lower panel of Fig. 3 when
calculating the entropy stot(̺, T ). This also enables us to

4
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3
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FIG. 3. (Color online) Top panel: Calculated entropy for
bcc and fcc SIW at 4000 K, represented by diamonds and
squares, respectively. The solid/dashed lines are the results
from the fit formula (29) for the bcc/fcc phases. Bottom
panel: Calculated ratios ξO/ξH for the same states as in the
top panel. The lines are simple linear fits to the data.

calculate the entropy at 3 g/cm3, for which ξO/ξH cannot
be determined directly because the oxygen lattice melts
when removing hydrogen at that low density. All in all,
the entropy is not very sensitive to the ratio of effective
volumes. An error of 5% in ξO/ξH causes an entropy
error of less than 0.01 kB/atom.
The entropy calculated at the 4000 K isotherm is

shown in the upper panel of Fig. 3. It decreases with
the density for both phases of SIW. The entropy of the
bcc phase is roughly 0.04 kB/atom higher than that of
the fcc phase at most of the densities. It is now easy to fit
the final coefficients αi0,0 from Eq. (29) by shifting the
respective entropy functions and match them with the
calculated data. The average deviation between the fits
and each individual data point is less than 0.03 kB/atom,
which is approximately the statistical accuracy which our
entropy calculations are converged to. From such good
consistency between the entropy functions s(̺, T ) derived
from the EOS data and the directly calculated numbers,
we can expect the absolute values of the entropy to be
accurate within the same degree of uncertainty.

IV. PHASE DIAGRAM AND TRANSITIONS TO

THE ICES VII AND X

Having obtained the complete thermodynamic infor-
mation for the bcc and fcc SIW, we can now use Eq. (28)
to calculate the free enthalpies

g(̺, T ) = f(̺, T ) + ̺

(

∂f

∂̺

)

T

, (38)

which are numerically inverted into the form g(p, T ) using
the pressures p(̺, T ) = ̺2(∂f/∂̺)T . Boundaries between
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two phases are found by calculating the intersection of
the respective free enthalpies via ∆g(p, T ) = 0.

0.1 1 10 100
p [Mbar]

1

2

3

4
5
6

8
10
12
14
16

T
 [1

03  K
]

Superionic (bcc)
Superionic (fcc)
Ice VII*
Ice X
Fluid

fcc

ices

bcc

∆g ± 0.1 kJ/g 

bcc?

fluid

fluid

FIG. 4. (Color online) Phase diagram of warm dense water.
Diamonds/squares indicate FT-DFT-MD simulation points
for the superionic phases with bcc/fcc lattices made in this
work. Additional data for the ices VII* and X (triangles) as
well as for the fluid (circles) were taken from Refs. 30 and 14.
The solid green line (gray in print version) is the phase bound-
ary between the bcc and fcc phases of SIW derived using the
thermodynamic potentials, Eq. (28). The dashed green lines
(gray in print version) are corresponding boundaries, but were
obtained after adding artificial energy differences of ±0.1 kJ/g
to ∆g(p, T ). The solid/dashed black lines are the boundaries
between the bcc/fcc SIW and the ices, for which the thermo-
dynamic potential was taken from Ref. 30.

A phase diagram of warm dense water is displayed in
Fig. 4. It includes the data points for which dynami-
cally stable FT-DFT-MD simulations were obtained for
the bcc and fcc phases SIW. Additional points for the
fluid as well as for the ices VII* and X were taken from
previous work [14, 30]. The calculated phase boundary
between bcc and fcc SIW (solid green line) is located in
the center of their dynamic stability regions, whereas the
fcc SIW is thermodynamically favored below the curve.
The characteristic density jump at this boundary is small.
For example, at 4000 K it amounts to 0.3% at 240 GPa
and 0.14% at 4900 GPa.
To examine the sensitivity of this boundary against

uncertainties in the thermodynamic potentials, we also
calculate it after adding small offsets of ±0.1 kJ/g to
∆g(p, T ), which shifts the boundary significantly. It
is very difficult to estimate the actual uncertainty of
∆g(p, T ), but it is likely to be larger than 0.1 kJ/g.
Therefore, we cannot precisely determine up to which
degree each of the phases of SIW may be present in the
phase diagram. However, it is certain that the bcc phase
will eventually prevail against the fcc phase toward high
pressures. This result is also concordant with the loss
of dynamic stability of fcc SIW there. The fcc phase is
likely to vanish against bcc SIW also at high tempera-
tures, albeit we cannot say if this happens below or above

the transition between bcc SIW and the fluid phase. The
fcc phase certainly prevails in a region of order 10 Mbar
and few 1000 K.

In a previous paper [30], we constructed a single-phase
thermodynamic potential for ices VII* and X, using FT-
DFT-MD simulations on the same level of approximation
as here (PBE XC-functional, derivation of the entropy
from power spectra [51]). A multi-stage fitting procedure
was employed to fit energy and entropy data calculated
from MD simulations to an analytic free energy function
suited model the thermodynamics of a solid. The numer-
ical accuracy of that fit was comparable to that achieved
here, i.e., residual deviations in internal energy amounted
to about 0.1 kJ/g.

The respective boundaries between each of the phases
of SIW and the ices VII* and X are displayed in Fig. 4
as well. The ices have a bcc oxygen lattice, and their
protonic structures can melt upon heating, so that the
transtion to bcc SIW is directly observable in simulations.
The calculated boundary between bcc SIW and the ices
(solid black line) is located relatively well between the
data points that represent the dynamically stable states
of both ices and bcc SIW. Nevertheless, it lies somewhat
low in temperature and touches some of the highest data
points of the ices. A plausible explanation for this is
that the ion dynamics in the FT-DFT-MD simulations is
purely classical, whereas our thermodynamic potentials
contain nuclear quantum effects via the postprocessing
correction of the internal energy data with power spectra,
see Eq. (3) or section III B. If such quantum effects were
inherent in the MD simulations, it would very likely result
in a lower melting temperature of the proton sublattice
because potential barriers can be overcome more easily
by quantum particles. The dynamic stability regime of
fcc SIW partially overlaps with that of the ices because
the shape of the simulation cell is kept fixed in our sim-
ulations, so that a direct transition between those two
phases is not possible. The calculated boundary (dashed
black line) is close to that between the ices and bcc SIW
though. This illustrates again the strong similarity that
both phases of SIW share in their thermodynamic func-
tions. A likewise investigation of sensitivity of the SIW-
to-ice transitions shows that their shifts are one order of
magnitude smaller compared to that of the bcc-fcc tran-
sition line when adding ±0.1 kJ/g to ∆g(p, T ).

There have been several predictions of crystalline
structures of water ice at zero Kelvin beyond the stability
region of ice X [69–75]. Those ices may have boundaries
to SIW, but most of them are of non-cubic structure and
the derivation of accurate thermodynamic potentials for
them is not an easy task. Similarly, the calculation of
the transitions between SIW and the fluid phase would
require the construction of a thermodynamic potential
for the fluid phase. Although this should be achievable
using the same techniques as here, it is out of scope of
this work.
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V. PROTON DIFFUSION IN SUPERIONIC

WATER

Although the thermodynamic properties of bcc and fcc
SIW are very similar, their transport properties might
differ. Wilson et al. reported a significant effect of
the type of oxygen lattice on the proton diffusion co-
efficients [15]. We have calculated the self-diffusion coef-
ficients of the protons, DH , from our FT-DFT-MD sim-
ulations using the velocity auto-correlation functions:

Dα =
1

3

∞
∫

0

dt 〈~vα(t) · ~vα(0)〉 =
kBT

4mα
Sα(0) . (39)

In contrast to the results of Wilson et al., we do not
observe a significant difference in the proton diffusion co-
efficients within the statistical error of 5 percent or less.
At the very most, the values for the fcc phase tend to
be up to 10 percent larger than that for bcc SIW, and
this occurs only for densities larger than 6 g/cm3. Ta-
ble III contains the respective values along the 4000 K
isotherm, for which we have produced the longest simula-
tions (about 10 ps) in order to calculate the entropy, plus
three values at 5000 K from shorter simulations. These
states include all those for which diffusion coefficients
were given in Ref. 15, with the exception of the data at
the 2000 K isotherm and at 11 g/cm3 and 5000 K. At
those conditions, we observed a distortion of either the
bcc or the fcc lattices, i.e., a dynamic instability of one
of the phases in the simulations.

TABLE III. Diffusion coefficients of the protons in cm2/s for
bcc and fcc SIW.

T [K] ̺ [g/cm3] bcc fcc

4000 3.0 1.24 × 10−3 1.26 × 10−3

4000 3.5 1.23 × 10−3 1.24 × 10−3

4000 4.0 1.20 × 10−3 1.22 × 10−3

4000 5.0 1.12 × 10−3 1.08 × 10−3

4000 6.0 9.60 × 10−4 9.78 × 10−4

4000 7.0 7.86 × 10−4 8.36 × 10−4

4000 9.0 5.35 × 10−4 5.64 × 10−4

5000 5.0 1.53 × 10−3 1.45 × 10−3

5000 7.0 1.05 × 10−3 1.12 × 10−3

5000 9.0 6.96 × 10−4 7.75 × 10−4

Our values fit very well into a set of previous results
for bcc SIW obtained with the mean-square-displacement
method and follows the same trends with temperature
and density [24]. Strangely, the absolute values for the
diffusion coefficients given by Wilson et al. are about two
orders of magnitude higher than ours. Such high values
of DH would lead to unrealistically high ionic electrical
conductivities of order 105 to 106 S/m, which is a char-
acteristic number rather for electronic transport in dense
plasmas [76].

Since the type of the oxygen lattice does not strongly
affect the proton diffusion, it is unlikely that related ionic
transport properties, e.g., the electrical conductivity [25],
are significantly influenced either. We thus expect no
significant impact of a bcc-to-fcc transition within SIW
on planetary interiors of Uranus or Neptune.

VI. SUMMARY AND CONCLUSIONS

We have constructed analytic free energy functions
f(̺, T ) for two phases of SIW (bcc and fcc) by fitting
pressures and internal energies from ab initio simulations
and calculating the entropy. Their primary purpose is to
serve in the construction of thermodynamically consis-
tent multi-phase EOS tables. These functions are of very
high fidelity within the p − T conditions which the un-
derlying EOS data from FT-DFT-MD simulations were
generated for, see Fig. 4. Moreover, they can be ex-
trapolated sufficiently far enough beyond those regions
so that boundaries to neighboring phases can be calcu-
lated, which was demonstrated in the case of ices VII*
and X.
The resolution of transitions between two phases that

have very little differences in their thermodynamic func-
tions, like bcc and fcc SIW, remains challenging though.
One can imagine that bcc and fcc are not the only possi-
bilities, and that many phases of SIW with low-symmetry
oxygen lattices [77] can be simulated dynamically stable
with FT-DFT-MD as well. However, for practical appli-
cations it does not matter much whether the EOS of the
”truly” stable phase or that of a very similar one is used.
Although not discussed here in detail, the choice of the
exchange-correlation functional has a larger influence on
p(̺, T ) than the type of the oxygen lattice. It is there-
fore very reasonable to recommend the use of f(̺, T ) for
bcc SIW solely as a good overall representation for the
thermodynamics of SIW up to densities of 15 g/cm3.
Moreover, we showed that the type of the oxygen lat-

tice does not significantly influence the diffusion coeffi-
cient of the protons, in contrast to the claims of Wilson
et al. [15]. Thus, we do not expect any relevant implica-
tion for the magnetic field generation in water-rich giant
planets that might be caused by transitions between dif-
ferent superionic structures.
Future work will aim at describing the fluid phase in a

similar manner and calculating the melt boundary of the
superionic structures. Moreover, the techniques devel-
oped in this work can be directly applied to investigate
superionic and fluid phases of more complex materials,
e.g., astrophysically relevant mixtures of hydrogen, he-
lium, oxygen, nitrogen, and carbon [78–80].
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