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We show that the bipartite logarithmic entanglement negativity (EN) of quantum spin models
obeys an area law at all nonzero temperatures. We develop numerical linked cluster (NLC) expan-
sions for the ‘area-law’ logarithmic entanglement negativity as a function of temperature and other
parameters. For one-dimensional models the results of NLC are compared with exact diagonaliza-
tion on finite systems and are found to agree very well. The NLC results are also obtained for two
dimensional XXZ and transverse-field Ising models. In all cases, we find a sudden onset (or sudden
death) of negativity at a finite temperature above which the negativity is zero. We use perturbation
theory to develop a physical picture for this sudden onset (or sudden death). The onset of EN or its
magnitude are insensitive to classical finite-temperature phase transitions, supporting the argument
for absence of any role of quantum mechanics at such transitions. On approach to a quantum critical
point at T = 0, negativity shows critical scaling in size and temperature.

INTRODUCTION

In recent years, the study of quantum entanglement
in many-body systems has been a topic of great inter-
est [1–21]. It sheds light on many fundamental issues
in quantum statistical mechanics from quantum phase
transitions and universality to thermalization and many-
body localization. In studying bipartite entanglement in
pure states, the Von-Neumann entropy provides the ideal
measure and together with its easier to compute gener-
alization of the Renyi entropies gives a rather complete
quantitative description of entanglement in such systems.
In contrast, for a mixed state, these entropy based mea-
sures are often dominated by classical probabilities and
isolating quantum entanglement becomes non-trivial [22].
Even bipartite Mutual Information (MI), which is a mea-
sure of all correlations between subsystems, at nonzero
temperatures, is usually dominated by classical correla-
tions and not quantum entanglement.

The notion of separability provides a concrete defini-
tion for the absence of entanglement. If a mixed state
density matrix can be decomposed as a sum of pure state
density matrices, each of which is separable between sub-
systems A and B and has zero entanglement entropy,
one can clearly conclude that there is no entanglement
between A and B. However, examining separability re-
quires trying all possible decompositions of a mixed state
in terms of pure states [2–4], which is not easy, nor does it
provide a quantitative measure of how entangled a non-
separable system is. Many measures of entanglement in
a mixed state have been developed in quantum informa-
tion theory, but most of them are difficult to compute
even for relatively small quantum systems [2]. The mea-
sure of logarithmic negativity was proposed by Vidal and
Werner [23], as an effective, computable measure of en-
tanglement in a mixed state. Partially transposed density

matrix can have negative eigenvalues only if the subsys-
tems are quantum entangled. Although zero negativity
does not imply an absence of entanglement in the sense
of separability, it does provide an upper bound on dis-
tillable entanglement[23]. Furthermore, its monotonicity
properties make it an effective quantitative measure of
how entangled a system is. In pure states it coincides
with the Renyi entropy with index 1/2.

Another motivation for studying log negativity is that
we can prove an area-law for it at T > 0 in arbitrary
dimensions, even though we thus far do not know how to
prove an ‘area-law’ for Renyi Mutual Information (MI)
for T > 0. One can regard this as a first step toward
proving an area law for Renyi MI.

A large body of work exists studying multi-partite neg-
ativity in pure systems as well as bi-partite negativity
in the thermal state at nonzero temperatures [24–31].
In models of free particles and harmonic oscillators, the
correlation matrix method (aided by Wick’s theorem)
greatly simplifies the study and allows for analytical cal-
culations. For spin systems, studies have been restricted
mostly to small 1D clusters as exact calculations of the
eigenvalues of the transposed density matrix is a cum-
bersome task.

In this paper, we show that logarithmic negativity in
a lattice model obeys an area-law at all nonzero temper-
atures. We also show that it satisfies the linked clus-
ter property. However, unlike zero temperature, where
negativity is a smooth function of Hamiltonian param-
eters except at quantum phase transitions, at nonzero
temperatures negativity is not always a smooth function
of temperature. It is characterized by a sudden death,
a temperature above which it becomes identically zero.
Furthermore, it has multiple smaller sudden onsets as a
function of temperature, which make it unsuitable for
any power series expansion [32, 33]. Numerical Linked
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Cluster (NLC) methods [15, 16, 34] provide an ideal way
to calculate logarithmic negativity for a thermodynamic
system. We use both exact diagonalization and NLC
to calculate logarithmic negativity for prototypical quan-
tum spin models in one and two dimensions.

We also use perturbation theory to develop a simple
physical picture for the onset of negativity at a finite
temperature (also known as sudden death of negativity
when going up in temperature). Fluctuations in high
weight states (such as the ground state) near the in-
terface between subsystems, upon partial transposition
create a large off-diagonal coupling between low weight
states. The mixing between these low weight states re-
sults in an entangled Bell pair of states with a negative
(and a positive) eigenvalue for the partially transposed
density matrix. Sudden death arises because of the need
to build the quantitative difference between large and
small weight states, which goes to zero as T goes to in-
finity. This non-analytic temperature dependence has
nothing to do with any large length scale in the problem.
Even though sudden death temperature is not identical
for different clusters, it converges rapidly enough with
system size to lead to a well converged negativity func-
tion in the calculations.
We also find that entanglement negativity is unaffected

by classical phase transitions. In some parameter regions,
the sudden death happens at a temperature lower than
the phase transition termperature, implying that it re-
mains zero at the phase transition. In other parameter
regimes, sudden death happens at a temperature higher
than the phase transition temperature. Development of
long-range correlations spoils the convergence of NLC
and typically leads to strong oscillations in the terms, but
their sum is still well approximated by Euler summation.
The resulting negativity is quite insensitive to the phase
transition itself. This is consistent with the idea that
quantum mechanics has very little role, at the macro-
scopic level, in classical phase transitions. This should
be contrasted with Mutual Information, defined in terms
of Von Neumann or Renyi entropies, which show a clear
signature of the classical phase transitions [12, 13], and
hence, are dominated by classical correlations.

On approach to a T = 0 quantum phase transition,
negativity develops universal critical singularities. At
T = 0, it coincides with the Renyi entropy with index
1/2 and in 1+ 1-d has the well known logarithmic singu-
larity in the size of the system, with a coefficient deter-
mined by the central charge of the conformal field theory
(CFT) [1]. At a finite but low temperature, the singu-
larity is rounded off, in the thermodynamic limit, and
instead a saturation to a logarithmic behavior in inverse
temperature β is observed.

The plan of the paper is as follows. A formal proof of
the area-law for log negativity at any nonzero temper-
ature is provided in the appendix. In the next section
we provide the basic definitions and discuss the meth-

ods used for the calculations. That is followed by results
for entanglement negativity in one and two dimensional
quantum spin models. Finally, the last section provides
a discussion and conclusions.

MODELS AND METHODS

We consider two prototypical quantum spin models.
The first is the antiferromagnetic XXZ model, with pa-
rameter λ defined by the Hamiltonian

H =
∑

〈i,j〉

(Sz
i S

z
j + λ[Sx

i S
x
j + Sy

i S
y
j ]).

The second is the transverse field Ising model (TFIM),
defined in terms of the parameter J

H = −J
∑

〈i,j〉

Sz
i S

z
j −

∑

i

Sx
i .

We are interested in the entanglement in the thermal
state characterized by the density matrix

ρ =
e−βH

Z ,

where Z is the partition function.
For a bi-partitioned system, with one partition labeled

A, and the other B, the (logarithmic) negativity is defined
as

N = ln ||ρΓB ||1, (.1)

where ρΓB denotes the partial transpose of the density
matrix with respect to subsystem B, and ||X ||1 denotes
the trace norm ofX . More explicitly, we write the density
matrix acting on the Hilbert space HA ⊗HB as

ρ =
∑

ijkl

P ij
kl |Ai〉 〈Aj | ⊗ |Bk〉 〈Bl| .

We introduce an operator T that transposes in the
Hilbert space of HB, then the partial transposed matrix
ρΓB is defined as

ρΓB = I ⊗ T (ρ) =
∑

ijkl

P ij
kl |Ai〉 〈Aj | ⊗ [|Bk〉 〈Bl|]T

=
∑

ijkl

P ij
kl |Ai〉 〈Aj | ⊗ |Bl〉 〈Bk|

with I being the Identity operator in the Hilbert space
HA. Note that ρΓA = ρΓB , for a real symmetric density
matrix.
In a pure state, one can use the Schmidt decomposition

of a wavefunction to show that [23]

||ρΓB ||1 =

[

∑

α

Cα

]2

(.2)
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where {Cα} are the Schmidt coefficients. Another set of
measures of entanglement based on the reduced density
matrix ρA are the well studied Renyi entropies of order
α defined as

Sα =
1

1− α
ln [Tr (ραA)]

It is easy to see that negativity in the pure state is equal
to Renyi entropy of index 1/2.

Linked cluster method

The linked cluster method[34] is based on expanding
a property, P , for a larger cluster O in terms of all its
subclusters c.

P(O) =
∑

c⊆O

W(c).

Here, the weights W of the subclusters are defined recur-
sively by the subgraph subtraction procedure:

W(O) = P(O)−
∑

c⊂O

W(c).

In a thermodynamic system, with translational symme-
try, one can combine all clusters with translational sym-
metry. Provided a quantity satisfies the linked-cluster
property, i.e. only linked clusters have non-zero weight,
it can be calculated by simple graphical methods and
leads to an appropriate extensive or intensive quantity in
the thermodynamic limit.
For the logarithmic negativity, we can show that only

connected clusters shared between subsystems A and B
have non-zero weight. It is evident that unless a cluster
is shared between A and B it can not have any negativity.
To show that a disconnected cluster has zero weight, we
first observe that for a disconnected cluster c1

⋃

c2 both
of which (c1 and c2) may have parts in A and B, the
partially transposed density matrix can be written as a
product of partially transposed density matrices over the
two clusters. Thus, the eigenvalues of the partially trans-
posed density matrix would be a product of eigenvalues
for the two clusters. It follows that logarithmic negativity
will be a sum of the logarithmic negativity over the two
clusters and upon subgraph subtraction, it will have zero
weight. If we imagine partitioning a large system into
two halves by a planar partition, the clusters will have
translational symmetry perpendicular to the partition.
The count of each cluster modulo such a translation will
be proportional to the area of the interface. As a result,
the lograithmic negativity per unit area can be expressed
as

N =
∑

c

WN (c),

where WN (c) is the weight of the cluster c and the sum
is over all translationally distinct clusters of the lattice.

The NLC calculation requires evaluation of negativ-
ity for clusters that can be embedded in the lattice. In
one-d, we also do exact diagonalization for clusters with
periodic boundary conditions as that provides an alter-
native method for studying the large size limit. On desk-
top computers, we can evaluate the finite-temperature
negativity for up to 14-site clusters, using a brute-force
diagonalization method. However, since we need to do a
large number of such calculations, most of our results are
based on systems of size 12 or smaller. For the ground
state properties, we have evaluated negativity for up to
26 site clusters using the Lanczos method. The two cal-
culations must agree in the T going to zero limit for each
cluster, provided the cluster has a non-degenerate ground
state. This comparison provides a non-trivial check on
our numerical calculations. Note that in XXZ systems
with odd number of spins, we have Kramers degeneracy,
and the two calculations give different results, as at any
nonzero temperature the density matrix is always mixed.
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FIG. .1. Sudden death inverse temperate β values for the anti-
ferromagnetic XXZ models for different size rings and chains,
indicated with circles and crosses respectively. Note that the
results converge from above for the chains and from below for
the rings.

We begin with one dimensional models. Our interest is
in calculating the logarithmic negativity N when a large
chain is partitioned at a bond. As the area between sub-
systems is just a point in 1d, an area-law means finite
entanglement in the thermodynamic limit. We can do
this calculation in two ways. We can consider a chain of
length L with periodic boundary conditions and divide
it into two equal parts A and B and calculate the loga-
rithmic negativity for this partition. If the entanglement
arises only from the area, in the limit of L going to in-
finity, this should equal twice the entanglement of each
cut. Alternatively, we can use the NLC method. In this
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FIG. .2. Comparison of sudden death temperature TSD for
chains of length 4 and 9 with the perturbation theory results.
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FIG. .3. A second onset in negativity happens for a 4-site
system below an inverse temperature of β = 8. The inset
shows eigenvalues of the partially transposed density matrix
as a function of β. Note that in a small window near these
onsets there are multiple eigenvalues which change sign (going
from positive to negative and from negative to positive).

case, in each order (n) there is only one topological clus-
ter at each order, an open chain of length n. However,
we need to place the partition on every bond of the clus-
ter and sum them up. This amounts to positioning the
cluster at different places with respect to the cut. The
NLC method will sum to the negativity N .

RESULTS

Sudden death

It is well known that negativity in the thermal state
becomes zero above a sudden death temperature TSD

[27, 35]. We would like to understand this sudden death
phenomenon in our lattice models. Fig. 1 shows the sud-
den death β values for different strengths of the coupling
λ in the XXZ model for rings of length L. It is apparent
that this converges rapidly with L, implying that it is
a short-distance property. This motivates that perhaps
sudden death may be explained well by low order pertur-
bation theory. In fact, this sudden death can already be
seen in first order perturbation theory.
Let us look at the 1D XXZ model with small λ. We

treat λ in the XXZ Hamiltonian as a small parame-
ter, and expand around λ = 0. Negative eigenvalues
in ρΓB arise from elements in the off-diagonal having
a larger magnitude than its corresponding diagonal el-
ements. The large off-diagonal elements that cause neg-
ativity in the XXZ model comes as a result of states
with high Boltzmann weight, that is typically the ground
state. At λ = 0, there are two degenerate ground states
which are simply product states of spins ordered antifer-
romagnetically along z, which do not mix in the thermo-
dynamic limit.
The perturbation acting on these states flips two spins,

creating a pair of excited bonds with total energy E0+1,
where E0 is the unperturbed ground state energy. Not-
ing that in the partial transposition of ρ, off-diagonal
elements which consist of only a pair of spins being
flipped far away from the boundary are not affected,
which means we must only consider the two spins right
on the boundary being flipped. This means that, defin-
ing ρ0 to be the pure state density matrix of the ground
state, the only relevant off-diagonal element in the par-
tial transpose (where : represents the boundary between
A and B, and only the 4 spins nearest to the boundary
are included) is

〈↑↓:↑↓|ρ0 |↑↑:↓↓〉 = 〈↑↓:↓↓|ρΓB

0 |↑↑:↑↓〉 = −λ/2 (.3)

and its transposed elements.
As we are interested in the sudden death βSD, which

should be very large when λ is small, we can assume
that other offdiagonal elements are negligible compared
to those from the ground states. In the partial transpose
of the thermal density matrix ρ(β) = exp(−βH)/Z, the
offdiagonal element becomes

〈↑↓:↓↓|ρΓB |↑↑:↑↓〉 = −(λ/2)(e−βE0−e−β[E0+1])/Z (.4)

while the diagonal elements are

〈↑↓:↓↓|ρΓB |↑↓:↓↓〉 = 〈↑↑:↑↓|ρΓB |↑↑:↑↓〉 = e−β[E0+1]/Z
(.5)
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Thus, the sudden death βSD where the eigenvalue in
ρΓB becomes negative, obtained by solving the 2 by 2
matrix, is simply given by

βSD = ln

(

λ+ 2

λ

)

(.6)

We see that the sudden death temperature goes to 0
for λ = 0, and actually does so logarithmically TSD ≈
1/ ln(2/λ). This is true also for the TFIM in the small J
limit, which can be shown in a similar manner in leading
order perturbation theory.
Fig. 2 shows the calculated sudden death temperature

as a function of λ, in very good agreement with first
order perturbation theory at low λ. As expected the
sudden death temperature goes to zero as λ goes to zero
logarithmically. We do not show TSD for the transverse
field Ising model here, as we will discuss its sudden death
in context of finite temperature phase transitions in two
dimensional models. The sudden death phenomena is
qualitatively similar for our models and does not depend
much on dimensionality.
It is interesting to note that, in general, models can

have multiple sudden discontinuities in the derivative of
their log negativity as more and more eigenvalues of the
partially transposed density matrix turn negative. For
example, the negativity for a chain of length 4 cut in two
halves has a discontinuity in the slope at β just below
8 as shown in Fig. 3, in additional to the first discon-
tinuity in slope at βSD. At this point, an eigenvalue in
ρΓB (which arise in 3rd order perturbation theory) be-
comes negative. These discontinuities in slope may also
persist into the thermodynamic limit, but lower temper-
ature non-analyticities are usually much less pronounced
compared to the one at sudden onset.

Area laws

It is well known that entanglement in the ground state
of gapped Hamiltonians follow an area law [11]. In 1d
critical or gapless systems, the ground state entanglement
entropy instead diverges logarithmically with size of the
system. A natural question concerns the fate of nega-
tivity at non-zero temperatures in this situation, does it
follow an area law despite the logarithmic entanglement
in the ground state? As shown in the appendix, logarith-
mic negativity always satisfies an area-law at nonzero
temperatures.
At a more quantitative level, we study negativity as a

function of the length of the periodic chains L at different
inverse temperatures. Fig. 4 and Fig. 5 shows negativity
as a function of the length of the periodic chains L at
different inverse temperatures for the antiferromagnetic
Heisenberg model (with λ = 1) and the TFIM at its
critical point (J = 2). Quantum entanglement in these
models is largest at T = 0 and is usually a monotonically

1 10
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0.25

0.5

0.75

1

N

β = 3
β = 4
β = 5
β = 6
β = 8
β = 10
β = 20

T = 0

FIG. .4. Logarithmic negativity for the antiferromagnetic
Heisenberg model (λ = 1) as a function of the length L from
exact diagonalization (ED) of periodic chains at different β

values, as well as from NLC up to order L. The terms in the
NLC series are strongly alternating, so an Euler summation
is used starting from the 4th term to smoothen the sum. Also
shown are the results from the Lanczos based calculation for
the ground state negativity. Plots with symbols are from ED
while those without symbols are from NLC.
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β = 6

β = 10
β = 15

β = 30
β = 60

T = 0

FIG. .5. Logarithmic negativity for the transverse-field Ising
model (TFIM) tuned to its quantum critical point (J = 2) as
a function of the length L from exact diagonalization (ED)
of periodic chains and also NLC up to order L for different β
values. Also shown are the results from the Lanczos based cal-
culation for the ground state negativity. Plots with symbols
are from ED while those without symbols are from NLC.

decreasing function of temperature [37]. At T = 0 the
logarithmic behavior of the negativity is clearly appar-
ent at our sizes shown in the line labeled T = 0. For
higher temperatures, on the other hand, the negativity
appears to increase initially but eventually saturate to a
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FIG. .6. Logarithmic negativity of the antiferromagnetic
Heisenberg model as a function of β calculated by exact diag-
onalization of rings of size L and by NLC. For the NLC the
partial sums of different orders (denoted NLC) and the Euler
sums (denoted NLCET) are shown. Linear fits to the Euler
transformed NLC results are shown by a dashed line.
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FIG. .7. Logarithmic negativity for the transverse field Ising
model (TFIM) tuned to its quantum critical point (J = 2) as
a function of β calculated by exact diagonalization of rings of
size L and by NLC. For the NLC the partial sums of different
orders are shown. At intermediate β, ED has not yet con-
verged and appears to be increasing towards the NLC value.
Linear fits to the NLC results are shown by a dashed line.

constant value. Also shown are the results from NLC,
which for low β are converging faster than ED. These re-
sults confirm that negativity indeed follows an area law
at nonzero temperatures, even when the ground state
negativity does not.

In Fig. 6 and Fig. 7 we show the results for the loga-
rithmic negativity as a function of inverse temperature β

for the Heisenberg model and the TFIM at their critical
point. Results from exact diagonalization as well as from
NLC are shown. It is clear that the results converge
rapidly at high temperatures between the exact diago-
nalization and NLC. As the temperature is lowered the
system develops a logarithmic behavior in β as expected
from scaling theory. At low temperatures, as the quan-
tum critical point is approached, the convergence must
break down as larger system sizes would be needed to ob-
tain the results in the thermodynamic limit. We find that
the convergence is faster for the Heisenberg model than
for the TFIM, until the terms start to oscillate strongly
with order. In this case, the Euler summation greatly im-
proves the convergence of NLC. For intermediate β ≈ 5
in Fig .7, NLC has converged while the ED estimates are
still increasing with order, as can be seen from Fig .5.
However, the logarithmic behavior of negativity in β is
apparent in both cases.

We can use a simple scaling argument to relate the
coefficient of the logarithm in L at T = 0 and the co-
efficient of logarithm in β at finite temperatures in the
thermodynamic limit to each other. In the ground state
of one-dimensional critical systems, for arbitrary Renyi
index α, the logarithmic singularity for a single cut, for a
model with central charge c, is known to take the form[1]

N =
c

12
(1 +

1

α
) lnL+ constant. (.7)

For α = 1/2, appropriate for the the log negativity, the
coefficient for the logarithm becomes c/4.

Our fits for the TFIM and the Heisenberg model at T =
0 give coefficients of lnL of 0.125 and 0.25 respectively, in
excellent agreement with the known central charge values
of c = 1/2 and c = 1. Finite β implies that the imaginary
time direction has extent β. Thus, by Lorentz symmetry
of the critical point, β should play the role of the size of
the system and one would expect the same coefficient for
lnβ as well. In our fits we find the coefficients of lnβ to
be 0.135 and 0.315 for the TFIM and Heisenberg models
respectively. Given that our results are not converged
at very low temperatures, and there is curvature in the
N versus lnβ plots, these results are consistent with the
scaling argument.

Bipartite logarithmic negativity in two dimensions

We now turn to the two-dimensional square-lattice.
We are interested in the logarithmic negativity when a
large system is divided into two halves by bisecting a set
of parallel bonds. In this case, an area-law obeying entan-
glement negativity will be proportional to the length of
the line, and one can calculate the entanglement negativ-
ity per unit length. In this case the exact diagonalization
method is no longer so useful, but we can continue to use
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the numerical linked cluster expansions to get to the re-
sults in the thermodynamic limit. We will focus on the
transverse-field Ising model, which has a larger Hilbert
space due to lack of conservation laws, but also provides
a model with both an ordered and a disordered phase.
The ground state of the square lattice TFIM model has

a quantum critical point at J ≈ 0.657, where entangle-
ment entropy and negativity exhibit a singularity. Stan-
dard NLC expansions are unable to accurately see this
singularity, however, as convergence is very poor in the
ordered phase. This is due to the Schrodinger cat states
which contribute an additional entanglement of ln(2) in-
dependent of the cut area, and makes convergence dif-
ficult in our NLC calculation of entanglement per unit
area. To get around this, we employ a modified NLC
where each cluster is assumed to be embedded in a sys-
tem of ferromagnetically frozen spins (also called a “low
temperature” expansion). This effectively acts as an ap-
plied field on the boundary of the cluster, destroying the
cat states.
We are interested in how the entanglement persists

to non-zero temperatures, when the phase transition is
classical in nature. Quantum entanglement should play
no role, and hence we would also expect that negativity
should show no signs at the classical critical point. Fig. 8
shows negativity as a function of J for various tempera-
tures up to orders 7 and 8, as well as the expected critical
couplings Jc. At T = 0, NLC clearly shows a maximum
that is getting sharper near the critical point. Because
this expansion favors the ordered phase, the peak oc-
curs slightly below Jc, but is getting closer with order.
At higher temperatures, negativity is zero below a cer-
tain J because of the sudden death phenomena, and so
the peak is shifted to higher J . The expansion appears
essentially converged for these curves, and the location
of the peak is uncorrelated with the classical transition
points, confirming our expectation that negativity plays
no role in classical phase transitions. In fact, beyond
a certain point, negativity is zero at the classical phase
transition. Fig. .9 shows the sudden death temperature
for the model, which intersects with the classical phase
transition point.

DISCUSSIONS AND CONCLUSIONS

In conclusion, in this paper we have studied logarith-
mic negativity for quantum spin models using exact diag-
onalization in one dimension and the Numerical Linked
Cluster method in both one and two dimensions. The
models studied were the antiferromagnetic XXZ model
and the transverse field Ising model. We showed the ex-
istence of an ‘area-law’ for the logarithmic negativity and
also showed that it obeys the linked cluster property.
This allows us to use NLC to calculate this quantity.
We found that for these models, the logarithmic nega-
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β = 4
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β = 2.5
β = 2

FIG. .8. Logarithmic negativity for the TFIM on a square
lattice as a function of J for varying temperatures from the
“low temperature” expansions (see text). The curves with
diamonds are for NLC order 8, and solid lines are for order
7. The vertical dotted lines are the corresponding critical J
values for this system. Note that the critical J is monotonic
in temperature.
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Sudden death data
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(d)

FIG. .9. Phase diagram for the transverse-field Ising model
(TFIM) on the square lattice. Also illustrated are the sudden
death temperatures found via NLC. Also shown is first or-
der perturbation theory results. Data for the classical phase
boundary gathered from [36].

tivity decreases monotonically with temperature. This
is in contrast to Von Neumann entropy in an eigenstate
of the system which shows a Volume law and increases
as one goes to states relevant to higher temperatures. A
relatively small value of quantum entanglement in the
highly mixed thermal state is perhaps also an example of
monogamy of entanglement. One can regard the thermal
state as a pure state of a larger system with a thermofield
double [38], where one has introduced twice as many de-
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grees of freedom as in the original system. The strong
entanglement between the system and the additional an-
cilla degrees of freedom at nonzero temperatures strongly
limits its entanglement within different parts of the sys-
tem making it essentially local, hence the area-law.
Perturbation theory was used to elucidate the onset of

entangement negativity at a sudden death temperature
TSD. It also showed that Entanglement negativity is an
interfacial phenomena that arises from local fluctuation
in the ground and low lying states across the interface
between subsystems, which under partial transposition
leads to fully entangled pair of states.
We found that quantum entanglement does not play a

role in classical phase transitions. Logarithmic negativ-
ity can be zero at the transition. Or, it can be non-zero
with no clear evidence for a singularity in it at the tran-
sition. At a T = 0 quantum phase transitions, it devel-
ops universal critical behavior in temperature and size of
the system. The well known log singularity of CFT is
rounded off at any nonzero temperature, leaving a loga-
rithmic dependence on inverse temperature β. In future,
it may be interesting to study multipartite entanglement
negativity using such computational methods.
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APPENDIX: PROOF OF AREA LAW

We consider a system made of two subsystems, called A,B. We consider a Hamiltonian H = HA + HB + HAB,
where HA and HB are supported on A,B respectively. Our goal is to bound the log negativity of the density matrix
of this system at any nonzero temperature. Let

ρ = Z−1 exp(−βH), (.8)

where Z is a normalization constant chosen so that tr(ρ) = 1. So, we wish to bound

ln
(

||ρΓA ||1
)

,

where the superscript ΓA denotes a partial transpose on subsystem A and where || . . . ||1 denotes the trace norm (this
is equal to the sum of singular values of an operator; for a Hermitian operator this is the sum of absolute values of
eigenvalues).
Any term HAB can be written as a sum of products,

HAB =
∑

α

Hα
AH

α
B, (.9)

where Hα
A, H

α
B are supported on A,B respectively. Suppose that this is possible with at most K total terms in the

sum, with ‖Hα
A‖‖Hα

B‖ ≤ J , for some constant J . Here, ‖ . . . ‖ denotes the operator norm (the largest singular value
of an operator). Then, our main result in this appendix is that

ln
(

||ρΓA ||1
)

≤ β ∗ (JK + ‖HAB‖). (.10)

Note that ‖HAB‖ ≤ JK by a triangle inequality.
To give an application of this result, consider a many-body system with a Hamiltonian that is a sum of local terms

so that each term acts on some set with a bounded number of sites with a bounded Hilbert space dimension on each
site. Then, each term which is supported on both A and B can be written as a sum of products as in Eq. (.9) with
a bounded number of terms in the sum (if the Hilbert space dimension on each site is bounded by d and a term acts
on nA sites in A and nB sites in B, then the number of terms in the sum is as most d2·min(nA,nB)). If the number
of terms supported on both A and B is proportional to the boundary area of A, then summing over terms, we can
write HAB as in Eq. (.9) with the number of terms K proportional to the boundary area of A. If each term in the
Hamiltonian is bounded, we can bound the operator norm of every term in this sum. So, in many cases (such as
Hamiltonians with bounded strength and bounded range on finite-dimensional lattices), JK and ‖HAB‖ will both be
proportional to the boundary area of A.
We now show Eq. (.10). Let

ρ0 = Z−1
0 exp[−β(HA +HB)], (.11)

where Z0 is chosen so that tr(ρ0) = 1. We have

ln
(

||ρΓA ||1
)

= ln

(Z0

Z

)

+ ln

(

|| ZZ0
ρΓA ||1

)

, (.12)

We bound the two terms on the right-hand side separately.
We will bound the first term by

ln

(Z0

Z

)

≤ β‖HAB‖. (.13)

This bound has a simple physical interpretation that the change in free energy between two Hamiltonians differing
by adding the terms HAB is bounded by the strength of the terms that we add. To show this, we write a series:

Z0

Z = tr(ρ0

(

1 +

∫ β

0

dτHAB(τ) +

∫ β

0

dτ1

∫ τ1

0

dτ2HAB(τ1)HAB(τ2) + . . .
)

), (.14)

where we define HAB(τ) as a time-evolved operator:

O(τ) ≡ exp[τH ]O exp[−τH ]. (.15)
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Consider the n-th term in the series and consider a given choice of τ1 ≥ ... ≥ τn in the integral for this term.
The integrand is the trace tr(ρ0HAB(τ1) . . . HAB(τn)). We write the expression inside the trace as a product of 2n
operators, n of which are operators HAB and the other n of which are exponentials of H :

tr(ρ0HAB(τ1) . . . HAB(τn)) (.16)

= Z−1tr(HAB exp[−(τ1 − τ2)H ]HAB exp[−(τ2 − τ3)H ] . . .

HAB exp[−(τn−1 − τn)H ]HAB exp[−(τn + β − τ1)H ]).

We now use an inequality (Kristof’s generalization[1] of von Neumann’s trace inequality) that the trace (or trace
norm) of a product of operators O1O2... with given eigenvalues is maximized in the case that all the operators are
diagonal and the eigenvalues are all in the same order (descending or ascending) along the diagonal. Thus, if H has
eigenvalues λi in ascending order (λ1 ≤ λ2 ≤ ...) and HAB has eigenvalues ξi in descending order (ξ1 ≥ ξ2 ≥ ...) then
Eq. (.16) is bounded by

tr(HAB exp[−(τ1 − τ2)H ]HAB exp[−(τ2 − τ3)H ] . . . (.17)

HAB exp[−(τn−1 − τn)H ]HAB exp[−(τn + β − τ1)H ])

≤
∑

i

ξi exp[−(τ1 − τ2)λi] . . . ξi exp[−(τn + β − τ1)λi]

=
∑

i

ξni exp(−βλi)

≤ ‖HAB‖n
∑

i

exp(−βλi)

= ‖HAB‖nZ.

An alternative way to derive the bound in Eq. (.17) is to use Hölder’s inequality[2]: the trace norm of a product of m
matrices is bounded by the product of the pi norms of the matrices: ||M1...Mm||1 ≤ ∏

i ||Mi||pi
if
∑

i p
−1
i = 1. We

take the p = ∞ norm (which is the operator norm) for the operators HAB in the product. The other operators in
the product are all of the form exp(−δiH) for some δi; for those operators we take the β/δi-norm which is equal to

Zδi/β
0 . Since

∑

δi = β, indeed
∑

p−1
i = 1 and

∏

i ||Mi||pi
= ‖HAB‖nZ.

Hence, after integrating over τ1, ..., τn, the n-th term in the series is bounded by

(β‖HAB‖)n
n!

,

and so after summing over n we get

Z0

Z ≤
∑

n≥0

(β‖HAB‖)n
n!

(.18)

= exp(β‖HAB‖),
giving Eq. (.13).
We now apply a similar series method to bound

ln

(

|| ZZ0
ρΓA ||1

)

= ln
(

||Z−1
0 exp(−βH)

ΓA ||1
)

.

Expand Z−1
0 exp(−βH) as a series in HAB:

Z−1
0 exp(−βH) = Z−1

0 exp[−β(HA +HB +HAB)] (.19)

= ρ0

(

1−
∫ β

0

dτHAB(τ) + . . .
)

,

where now we define HAB(τ) as a time-evolved operator using Hamiltonian HA +HB rather than H :

O(τ) ≡ exp[τ(HA +HB)]O exp[−τ(HA +HB)]. (.20)

Using Eq. (.9), expand the integrand in the n-th term in the series as a sum of products; for given τ1 ≥ ... ≥ τn this
is a sum

∑

α1,...,αn

ρ0H
α1

A (τ1)H
α1

B (τ1) . . . H
αn

A (τn)H
αn

B (τn).
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The partial transposition operator is linear, so this gives us also a series for Z
Z0

ρΓA :

Z
Z0

ρΓA (.21)

= ρΓA

0 +
∑

n≥1

(−1)n
∫ β

0

dτ1 . . .

∫ τn−1

0

dτn
∑

α1,...,αn

ρΓA

0 Hα1

A (τ1)
THα1

B (τ1) . . . H
αn

A (τn)
THαn

B (τn).

By a triangle inequality,

|| ZZ0
ρΓA ||1 (.22)

≤ 1 +
∑

n≥1

∫ β

0

dτ1 . . .

∫ τn−1

0

dτn
∑

α1,...,αn

∣

∣

∣

∣

∣

∣
ρΓA

0 Hα1

A (τ1)
THα1

B (τ1) . . . H
αn

A (τn)
THαn

B (τn)
∣

∣

∣

∣

∣

∣

1
.

We can bound

||ρΓA

0 Hα1

A (τ1)
THα1

B (τ1) . . . H
αn

A (τn)
THαn

B (τn)||1

as follows. We have

ρΓA

0 Hα1

A (τ1)
THα1

B (τ1) . . . H
αn

A (τn)
THαn

B (τn) (.23)

=
(

exp
(

−βHT
A

)

Hα1

A (τ1)
T . . . Hαn

A (τn)
T
)(

exp(−βHB)H
α1

B (τ1) . . . H
αn

B (τn)
)

,

and so

||ρΓA

0 Hα1

A (τ1)
THα1

B (τ1) . . . H
αn

A (τn)
THαn

B (τn)||1 (.24)

= Z−1
0

∣

∣

∣

∣

∣

∣
exp

(

−βHT
A

)

Hα1

A (τ1)
T . . . Hαn

A (τn)
T
∣

∣

∣

∣

∣

∣

1,A

∣

∣

∣

∣

∣

∣
exp(−βHB)H

α1

B (τ1) . . . H
αn

B (τn)
∣

∣

∣

∣

∣

∣

1,B
,

where we introduce the notation that || . . . ||1,A means the trace norm of the given operator considered as an operator
on the Hilbert space of system A, rather than on the full Hilbert space. That is, we normalize the trace norm so that
||I||1,A = dA where I is the identity operator on A and dA is the dimension of the Hilbert space on A. We define
|| . . . ||1,B similarly.
We can bound || exp

(

−βHT
A

)

Hα1

A (τ1)
T . . . Hαn

A (τn)
T ||1,A by writing this as a trace norm of a product of 2n operators:

∣

∣

∣

∣

∣

∣
(Hα1

A )T exp
[

−(τ1 − τ2)H
T
A

]

. . . (Hαn

A )T exp
[

−(τn + β − τ1)H
T
A

]

∣

∣

∣

∣

∣

∣

1,A

and using the same bound as was used to derive Eq. (.17), i.e. either Kristof’s inequality or Hölder’s inequality. We
have a bound ‖Hα

A‖‖Hα
B‖ ≤ J ; we can thus multiply Hα

A by a scalar and Hα
B by the inverse of that scalar so thatwe

have the bound ‖Hα
A‖, ‖Hα

B‖ ≤
√
J . So, we bound the trace norm by || exp

(

−βHT
A

)

||1,AJn/2. We similarly bound
|| exp(−βHB)H

α1

B (τ1) . . . H
αn

B (τn)||1,B So, the left-hand side of Eq. (.24) is bounded by Jn. Summing over α1, ..., αn,
integrating over τ1, ..., τn, the n-th order term in the series for Z

Z0

ρΓA is bounded in trace norm by (JKβ)n/n!.
Summing over n gives

|| ZZ0
ρΓA ||1 ≤ exp(JKβ). (.25)

Combining with Eq. (.18) gives the claimed result.

RELATION TO ENTANGLEMENT ENTROPY

Note that a bound on the log negativity is not implied by a bound on the mutual information for the von Neumann
entropy. Consider a pure state between with Schmidt coefficients Cn. For a pure state, the log negativity is given by
the Renyi entropy of index 1/2, 2 ln(

∑

n Cn). Choose the Schmidt coefficients to decay as Cn = c/n, for 1 ≤ n ≤ N ,
with c chosen as a normalization coefficient. Since

∑

n 1/n
2 converges, c converges to a constant for large N . The

von Neumann entropy and all Renyi entropies Sα for α > 1/2 converge to a constant for large N , but
∑

n Cn diverges
logarithmically in N so the log negativity diverges as ln(ln(N)).
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