
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Percolation thresholds for discrete-continuous models with
nonuniform probabilities of bond formation

Bartłomiej Szczygieł, Marek Dudyński, Kamil Kwiatkowski, Maciej Lewenstein, Gerald John
Lapeyre, Jr., and Jan Wehr

Phys. Rev. E 93, 022127 — Published 18 February 2016
DOI: 10.1103/PhysRevE.93.022127

http://dx.doi.org/10.1103/PhysRevE.93.022127

Percolation thresholds for discrete–continuous models with

non-uniform probabilities of bond formation

Bart lomiej Szczygie l∗

College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences,

University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland

Marek Dudyński†

Modern Technologies and Filtration,

Przybyszewskiego 73/77 lok. 8, 01-824 Warsaw, Poland

Kamil Kwiatkowski‡

Institute of Theoretical Physics, Faculty of Physics,

University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland and

Interdisciplinary Centre for Mathematical and Computational Modeling,

University of Warsaw, Prosta 69, 00-838 Warsaw, Poland

Maciej Lewenstein§

ICFO-Institut de Ciències Fotòniques,

The Barcelona Institute of Science and Technology,

Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain and

ICREA-Institució Catalana de Recerca i Estudis Avançats,

Lluis Campanys 23, 08010 Barcelona, Spain

Gerald John Lapeyre Jr¶

Spanish National Research Council (IDAEA-CSIC), E-08034 Barcelona, Spain and

ICFO-Institut de Ciències Fotòniques,

The Barcelona Institute of Science and Technology,

Av. Carl Friedrich Gauss 3, 08860 Barcelona, Spain

Jan Wehr∗∗

Department of Mathematics, University of Arizona, Tucson AZ 85721, USA

(Dated: January 25, 2016)

1

Abstract

We introduce a class of discrete-continuous percolation models and an efficient Monte Carlo

algorithm for computing their properties. The class is general enough to include well-known discrete

and continuous models as special cases. We focus on a particular example of such a model, a

nanotube model of disintegration of activated carbon. We calculate its exact critical threshold in

2d and obtain a Monte Carlo estimate in 3d. Furthermore, we use this example to analyze and

characterize the efficiency of our algorithm, by computing critical exponents and properties, finding

that it compares favorably to well-known algorithms for simpler systems.

∗ bartlomiej.szczygiel@students.mimuw.edu.pl
† marek.dudynski@mtf.pl
‡ kamil.kwiatkowski@fuw.edu.pl
§ maciej.lewenstein@icfo.es
¶ john.lapeyre@icfo.es
∗∗ wehr@math.arizona.edu

2

mailto:bartlomiej.szczygiel@students.mimuw.edu.pl
mailto:marek.dudynski@mtf.pl
mailto:kamil.kwiatkowski@fuw.edu.pl
mailto: maciej.lewenstein@icfo.es
mailto: john.lapeyre@icfo.es
mailto: wehr@math.arizona.edu

I. INTRODUCTION

Two basic types of percolation models are discrete and continuous percolation [1, 2]. In

the discrete case, a lattice is given and its bonds (edges) are open, or its sites (vertices) are

occupied, with a probability p, which is the relevant parameter of the model. Depending

on the case, we speak of bond percolation or site percolation. The local random variables,

which determine bond openness or site occupations, define global connections and the main

focus of the theory is the phenomenon of percolation, i.e. the appearance of an infinite

cluster (or, in some models: of infinite clusters) of connected bonds or sites. In continuum

models the positions of percolating objects themselves are chosen at random in space and

the connections are determined solely by the realization of the objects [3]. A parameter η

playing a role analogous to p is usually defined as the expected value of the local density

of the objects. We refer to η or p as the model parameter, and use the symbol ρ for the

generalized discrete-continuous case. In the discrete approach, one can also generate the

lattice randomly, and then open all its edges with the same probability, which does not

depend on the random geometry. Classical examples of discrete and continuum percolation

are presented in Fig. 1.

(a) (b)

FIG. 1. (Color online) Examples of discrete (a) and continuum (b) percolation: (a) bond percola-

tion on the square lattice, b) discs in the plane. Clusters are delineated in both cases.

3

However, there are instances when complexities of percolation phenomena are beyond

the scope of these two basic types of percolation model. A simple example is a system of

roads, in which the width of a road is described by the weight of the corresponding edge

and the traffic intensity corresponds to the percolation parameter. In this situation the

probability of a road connection between two points being open is a function of both these

parameters [4, 5]. Another interesting case, the so-called radio tower model [6], is obtained

by modifying the disc percolation model [7]. In this model we first randomly distribute in

the plane points (towers) which become the centers of discs with fixed radius R. No pair

of towers can communicate if they are separated by a distance greater than R, which is the

parameter of the model. We set the probability that a connection (an open bond) exists

between a pair of towers as pbond = max(0, 1− d/R), where d is a distance between the two

points. We look for the critical value of R at which an infinite cluster appears.

These models have two things in common: their geometry is random and the possi-

ble connections in the system are determined by a random variable, whose distribution

is defined by both the geometry and the discrete-continuous model parameter ρ. Mod-

els in this discrete-continuous class are thus described by a random graph with weighted

edges, where the probability of a connection depends both on the model parameter, and on

the weight of edges, dictated by the geometry of the graph realization. The parameter of

discrete-continuous percolation models ρ is more general than in the discrete case. It is not

necessarily in the range [0, 1], or even bounded. It includes R from the radio tower model

and the probability p of a bond connection in discrete percolation models, as well as other

model-specific parameters.

The present paper consists of three contributions. First, we introduce a general frame-

work to describe discrete-continuous percolation. This framework is general enough to in-

clude both standard discrete and continuous models as special cases, as well as hybrid models

such as those mentioned above. Secondly, we use this framework to study tube-based models

of activated carbon that have received attention recently. We calculate the critical threshold

exactly in two dimensions and via Monte Carlo in three dimensions. Finally, we introduce

a highly efficient Monte Carlo (MC) algorithm inspired by the Newman-Ziff algorithm (NZ)

for estimating all the relevant properties of general discrete-continuous percolation mod-

els. This algorithm shares with NZ a union-find algorithm that is practically optimal for

cluster-building [8, 9]. In the discrete-continuous case different bonds are open with differ-

4

ent probabilities. Since in such case the use of the ‘micro-canonical’ approach proposed in

Ref. [9] is difficult at best, we introduce an alternative method that also efficiently simulates

many values of model parameters in a single run.

The particular example of discrete-continuous percolation that we focus on in this paper

consists of parallel random tubes connected randomly by bonds. These models, merging

the characteristics of discrete and continuous percolation, are motivated by the structures

and properties of activated carbon [10, 11]. When charcoal is transformed into activated

carbon, the initial structure (skeleton) of wood, composed of parallel cylinders, persists, but

their walls are transformed into more carbonic compounds. Simultaneously, the microscopic

structure of the walls becomes much more complex. Fine micro-porous substructures [12] are

formed, and lead to a rapid increase of internal surface (specific surface area). If the process

is not stopped, the structure of the material finally breaks down, making it collapse into

fine dust, which burns into a small amount of ash [13, 14]. Several models were developed

to explain the complicated micro-structures observed in charcoal and activated carbon [15].

Most proposed models are based on carbon nanotubes [10, 11, 16, 17], but various other

forms of carbon potentially building such micro-structures were also considered, including

graphene ribbons (Jenkins-Kawamura model), fullerenes (Harris model [18, 19]), stacked

graphite [20] or graphene [15], carbon onions [21]. More concretely, we assume that the

skeleton walls are made of a collection of parallel tubes representing nanopipes of varying

lengths. These nanopipes form an inhomogeneous lattice bound together by amorphous

carbon connections. We assume that during gasification the amorphous carbon is reacting

and the bonds are removed. The bond removal leads to disconnecting more and more

nanopipes, leading to disintegration into small clusters and, finally, to breakdown of the

percolating skeleton.

In order to compute properties of discrete-continuous types of percolation models such as

tube-based model, efficient algorithms have to be developed. To be fully useful, an algorithm

should not only efficiently compute the percolation threshold for inhomogeneous lattices but

also gather other statistics of the process, such as calculating critical parameters and cluster

density distributions. In this paper we present and analyze such an algorithm. We applied

the algorithm to the family of tube-based models, computing their critical parameters and

cluster density distributions in two and three dimensions. We have positively verified the

algorithm by comparison with the exact solutions of the percolation threshold in two di-

5

mensional case. We analyzed its convergence properties, as well as memory and CPU use,

showing them to be similar to the computational costs of NZ.

Of course other lattice-based algorithms may potentially be applied to discrete-continuous

percolation including the well-known Hoshen-Kopelman algorithm or its extended ver-

sions [22–24] and the Leath-Alexandrowicz [25, 26] algorithms. Modern and efficient versions

of these algorithms could indeed be developed for discrete-continuous models. However, an

important requirement for the present study is efficient simulation of several values of ρ in

a single run. The Hoshen-Kopelman algorithm, for instance, is better suited for simulating

extremely large lattices for a single value of ρ.

It has to be stressed that our percolation algorithm is not dependent on the details of

the particular tube model of activated carbon studied here. It can be applied with the same

efficiency to a broad class of inhomogeneous lattices and discrete-continuous percolation

systems that fall within our general framework, such as the radio tower and road network

models mentioned above.

The remainder of the paper is structured as follows. In Sec. II we describe the tube-based

percolation model. In Sec. III we then describe our Monte Carlo algorithm for discrete-

continuous percolation, which allows us to treat the inhomogeneity of the lattice inherent in

our model. In Sec. IV, we validate our algorithm. We compute the exact critical threshold

of the tube model in two dimensions and verify that our algorithm reproduces this value to

high accuracy. We further test the algorithm by computing critical exponents that verify

that the tube model lies in the standard percolation universality class. Finally, we use the

algorithm to obtain new results for the three dimensional problem in Sec. V.

II. PERCOLATION MODEL

We now describe the particular example of discrete-continuous percolation that we will

study in this paper: the tube-based model. To define the model precisely in two-dimensions,

we proceed in three steps:

• we start from n parallel (vertical, for definiteness) lines of length L.

• we use n independent Poisson processes with the same parameter µ1 to divide the

lines into segments, called tubes. That is, the points of the Poisson process are the

6

endpoints of the segments.

• we introduce bonds between each pair of adjacent lines and in this manner the connec-

tions between tubes are established. The bonds are generated by independent Poisson

processes with parameter µ2. In this case the points of the Poisson process determine

the positions of the horizontal bonds.

A sample realization of the tube model is presented in Fig. 2. The three dimensional model

FIG. 2. (Color online) An example of a realization of the two dimensional graph described by a

set of four parameters {L, n, µ1, µ2}.

is defined similarly. First, we introduce a set of lines of length L passing through the points

of a square lattice and perpendicular to plane of this lattice. Then we follow the procedure

for 2D case, dividing lines into segments and generating bonds between each pair of adjacent

7

lines. “Adjacent” is defined here using the nearest-neighbor connections on the underlying

square lattice, so that in the 2D case a line not lying on the boundary has two adjacent lines

while in the 3D case it has four. All Poisson processes in the above definition are assumed

independent of each other (in 2, as well as in 3 dimensions). Thus, the tube model consists of

parallel tubes of random length connected randomly by bonds whose distribution is defined

by the spatial location of the tubes and by the model parameter.

The model is described by four parameters {L, n, µ1, µ2}, defining the size of the model

(L and n), the tubes described by Poisson processes with the parameter µ1 and with bonds

between these tubes generated by independent Poisson processes with the parameter µ2.

Under rescaling of space in the direction of the lines, the resulting graph is equivalent to

the system with parameters {Lµ1, n, 1, µ2/µ1}. We can thus put µ1 := 1 and µ2 = µ, so in

the limit when L and n go to infinity at the same rate the model has only one parameter

µ. It is worth noting that, while µ is a model parameter for tube-based model, it is not a

probability. Such parameters are denoted by ρ in the general discussion, see Sec. III A. For

simplicity, in most of the simulations we put L = n.

By definition, different segments (tubes) of the same line are not connected to each other.

Only tubes lying on adjacent lines may be connected, if one or more open bonds between

them are established. A single open bond is sufficient to connect two tubes. This allows

one to calculate a connection probability pbondi between two adjacent tubes in terms of their

relative position as follows. Two tubes lying on adjacent lines may only be connected if there

is a nonzero overlap hi between their vertical positions as shown in Fig. 3. The probability

that two such tubes are connected by k open bonds is given by the Poisson distribution with

parameter µhi. That is,

P (k) =
e−µhi(µhi)

k

k!
. (1)

Tubes are disconnected (k = 0) with probability P (0) = e−µhi and thus they are connected

with probability

pbond,i = 1 − e−µhi. (2)

We emphasize that the overlap hi depends on the pair of tubes. A sample realization of

the two dimensional model is presented in Fig. 4. Groups of connected tubes form clusters

marked in Fig. 4 by a single color.

8

FIG. 3. (Color online) Redefined graph. The overlap between two adjacent tunes is shown by

intervals between the arrows.

III. THE ALGORITHM

For the convenience of the reader we summarize below the notation used respectively for

general discrete-continuous percolation, for discrete percolation and for the specific tube-

based model:

• ρ, p, µ - model parameter;

• ρc, pc, µc - critical point for infinite lattice, the value of the model parameter above

which, on the infinite lattice, there is an infinite cluster;

• ρcon,k, pcon,k, µcon,k - the value of the model parameter when, upon the k-th sub iteration

of the algorithm, a connection between lattice edges is first made;

• ρav, pav, µav - critical point for finite lattice, the expected value of the model parameter

9

FIG. 4. (Color online) A sample realization of tube-based model with clusters of connected tubes

marked by a single color: the brighter the color the larger the cluster size.

for which connection between lattice edges appears;

• ρ̂av, p̂av, µ̂av - estimator of critical point for finite lattice, a mean value of, respectively,

ρcon,k, and µcon,k;

• ρi, pi, µi - randomly generated value describing for which value of model parameter

i-th bond is open.

A. Percolation threshold

For any percolation model on a square lattice L× L one defines the crossing probability

Π(ρ, L) as the probability that there is a connection between opposite edges (or faces, in 3D

L × L × L the case). The definition of a “connection” is model-dependent. For example,

in the bond percolation model, it is a connected path, consisting of open bonds. In two

10

dimensions there are two such probabilities; we will refer to them as NS (north-south) and

WE (west-east). In three dimensions there is a third possible direction of connection, which

we call top-bottom (TB). The crossing probability depends on the size of the lattice and on

the discrete-continuous model parameter ρ. In bond percolation models, ρ can be chosen

as the open bond density p, but in general it need not represent a probability and its value

need not lie in the interval [0, 1]. In the limit L → ∞, Π converges to 0 for ρ < ρc and to 1

when ρ > ρc. The critical value ρc is called the percolation threshold or the critical point,

and depends on the type of lattice (e.g. square, triangular, etc. [2]). For a finite lattice, the

transition is not sharp and many approximations of the critical point are used. Examples

are the point pc1, where the crossing probability is equal to 0.5 [1, 2], the point where the

slope of Π (as a function of ρ) is largest, or, as used in this paper,

ρav(L) =

∫

ρdΠ
dρ

(ρ, L)dρ. (3)

The factor dΠ
dρ

(ρ, L)dρ can be interpreted as the probability that the graph begins to percolate

for a value of the model parameter in the interval (ρ, ρ+dρ). Thus ρav is the expected value

of ρ at the onset of percolation [2]. Similarly, a measure of the width of the transition region

can be defined as the variance

∆2(L) =

∫

(ρ− ρav)
2 dΠ

dρ
(ρ, L)dρ. (4)

These quantities satisfy the scaling relations [2]

ρav − ρc ∝ L−
1
ν (5a)

∆ ∝ L−
1
ν , (5b)

where ν is the (universal) critical length exponent. For additional results on finite-volume

percolation thresholds, see [27, 28]. This leads to an asymptotic linear relation between

ρav(L) and ∆(L)

ρav = a∆ + ρc, (6)

where a is a proportionality constant. Equation (6) provides a simple method of extrapo-

lating results obtained for finite lattices to the infinite one. It is worth noticing that the

scaling relations (3) - (6) are a discrete-continuous versions of the relations well known from

the discrete percolation models.

11

B. Algorithms for the homogeneous lattice

We first present the simplest, most direct method of computing the critical density, a

modification of which will be used in our algorithm. We consider the bond percolation model

on a regular, homogeneous lattice. In this case, the discrete percolation model parameter

(bond probability) p is identified with ρ from the previous section. We begin by assigning

to each bond i a random number ri, sampled from the uniform distribution on the interval

[0, 1]. To simulate a realization with density p, we open the bonds for which ri ≤ p. We

then check for existence of an open connection between the opposite sides of the lattice.

Applying this with different p (for the same realization of the ri), we find the value of p at

which the connection first forms for a given realization pcon. The consecutive values of p

are selected by a binary search. Repeating the whole procedure K times for different sets

of random numbers ri, we obtain a set of approximate values of pcon,k for k in (1, 2, . . . , K).

This allows us to estimate pav by the empirical mean value of pcon, with empirical variance

∆.

We take a different approach, similar to one taken in NZ. We compute the value of pcon at

which an open connection appears for a given realization in a single run. However, instead

of the ‘microcanonical ensemble’ used in NZ, we use a ‘canonical ensemble’. The main ad-

vantage of our approach is its applicability to more general graphs, where probabilities vary

from bond to bond. We note that the transformation between ‘microcanonical’ and ‘canon-

ical’ ensemble representations is complicated and impractical in implementation. However,

from the point of view of computing the percolation threshold on a homogeneous lattice,

the two algorithms are equivalent, as explained in detail below. Furthermore, our algorithm

shares with NZ the important feature of efficiently simulating many values of the control

parameter in a single run.

Our approach to simulating multiple parameter values in a single run, inspired by a

remark in [1], begins by assigning a random number to every bond, just as in the naive

algorithm described above. To determine pcon (the empirical value of p at which percolation

sets in) consecutive bonds i are opened in order of increasing ri. We refer to this procedure

as “rising water” because, just as one observes rising water covering objects in order of their

height, so the bonds open according to their “height” as the value of p rises. Assuming that

random numbers assigned to different bonds are different, at each stage we obtain the same

12

graph as when using the simplest method described above with p = ri. The algorithm stops

when a connection linking a fixed pair of opposite sides of the square is established. The

estimate of pcon is equal to the value ri of the last added bond. The results of applying the

two algorithms are identical.

Indeed, suppose pcross is the empirical crossing threshold determined by the rising water

algorithm. Then the naive algorithm with the same sequence of ri will also find a connection

for any p ≥ pcross. On the other hand, for p ≤ pcross no connection will be found, which

shows that the two algorithms indeed yield the same result. The procedure described above

is repeated K times, giving a set of results pcon,k for k = 1, 2, . . . , K. The estimator of pav is

p̂av = 1/K
∑K

1 pcon,k.

C. Extension of the algorithm for discrete-continuous percolation

The procedure described above must be modified for more general models in which prob-

abilities of connections depend on both the geometry and the model parameter. In the

simplest algorithm applied to the tube-based model we have to generate random values ri

for all pairs of adjacent tubes and connect a pair of tubes with an overlap hi when the

condition

ri ≥ e−µhi (7)

is fulfilled. Thus, we must compute, for every bond i, the smallest value of model parameter

µ for which (7) is satisfied. We denote this value µi, thus

µi = − ln ri
hi

. (8)

When µ < µi i-th bond is closed, and when µ ≥ µi, it is open. Then, as in the homogeneous

case, we sort the set of µi in increasing order and we open the bonds in the graph in this

order. We estimate the critical value of parameter called µcon by the first value of µi at

which a crossing between two fixed opposite sides of a square forms. In the most general

case, the probability that i-th bond is open is given by relation pbondi = Fi(ρ) where Fi(ρ)

are increasing functions mapping ρ to [0, 1], and each of Fi(ρ) can be a different function.

The value of the model parameter at which the i-th bond is open in a given realization is

ρi = F−1
i (ri). (9)

13

In Table I we compare our discrete-continuous algorithm with NZ.

The important parts of these algorithms are two main operations:

• finding the cluster containing a given site.

• connecting two clusters.

The use of union-find [8, 29, 30] algorithms for cluster identification in percolation dates

back to the first Hoshen-Kopelman algorithm [22]. However, we follow Newman and Ziff by

using an algorithm that is, for practical purposes, optimal. The “union-find” (or “disjoint-

set”) data structure stores information about connections in the form of trees where every

site points either to another site from the same cluster, or to itself. The element pointing

to itself, is the root of the tree and provides the cluster’s identification. To find the cluster

containing a given site, we follow the path indicated by the pointers until we reach the root.

If for two sites we get the same root, both sites belong to the same cluster. To connect

two different clusters we add a pointer between their roots. The most efficient union-find

algorithms have two important features. The first one is to always point from the smaller

tree to the bigger one (“balancing”). It requires storing the information about each cluster’s

size. The second is called path compression: having found the root of an element’s cluster,

we re-track the path from the element to the root again, changing the parent of each site

along the way to the root. Using a union-find data structure makes operations of adding

an edge and checking whether two sites belong to the same cluster very fast. In addition

to the pointer to the parent and size of the subtree, one can store additional information in

each site’s record, such as moment of inertia, position, or the information about the cluster’s

connection to boundaries. The last one is a simple way to check whether the opposite parts of

the boundary are connected. The position of a site can be used to check whether the cluster

is wrapped around the torus. The amortized computational cost of using it is proportional

to the inverse Ackermann function and thus it can be considered as a small constant for

practical purposes [30].

D. Percolation statistics

As shown in Table I (step 4), an important property that our algorithm shares with NZ is

its ability to simultaneously calculate functions of the bond variables of a given configuration

14

for different values of the model parameter ρ. While standard methods need K runs of the

algorithm to compute K values of a model characteristic for a given set of model parameters

ρk (k = 1, . . . , K), in our approach, all values are obtained simultaneously in a single run.

Using union-find and rising water we efficiently obtain many important characteristics of

the model, for example average cluster size, average moment of inertia and so on, with

constant computational cost in every run of the algorithm. Other parameters, such as the

histogram of cluster-size distribution with B bins, can be calculated with an additional cost

proportional to the number of points in the realization (N) and to the number of bins.

We now point out the major difference between our algorithm and NZ. Let us consider a

quantity Q. In NZ we calculate Q[i] which is the value of Q after adding the i-th bond. The

values Q[i] are then averaged over K different realizations, where the value of K depends

on the required accuracy. As the next step we transform the result to the canonical value

Q(ρ) using

Q(p) =
N
∑

n=0

(

N

n

)

pn(1 − p)N−nQ[n]. (11)

In our algorithm we calculate Q[j], the values of Q for a chosen collection of values of model

parameters ρj and, in order to estimate Q at the critical threshold, we take the Q[j] obtained

in the last step of the algorithm (described in Table I as a step 4) for which we had ρ < ρi.

But, if desired we can also collect statistics for other values of ρ as we “raise the water”.

The efficiency of our algorithm in doing so relies on fast updates of Q, using operations on

clusters rather than having to run through the whole graph at each step. For example, we

consider the cluster size. The size sC of cluster C obtained as a union of two clusters A and

B is equal to

sC = sA + sB. (12)

Similarly, for the calculation of the moment of inertia for clusters we use the stored quantities:

sizes of clusters si, masses of clusters mi, centers of mass ri and previous moments of inertia

Ii. For unions of clusters we obtain:

mc = ma + mb (13a)

rc =
rama + rbmb

mc

(13b)

Ic = Ia + Ib + (ra − rc)
2ma + (rb − rc)

2mb (13c)

15

Note that (13c) is the parallel axis theorem (Steiner law). In our method, if we store in

memory information about the clusters, all these operations have only a constant cost per

operation. For example to get a mean value of the moment of inertia we additionally store

in memory the sum of the moments of inertia of the clusters and update this sum.

An important application of the above method is to compute the wrapping probability

RL(p), which is the probability that a cluster wraps around a lattice with periodic boundary

conditions. This probability may be used to approximate pc by the value of p for which RL(p)

is equal to R∞(pc). The last quantity is known exactly in two dimensions [31]. Denoting the

approximate value for the lattice of size L by pLc we have the scaling relation pc−pLc ∼ L−2− 1

ν .

In a vicinity of the critical point, the wrapping probabilities are regular functions and thus

the above procedure yields an efficient estimate. In order to compute the wrapping or

spanning probability (or, more generally, the probability of any increasing event [1]) we just

need to record the unique value of ρcon,k at which the event appears. Sorting these values we

obtain an empirical distribution function which gives the probability of the desired event:

P [ρ] =
♯{ρcon,k ≤ ρ}
♯{ρcon,k}

(14)

E. Critical exponents

When the percolation threshold ρc (µc in tube-based model) is computed, a postprocessing

algorithm gathers statistics about the distribution of clusters (including the size of the largest

cluster, cluster-size moments, cluster-volume moments). These statistics are determined for

ρ in a vicinity of ρc. This allows computing several critical exponents of the model. In

particular the cluster-size distribution near the percolation threshold allows computing the

Fisher exponent τ . The exponent β is computed from the size of the maximal cluster. From

data acquired in the algorithm outlined in Sec. III C exponent ν in (5b) can be computed

using the scaling relation (5b).

16

IV. RESULTS IN THE TWO-DIMENSIONAL CASE

A. Percolation threshold

The simulation was run for several square lattices with size ranging from L = 200 to

L = 10000. The estimators of µav and ∆ were acquired for mutually perpendicular directions,

denoted by NS (North to South) and WE (West to East or left to right). The percolation

threshold for the infinite lattice (L → ∞) was computed by fitting the data to the scaling

properties described by (6) as presented in Fig. 5. The results for the infinite lattice based

on the intercept of the fitted linear function are the following:

µc NS = 0.99999 ± 2.5 × 10−5 (15a)

µc WE = 0.99999 ± 5.0 × 10−5 (15b)

It is worth noting that values µav converge to µc from both directions, as presented in Fig. 5.

The obtained value of µc equal 1 is clearly model-specific, as discussed in Sec. IV B.

B. Duality and exact analytic calculation of µc

We consider a realization of the two dimensional graph defined by {L, n, µ1, µ2} presented

in Fig. 6a. We define the graph dual to the initial one according to the following procedure:

• dual lines are introduced, each line is placed between two existing lines;

• dual lines are divided into tubes (dual tubes) by the bonds of initial graph (vertical

segments marked in Fig. 6b;

• at the break points between initial tubes the dual bonds connecting dual tubes are

introduced (horizontal lines marked in Fig. 6b.

The two graphs, initial and dual, are shown in Fig 6a and c. New tubes and bonds are

distributed in the same way as the original ones, with the two Poisson process parameters

interchanged. Notice that the two graphs have no intersections. We either have a connection

from North to South, using tubes and bonds of the original graph, or we can draw a line

through the empty spaces and breaks between the tubes from West to East, that does not

cross any bonds or tubes. In the latter case, there is a connection from West to East in the

17

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

 0 0.01 0.02 0.03 0.04 0.05

µ

∆

NS data
WE data

NS reg
WE reg

(a)

-25

-20

-15

-10

-5

0

5

10

15

20

 0 0.01 0.02 0.03 0.04 0.05

µ
(1

0−5
)

∆

NS data
WE data

reference

(b)

FIG. 5. (Color online) (a) The percolation threshold computed by studying North-to-South (green

points) and West-to-East (red points) connections. The statistical uncertainty associated with data

points is smaller than their size. In (b) the differences between data points and the fitted line are

shown.

18

(a) (b) (c)

FIG. 6. (Color online) Construction of the dual graph from the original one: (a) the original graph,

(b) the construction and (c) the final dual graph.

dual graph. Similarly, exactly one of the two alternatives occurs: either there is a connection

from West to East by bonds and tubes of the original graph, or there is a connection from

North to South in the dual graph— an unbroken path through empty spaces. A given

realization of the original graph starts to percolate when the dual graph stops percolating,

so µav = µdual
av for a pair of dual graphs. We know that the percolation threshold in the limit

n = L → ∞ depends only on the ratio µ2/µ1. Increasing µ1 results in more (shorter) tubes

and thus makes percolation more difficult, while increasing µ2 makes for more connections

between tubes, which facilitates it. Together with the duality described above, this indicates

that µ2

µ1

= 1, i.e. µc = 1 is the percolation threshold, thus explaining the numerical result

(15a) and (15), and giving further support to our method. We emphasize that a rigorous

proof that the critical value of µ equals 1 requires a more careful argument. The first result

of this type (for the square lattice) was proven in [32]. Simpler arguments developed later

can be found in [1]. They can be adapted to cover the present case as well.

19

C. Critical exponents

Based on the scaling laws in (5a) and (5b) we obtain the correlation length exponent:

ν = 1.345 ± 0.009. The exact value is known to be 4/3. Moreover, the correctness of the

result indicates that relations (5a), (5b) and (6), originally defined for discrete percolation,

are valid also in case of discrete-continuous percolation. In discrete-continuous percolation

the size of a cluster can be characterized in two ways. In the first way, like in the discrete

model, we count the number of sites (tubes) in the cluster. The total number of sites defines

a cluster size. Secondly, we sum the lengths of tubes in the cluster. This value defined

cluster volume. The distributions of these two characteristics are presented in Fig. 7a, and

Fig. 7b.

The Fisher exponent τ is determined from the cluster size distribution presented in

Fig. 7a, as τ = 2.046 ± 0.023. The exact value is 187/91 ≈ 2.054 [2]. This agreement

of the results with the known values of critical exponents supports the validity of the algo-

rithm. Moreover, we show that the slopes of lines fitted in Figs. 7a and b are the same, thus

the values of the Fisher exponent based on cluster size distribution and on cluster volume

distribution are the same.

V. RESULTS IN THREE DIMENSIONS

The simulation was run for cubic lattices with linear size ranging from L = 100 to

L = 400. The estimators of ρav and ∆ were acquired for perpendicular directions, denoted

by NS, WE and TB (top to bottom). As in Sec. IV we used (5b) to compute the percolation

threshold for infinite lattice. The results are as follows:

µc NS = 0.231466 ± 6 × 10−6 (16a)

µc WE = 0.23146 ± 7 × 10−6 (16b)

µc TB = 0.23140 ± 1.2 × 10−5 (16c)

The results obtained by fitting independently three linear functions, as presented in Fig. 8a,

can be improved using the following constraints:

• the lines fitted to the results perpendicular to tubes (NS and WE) have the same slope

and intercept b;

20

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105 106 107 108

n s
, n

or
m

al
iz

ed
 n

um
be

r
of

 c
lu

st
er

s
 c

on
ta

in
s

s
el

em
en

ts

cluster size s

data
regression to linear data

regression with Fisher exponent

(a)

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

10-10 10-8 10-6 10-4 10-2 100 102 104 106 108

n v
, n

or
m

al
iz

ed
 n

um
be

r
of

 c
lu

st
er

s
 o

f v
ol

um
e

in
 [v

,v
+

1]

cluster volume v

data
regression to linear data

regression with Fisher exponent

(b)

FIG. 7. (Color online) Number of clusters: (a) ns - number of clusters of size s per one site. (b)

nv - number of clusters of volume v per unit of volume. Data from 2D grid 15000 × 15000.

21

• the line fitted to the results parallel to tubes (TB) have also the same intercept b.

Thus the improved estimated value of the percolation threshold is:

µc = 0.231456 ± 6 × 10−6 (17a)

It is worth noting that, as in the two-dimensional case, which we discussed in Sec. IV B, the

values µav converge to µc from both directions. This is clearly visible in Fig. 8.

VI. DISCUSSION

A. Computational costs

The three main parts of the algorithm increase computational costs:

• creating the connections (witch includes random number generation),

• sorting them,

• running ‘union’ for every connection.

These three parts have similar run-time costs, each one contributing 10-50 % of the total

simulation time, depending on the size of the simulations. In the 3D case last part is the

fastest, taking 10-15% of the total running time. For a system with N bonds, both the

presented algorithm and the NZ algorithm require generating N random numbers (more

precisely, N − 1 in the NZ case). While in the NZ algorithm the random numbers are used

to generate a random permutation of connections, in our case they determine the values

of pi or µi at which the bonds become open as described in Eq. (8). In addition, while

the NZ algorithm uses the uniform distribution, which can be generated directly, we have

to generate other distributions. This requires computing functions of uniformly distributed

random numbers. In the activated carbon model, we use the logarithmic function. Note,

that in the case of a standard discrete percolation model on a uniform lattice the uniform

distribution is used, and thus no additional computation is necessary. As opposed to the NZ

algorithm, in order to treat inhomogeneous lattices, our algorithm contains an additional

sorting component.

The memory requirement is linear in the size of the graph, like in the NZ algorithm.

The Hoshen-Kopelman algorithm, for instance, is better suited for simulating extremely

22

0.228

0.229

0.230

0.231

0.232

0.233

0.234

0.235

0.236

0.237

 0 0.001 0.002 0.003 0.004

µ

∆

NS data
WE data
TB data
NS reg
WE reg
TB reg

(a)

-15

-10

-5

0

5

10

15

 0 0.001 0.002 0.003 0.004 0.005

µ
(1

0−5
)

∆

NS data
WE data
TB data

reference

(b)

FIG. 8. (Color online) (a) The percolation threshold computed from top to bottom connections

(green points) and from left to right connections (red points). In (b) the differences between data

points and the fitted lines are shown.

23

large lattices for a single value of ρ, because, in this case, its memory requirement scales as

O(Ld−1) but the run time would be comparable to NZ or our algorithm.

B. Computational cost versus accuracy of results

The computational cost of determining an approximate value of the critical point ρav

depends on the size of the lattice and on the desired accuracy of calculation, which can be

expressed in terms of standard deviation ∆(L). Analysis of this computational complexity

allows us to know what accuracy ǫ can be achieved in a given time. The obtained value of

ρav is approximated by the Monte Carlo estimator ρ̂av, which takes into account all runs of

the algorithm:

∆ρ̂av ∝
σρ̂av√
K

(18)

where K denotes the number of repetitions of the rising water algorithm (the second point

in the Table I for our algorithm). Thus ǫ, the final accuracy of ρ̂av, depends on the number

of runs of the algorithm and on the variance ∆(L) as follows:

ǫ =
∆(L)√

K
(19)

From (5b) we know that ∆(L) depends on the size of the domain L. The computational cost

c = KLd log n is proportional to the number K of times the main loop of the algorithm is

repeated and to the cost of a single run (of the order of Ld log n, where d is the dimensionality

of the problem). Thus the computational cost to obtain the result with the accuracy ǫ is

c =
Ld− 2

ν logn

ǫ2
. (20)

The exponent d− 2
ν

depends on the dimension of the problem. For the two-dimensional case

it is 1/2, while in three dimensions it equals approximately 0.72. The logarithmic factor in

the expression for the computational cost (20) is due to sorting of random numbers in step 2c

in Sec. I. One method to avoid this is to use the so-called bucket sort, which is a linear-time

sorting algorithm using information about data distribution [30]. Due to statistical behavior

of the random values ρi we can create a set of disjoint intervals that cover all possible values

of ρi and have approximately the same expected number of random values ρi in each interval.

Let us denote this expected number of random variables in one interval (“bucket”) by M .

For every generated random ρi (i = 1, . . . , N) we can compute in constant time to which

24

bucket it should be assigned. When all numbers are generated and classified, in each bucket

we have a set of M +O
(√

M
)

numbers, and we need to sort it. The computational cost of

generating N random variables and sorting N/M buckets of size M is O(N logM) and it is

linear in N because it is always possible to generate enough intervals to keep M constant.

After that, the cost of running the algorithm K times is

O(KLdα(Ld))

and cost of running the algorithm to get desired accuracy ǫ is

O

(

Ld−2/να(Ld)

ǫ2

)

Here α(Ld) is the inverse of Ackermann function and can be considered constant.

Despite better asymptotic behavior of the bucket sort, it does not give a better perfor-

mance except for very big lattices.

C. Application of algorithm and discrete-percolation models

The presented algorithm has a much wider range of applicability—it can be used for any

bond percolation model in which bonds are open with arbitrary (nonuniform) probabilities.

Such models arise naturally in situations similar to the one studied here, in which realizations

of the model are graphs, built from randomly generated geometric objects in a Euclidean

space in which the probabilities of open bonds depend on the particular graph realization.

With a choice of nanopipes as the main building blocks of the ordered part of carbon

structure our model can be considered as belonging to the family of carbon nanotube (CNT)

bundles models [33–35]. In the present work we limit ourselves to a relatively simple example,

relevant for describing the internal structure of charcoal of activated carbon, but various

aspects of CNT bundles theory indicate possible extensions of our work. Similarly to what is

done in analysis of the properties of the carbon nanotubes immersed in various resins [36], we

can allow nanotubes which are not fully aligned [37]. In addition, we can allow their electrical

properties to vary, part of them being metallic and part semiconducting [38]. Suitable

modifications of the presented algorithm can be applied to these and other generalizations.

It is worth mentioning that the problem of quantum aspects of the carbon activation

process is to a great extent open. This suggests to study quantum versions of the family

25

of the discrete-continuous models discussed in this paper. The interplay of discrete and

continuous aspects may lead to quantitatively novel effects. We note that such quantum

disordered models can in principle be quantum simulated by a system of ultracold atoms (see,

for instance, Ref. [39]): an array of random length 1D Bose condensed gases with controlled

random connections between them.

VII. CONCLUSIONS

In summary, three goals have been achieved in this work:

• We have defined percolation models motivated by the physics of activated carbon.

These models deal with tubes of random length connected by random bonds; as such

they describe well situations in which complicated micro-structures observed in acti-

vated carbon have approximately linear textures: carbon nanotubes or graphene rib-

bons. In cases when the structures are neither 1D nor quasi-1D (fullerenes [18, 19]),

stacked graphite [20], or graphene [15], carbon onions [21]), the concrete models con-

sidered here provide only a “caricature” of the real situation, capturing only qualitative

aspects of the underlying physics.

• We have generalized the above model and have defined a family of discrete-continuous

percolation models extending standard discrete percolation to lattices with inhomoge-

neous connection probability.

• We have presented an efficient algorithm for treating inhomogeneous lattices, especially

including the discrete-continuous family. We have analyzed in detail its computational

costs and found that they are similar to those of the efficient Newman-Ziff algorithm.

• We applied the extended algorithm to the family of models in question, calculating

critical values of the model parameters, critical exponents and cluster density distri-

butions in two and three dimensions.

Possibilities for further studies include: i) applications of the present models to experimental

data, suggesting geometry formed by parallel random tubes/ribbons connected randomly

by bonds; ii) development of concrete models with geometry formed by parallel random

26

flakes/patches connected randomly by bonds; iii) application of the method to such models,

calculation of their properties, and direct comparison with experiments.

ACKNOWLEDGMENTS

We are grateful to R. Ziff for insightful comments on the first version of the paper. This

work has been partially supported by the Iuventus Plus program founded by the Polish

Ministry of Science and Higher Education (IP2014 024373). K.K. acknowledges START

Programme founded by the Foundation for Polish Science (START 063.2014). M.L. ac-

knowledges Spanish MINECO Projects (FOQUS FIS2013-46768 and SEVERO OCHOA

GRANT SEV-2015-0522), ERC AdG OSYRIS, EU IP SIQS, EU STREP EQuaM, and EU

FETPROACT QUIC. J.W. has been partially funded by NSF grant DMS 131271 and a part

of his work on this article was supported by NSF under grant DMS 1440140 while he was

in residence at the Mathematical Sciences Research Institute in Berkeley during the Fall of

2015 semester.

27

[1] G. R. Grimmett, Percolation (Grundlehren der mathematischen Wissenschaften) (Springer:

Berlin, Germany, 2010).

[2] A. Aharony and D. Stauffer, Introduction to percolation theory (Taylor & Francis, United

Kingdom, 2003).

[3] R. Meester and R. Roy, Continuum percolation, Cambridge Tracts in Mathematics, Vol. 119

(Cambridge University Press, Cambridge, 1996).

[4] Z. Wu, L. A. Braunstein, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 96, 148702 (2006).

[5] D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H. E. Stanley, and S. Havlin, Proceedings of the

National Academy of Sciences 112, 669 (2015).

[6] M. Franceschetti, L. Booth, M. Cook, R. Meester, and J. Bruck, Journal of Statistical Physics

118, 721 (2005).

[7] L. Booth, J. Bruck, M. Franceschetti, and R. Meester, The Annals of Applied Probability

13, pp. 722 (2003).

[8] Z. Galil and G. F. Italiano, ACM Comput. Surv. 23, 319 (1991).

[9] M. E. J. Newman and R. M. Ziff, Physical Review E 64, 016706 (2001).

[10] S. Furmaniak, A. P. Terzyk, P. A. Gauden, P. Kowalczyk, and P. J. Harris, Journal of Physics:

Condensed Matter 26, 485006 (2014).

[11] S. Furmaniak, A. P. Terzyk, P. A. Gauden, and P. Kowalczyk, Microporous and Mesoporous

Materials 154, 51 (2012).

[12] H. Marsh, Activated carbon compendium: a collection of papers from the journal carbon 1996-

2000 (Gulf Professional Publishing, 2001).

[13] B. Feng and S. K. Bhatia, Energy and Fuels 14, 297 (2000).

[14] K. Kwiatkowski, K. Bajer, A. Celińska, M. Dudyński, J. Korotko, and M. Sosnowska, Fuel

132, 125 (2014).

[15] M. Pawlyta, Materials Science and Engineering 63, 58 (2013).

[16] P. J. Harris, Journal of Materials Science 48, 565 (2013).

[17] X. Wang, G. Sun, and P. Chen, Frontiers in Energy Research 2, 33 (2014).

[18] P. J. Harris, Chemistry and physics of carbon 28 (2003).

[19] H. Marsh and F. R. Reinoso, Activated carbon (Elsevier, 2006).

28

[20] G. Jenkins and K. Kawamura, Nature 231, 175 (1971).

[21] Y. Chen, C. Liu, F. Li, and H.-M. Cheng, Journal of Porous Materials 13, 141 (2006).

[22] J. Hoshen and R. Kopelman, Physical Review B 14, 3438 (1976).

[23] J. Hoshen, P. Klymko, and R. Kopelman, Journal of Statistical Physics 21, 583 (1979).

[24] J. Hoshen, M. W. Berry, and K. S. Minser, Physical Review E 56, 1455 (1997).

[25] Z. Alexandrowicz, Physics Letters A 80, 284 (1980).

[26] P. Leath, Physical Review B 14, 5046 (1976).

[27] L. Berlyand and J. Wehr, Communications in Mathematical Physics 185, 73 (1997).

[28] L. Berlyand and J. Wehr, Journal of Physics A: Mathematical and General 28, 7127 (1995).

[29] B. A. Galler and M. J. Fisher, Comm. ACM 7, 1963 (1964).

[30] T. H. Cormen, Introduction to algorithms (MIT press, 2009).

[31] H. T. Pinson, Journal of statistical physics 75, 1167 (1994).

[32] H. Kesten, Communications in Mathematical Physics 74, 41 (1980).

[33] H. G. Chae and S. Kumar, Science (2008).

[34] N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. Ma, E. A.

Bengio, R. F. ter Waarbeek, J. J. de Jong, R. E. Hoogerwerf, et al., Science 339, 182 (2013).

[35] A. V. Kyrylyuk and P. van der Schoot, Proceedings of the National Academy of Sciences 105,

8221 (2008).

[36] X. Zeng, X. Xu, P. M. Shenai, E. Kovalev, C. Baudot, N. Mathews, and Y. Zhao, The Journal

of Physical Chemistry C 115, 21685 (2011).

[37] F. Du, J. E. Fischer, and K. I. Winey, Physical Review B 72, 121404 (2005).

[38] F. Xu, Z. Xu, and B. I. Yakobson, Physica A: Statistical Mechanics and its Applications 407,

341 (2014).

[39] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold atoms in optical lattices: Simulating

quantum many-body systems (Oxford University Press, Oxford, 2012).

29

Newman-Ziff Discrete-continuous algorithm

1. create a table Q[1 : N] to store statistic 1. for a given set of values of model parameter psl (where

l = 1, 2, . . .) create a table Q[. . .] to store statistic

2. run K times for k=1:K 2. run K times for k=1:K

a) create a list of all bonds a) create a list of all bonds

b) generate a permutation of connections: ji means that

j-th bond will be added in i-th step

b) assign a random number ri to every connection and

compute value of model parameter pi [µi from (8)] for

which we add the bond. Sort connections in order of

increasing pi. Let ji denote this sorting permutation

c) initialize the list of clusters so that each site is an a

cluster of exactly one site

c) initialize the list of clusters so that each site is an a

cluster of exactly one site

d) for i=1:N do d) for i=1:N do

- look at bond ji connecting sites a and b. If these sites

belong to different clusters A and B, merge both clusters

- look at bond ji connecting sites a and b. If these sites

belong to different clusters A and B, merge both clusters

- check for spanning: for the first occurrence save itera-

tion number i as ik

- check for spanning, for the first occurrence save pi

number as pcon,k

- refresh the statistics in merged cluster and table Q[i] - refresh the statistics in merged cluster and if for any

i, pi−1 ≤ psl < pi, update the statistics Q[psl]

3. compute the percolation threshold using the values

of ik

3. compute the percolation threshold p̂av and its vari-

ance ∆̂av using pcon,k as follows: p̂av = 1

K

∑K

k=1
pcon,k

and ∆̂av =
√

1

K−1

∑K

k=1
(pcon,k − p̂av)2

4. compute the transformation from microcanonical

Q[n] to canonical Q(p) using the following formula

Q(p) =
N
∑

n=0

(

N

n

)

pn(1 − p)N−nQ[n] (10)

TABLE I. Comparison of the NZ algorithm to our discrete-continuous algorithm.

30

L sites bonds time [s] memory

[MB]

50 130045 489934 0.11 10

70 352948 1352669 0.32 36

100 1020056 3959754 0.96 75

150 3420357 13410551 3.57 287

200 8079989 31838507 8.29 566

TABLE II. Mean number of sites (each one requiring one random number, sampled from the

uniform distribution), mean number of bonds (each one requiring a random number sampled from

the exponential distribution), mean running time necessary to compute single value of pcon, peak

value of required memory from whole simulation, for a given lattice size L.

31

	Percolation thresholds for discrete–continuous models with non-uniform probabilities of bond formation
	Abstract
	Introduction
	Percolation model
	The algorithm
	Percolation threshold
	Algorithms for the homogeneous lattice
	Extension of the algorithm for discrete-continuous percolation
	Percolation statistics
	Critical exponents

	Results in the two-dimensional case
	Percolation threshold
	Duality and exact analytic calculation of c
	Critical exponents

	Results in three dimensions
	Discussion
	Computational costs
	Computational cost versus accuracy of results
	Application of algorithm and discrete-percolation models

	Conclusions
	Acknowledgments
	References

