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Abstract
Thermodynamics has recently been extended to small scales with resource theories that model

heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular mo-

mentum, etc. We generalize thermodynamic resource theories to exchanges of observables other

than heat, to baths other than heat baths, and to free energies other than the Helmholtz free

energy. These generalizations are illustrated with “grand-potential” theories that model move-

ments of heat and particles. Free operations include unitaries that conserve energy and particle

number. From this conservation law and from resource-theory principles, the grand-canonical form

of the free states is derived. States are shown to form a quasiorder characterized by free oper-

ations, d-majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate

the work distillable from, and we bound the work cost of creating, a state. These work quantities

can differ but converge to the grand potential in the thermodynamic limit. Extending thermo-

dynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with

one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped

to bridge one-shot theory to experiments.
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I. INTRODUCTION

Advances in small-scale experiments and in quantum information have generated inter-
est in “thermodynamics without the thermodynamic limit.” Recent experiments involve
molecular motors and ratchets [1, 2], optical thermal ratchets [3], the unfolding of one DNA
or RNA molecule [4–7], and nanoscale walkers [8]. Analyses of these experiments feature
thermodynamic concepts such as heat, work, and equilibrium. These concepts are not
well-defined outside the thermodynamic limit of n → ∞ particles. Hence the experimen-
tal advances in single-molecule manipulations invite us to extend thermodynamics to small
scales.

The resource-theory framework developed in quantum information theory has recently
been successfully applied to this problem. Resource theories have been used to calculate
how efficiently scarce quantities can be distilled and transformed via cheap, or “free,” op-
erations [9]. Perhaps the most famous example is the resource theory of pure bipartite en-
tanglement (which we will call “entanglement theory”) [10]. In entanglement theory, agents
distill Bell pairs of maximally entangled qubits, usable to simulate quantum channels, from
partially entangled states via local operations and classical communications (LOCC). Other
resource theories quantify the values of asymmetry [11–13], quantum-computation tools [14],
and information [15–17]. Benefits of the resource-theory framework include its operational
formulation and the explicit modeling of all resources with physical degrees of freedom.

To an agent with access to a heat bath, nonequilibrium states have value because work can
be extracted from them and stored in a battery. Nonequilibrium states’ values have been
quantified with a family of equivalent resource theories, each associated with an inverse
temperature β of the bath [18–23]. We call these resource theories Helmholtz theories, as
the central results involve variations on the Helmholtz free energy F := E − TS.

Many experiments involve baths other than heat baths, involve interactions other heat
exchanges, and are characterized by free energies other than the Helmholtz free energy. The
Gibbs free energy G := E − TS + pV describes processes that occur at fixed temperatures
and pressures, such as tabletop chemical reactions. The grand potential Φ := E−TS−µN
describes heat-and-particle exchanges; and other free energies describe electrochemistry,
magnetic fields, mechanical stress and strain, etc. [24, 25]. Different types of baths (equiva-
lently, different types of interactions, or different free energies) invite modeling by different
families of resource theories. Each family’s constituents correspond to different values of
the bath’s properties. For example, each member of the family of Helmholtz theories cor-
responds to one value of the inverse temperature β. Altogether, the families describing
different baths form an extended family of thermodynamic resource theories amenable to
experimental investigation in the present or near future.

We introduce this extended family in this paper, illustrating the formalism with heat-
and-particle exchanges. In grand-potential resource theories, free operations conserve energy
and particle number. The only states that, if free, prevent such resource theories from being
trivial are shown to be grand canonical ensembles e−β(H−µN)/Z. We derive the grand canoni-
cal ensemble upon establishing rigorously, using the resource-theory formalism, that the free
states in Helmholtz theories are canonical ensembles e−βH/Z. States are shown to form a
quasiorder characterized by a variant of majorization called d-majorization, which is related
to binary hypothesis testing. By exploiting the quasiorder, we calculate the work extractable
from, and bound the work required to create, one copy of a state R = (ρ,H,N), even by pro-
tocols that have a specified probability of failing. The work yield and work cost are shown to
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differ from each other in general, unlike in conventional thermodynamics, as observed in [19].
In the limit as the number of copies of R extracted from or created approaches infinity, the
average work yield and work cost approach the difference Φ(ρ,H,N)−Φ(γρ, H,N) between
the state’s grand potential and the corresponding equilibrium state’s grand potential.

We have structured our results as follows. In the next section, we review the resource-
theory framework and define the family of generalized thermodynamic resource theories. We
will illustrate the family with grand-potential theories. In Sec. III, we deduce the unique
form that free states can assume in these theories. In Sec. IV, we interrelate the quasiorder
of states, the generalized notion of majorization, and binary hypothesis testing. In Sec. V,
we define work in the resource-theory framework and use the quasiorder to determine the
work yield and work cost of creating single instances of arbitrary states. In Sec. VI, we show
that these one-shot work quantities imply asymptotic results similar to traditional thermo-
dynamics. We conclude by discussing possible applications of our generalized framework to
real physical systems.

This work bridges the information-theoretic tool of thermodynamic resource theories to
physical reality. We pave the way for physical realizations, with experimental platforms, of
entropic predictions about small scales.

II. THERMODYNAMIC RESOURCE THEORIES

First, we introduce the resource-theory framework. We define generalized thermodynamic
resource theories, then illustrate them with grand-potential theories.

A. The resource-theory framework

The resource-theory framework models experimental situations in which some physical
transformations between quantum states are difficult, while others are easy [9]. In quantum
optics, for instance, generating coherent states is easy (e.g., using a laser), while generating
number states is difficult. In entanglement theory, classical communication and physical op-
erations on systems possessed by one party each (LOCC) are easy, while quantum operations
on systems distributed amongst multiple parties are impossible. The states that are difficult
to create can be regarded as resources since, with free operations, they can simulate difficult
operations. Given a maximally entangled state, separated parties restricted to LOCC can
implement a quantum channel.

A resource theory is defined by physical operations assumed to be easy, or free. Free
operations include the creation of free states ; all other states are resources. This definition
specifies an ordering of states: States A and B are ordered as A 7→ B if free operations
can create B from A. The ordering 7→ is a quasiorder, satisfying reflexivity (A 7→ A) and
transitivity (A 7→ B and B 7→ C implies A 7→ C). The quasiorder differs from a partial
order: Even if A 7→ B and B 7→ A, A is not necessarily B [26].

Functions of resources that respect the quasiorder, in the sense that A 7→ B implies
f(A) ≥ f(B), are termed resource monotones [17, 21, 27]. Simple sets of monotones com-
pletely characterize the quasiorders in some resource theories, including the resource theories
in this paper. Many monotones have operational interpretations [17, 21].

We are interested only in resource theories whose quasiorders are nontrivial—in which
some transformations between some resources are impossible. When independently specify-
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ing a resource theory’s free operations and free states, we must prevent free states and free
operations from being able, together, to generate arbitrary states.

Having introduced the resource-theory framework, we define generalized thermodynamic
resource theories and illustrate them with grand-potential theories.

B. Generalized thermodynamic resource theories

Requiring that free operations conserve particular physical quantities leads to the ex-
tended family of thermodynamic resource theories. Which quantities are conserved depends
on which physical systems are modeled, as explained in [28]. The Hamiltonian H is con-
served in what we have termed Helmholtz theories. Janzing et al. first defined Helmholtz
theories while investigating the resources required to cool systems, though those authors
did not use the term “resource theory” [18]. More recently, Brandão et al. studied conver-
sions between resources in the asymptotic limit, as the number n of copies of the converted
resource diverges (n → ∞) [20]. Horodecki and Oppenheim extended the analysis of con-
versions beyond the asymptotic limit [19]. The literature about thermodynamic resource
theories has exploded recently: Since the first draft of the present paper was released, co-
herences [29, 30] and correlations have been explored [31]; connections have been drawn to
fluctuation relations [32–34]; and free operations have been generalized [35].

In the grand-potential theories focused on in this paper, free operations preserve total
energy and total particle number. Free states in thermodynamic resource theories such as
grand-potential theories model baths such as heat-and-particle reservoirs. As we shall see in
Section III, the free states must be equilibrium states, such as grand canonical ensembles if
H and N are conserved. If nonequilibrium states are free, the resource theory’s quasiorder
becomes trivial.

We associate different baths, (equivalently, different physical quantities that can be ex-
changed, or, in anticipation of Sec. VI, different free energies) with different families of
thermodynamic resource theories. The family of grand-potential theories models heat-and-
particle exchanges. The resource theories in each family differ only by the values of the
intensive variables that characterize the bath. To specify a grand-potential resource theory,
one specifies an inverse temperature β and a chemical potential µ. (For simplicity, we focus
on systems that contain particles of only one type. To specify a grand-potential theory that
models exchanges of particles of k types, one specifies β, µ1, µ2, . . . , µk.)

Now, let us define the thermodynamic resource theories, their states, and their operations
more precisely. Free operations preserve quantities represented, in conventional thermody-
namics, by extensive variables. These variables are represented by operators that, with
a density operator, define a state. To specify a state R in a grand-potential theory, one
specifies a density operator, a Hamiltonian, and a number operator:

R = (ρ,H,N). (1)

These operators are defined on a quantum state space (Hilbert space) HR. How a physical
system’s bath and interactions translate into intensive and extensive variables that define a
general family of thermodynamic resource theories detailed in [28].

For simplicity, we specialize to states whose operators commute with each other ([ρ,H] =
[ρ,N ] = [H,N ] = 0) and have discrete, finite spectra. (Since the initial release of this paper,
noncommuting operators have been discussed in [28, 36–38].) However, we do not restrict
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the forms of H and N further. We denote the dimension of HR by dR. The density operator
ρ can be represented by a matrix diagonal relative to the eigenbasis shared by H and N .
Such a quasiclassical density operator is fully specified by a vector r, which we shall call
the state vector, of its eigenvalues. Hence we also denote the state by R = (r,H,N). The
ordering of the elements ri in r is discussed in Sec. IV.

The composition of the state R = (ρ,HR, NR) on HR with the state S = (σ,HS, NS) on
HS is defined as

R + S = (ρ⊗ σ,HR +HS, NR +NS), (2)

wherein HR +HS = HR ⊗ 1S + 1R ⊗HS and NR +NS is defined similarly.
As detailed in Section III, free states have density operators whose the probabilities equal

Boltzmann factors. The free states in the grand-potential theory take the form

γ = e−β(H−µN)/Z, (3)

wherein β and µ are real numbers and Z is the normalization factor, or partition function.
We denote free states by G = (γ,H,N) or G = (g,H,N). Each resource R = (ρ,H,N) is
associated with an equilibrium state GR = (γR, H,N), or G = (gR, H,N).

1. Free operations

We call the free operations in thermodynamic resource theories equilibrating operations.
They are defined in our grand-potential example as follows.

Definition 1 (Equilibrating operation). In the grand-potential theory defined by (β, µ), an
equilibrating operation on a state R = (ρ,HR, NR) is any realization of the following three
steps:

(a) the drawing of a free state G = (γ,HG, NG) from the bath;

(b) the performing of a unitary transformation U on R+G, wherein [U,HR+HG] = [U,NR+
NG] = 0; and

(c) the discarding (tracing out) of any subsystem A associated with its own Hamiltonian and
number operator.

The operation is a completely positive trace-preserving linear map of the form

R 7→ R′ = (TrA(U [ρ⊗ γ]U †), HR +HG −HA, NR +NG −NA). (4)

Free operations can mix levels whose energies equal each other and whose particle numbers
equal each other. We call free operations equilibrating operations because (as shown in
Sec. IV) free operations monotonically evolve states toward equilibrium states. Equilibrating

operations induce on states a quasiorder that we denote by R
β,µ7−−→ R′.

In thermodynamic resource theories other than the grand-potential theories we focus on,
free unitaries preserve operators associated with other extensive variables. For example, if a
system has N1 particles of Species 1 and N2 particles of Species 2, [U,N1tot ] = [U,N2tot ] = 0.

Equilibrating operations idealize the operations easily performable by thermodynamic
experimentalists. Experimentalists cannot perform all unitaries that preserve energy, par-
ticular number, etc. Thermal operations were “coarse-grained” to more realistic operations
in [39]. We expect similar coarse-graining to bridge equilibrating operations from idealization
to reality.
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III. UNIQUE FORM OF FREE STATES

The form of equilibrating operations in Definition 1 implies that only grand-canonical
ensembles can be free in grand-potential theories, else the quasiorder breaks down. The
breakdown manifests in two ways.

Theorem 1. Consider any grand-potential resource theory in which each pair (H,N) cor-
responds to exactly one free state G = (γ,H,N). If γ does not have the Boltzmann form of
Eq. (3), then

(a) some resources R can be generated solely with equilibrating operations: G
β,µ7−−→ R, and

(b) equilibrating operations can transform one copy of any state R into one copy of any state

S: R
β,µ7−−→ S.

The proofs appear in Appendix A, but we sketch the main ideas here. First, we derive the
form of the free states in Helmholtz theories.1 Then, we bootstrap from Helmholtz theories
to Theorem 1, which concerns grand-potential theories.

To prove Claim (a), we apply the derivation of the forms of the free states in the resource
theory of nonuniformity [16], which models closed isolated systems [28]. Consider some
energy-and-particle-number eigensubspace SEi,Nj . The free state γ has some weight on
SEi,Nj . If that weight is distributed nonuniformly across the levels in SEi,Nj , free operations
can redistribute the weight arbitrarily across SEi,Nj , generating states not defined as free.
Claim (b) follows from modifying an argument by Janzing et al. [18]. The argument concerns
the “effective temperatures” of the states that can be created from given resources in the
absence of any bath.

These resource-theory derivations of equilibrium ensembles offer operational alternatives
to assumptions such as the Ergodic Hypothesis. According to the Ergodic Hypothesis,
uniform distributions represent equilibrated isolated systems’ states. Such assumptions have
drawn criticism [41, 42], lending operational replacements appeal.

IV. QUASIORDER ON STATES

The quasiorder induced by equilibrating operations on quasiclassical states is equiva-
lent to a generalization of majorization. Veinott defined this generalization first, calling
it d-majorization [43]. Ruch and collaborators (who called d-majorization the mixing dis-
tance) [44, 45] applied d-majorization to physics, as did Uhlmann and colleagues [46, 47]. We
dub this quasiorder in general thermodynamic resource theories equimajorization, because
it is d-majorization relative to equilibrium states.

Definition 2. Let R and S denote states in any grand-potential theory defined by (β, µ). Let
gR and gS denote the corresponding equilibrium states’ state vectors, which contain dR and

1 In [21], the canonical form (e−βH/Z,H) of the free states in Helmholtz theories is argued to follow

from [40]. According to [40], only canonical ensembles are completely passive: No work can be extracted

from canonical ensembles, even from infinitely many, in the absence of other resources. The work extrac-

tion in [40], however, is not formulated as in Helmholtz resource theories. How to translate the result

from [40] into resource theories may not be obvious to all readers. To clarify this subtlety and others,

we derive free states’ forms directly from the resource-theory framework. Around the time our paper was

released, an alternative approach appeared in [21].
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dS elements respectively. R equimajorizes S, written as R �β,µ S, if there exists a dS × dR
stochastic matrix M such that

Mr = s, MgR = gS, and

dS∑
i=1

Mij = 1 ∀j = 1, 2, . . . , dR. (5)

In the resource theory of nonuniformity, which models closed isolated systems, equilibrium
states are microcanonical ensembles: gR = 1

dR
(1, 1, . . . , 1) [16, 17]. Relative to these uniform

states, equimajorization reduces to majorization [27].
Janzing et al. established that the quasiorder on quasiclassical resources is equivalent

to equimajorization in Helmholtz theories [18, Theorem 5]. An alternative proof appears
in [19]. In Appendix B, we extend the proof technique in [18] to grand-canonical theories,
obtaining the following result.

Theorem 2. Let R and S denote states in the grand-potential theory defined by (β, µ).
There exists an equilibrating operation that maps R to S if and only if R equimajorizes S:

R
β,µ7−−→ S ⇐⇒ R �β,µ S. (6)

As mentioned above, sets of resource monotones completely characterize equimajorization
and so characterize the existence of equilibrating operations. One such set consists of the
f -divergences [48–50]. Every convex function f corresponds to an f -divergence

φf (R) =

dR∑
i=1

gi f

(
ri
gi

)
, (7)

wherein gi denotes the ith element of the state vector gR of the equilibrium state as-
sociated with R. Subsets of the f -divergences suffice to characterize equimajorization,
as shown below. Various choices of f lead to well-known functions [51]. For example,

f(x) = x log x and f(x) = − log x lead to the relative entropies D(r||gR) =
∑dR

i=1 rj log(ri/gi)
and D(gR||r). The function f(x) = (xα − 1)/(α − 1) leads to the Rényi divergences

Dα(r||gR) = 1
1−α log

(∑dR
i=1 r

α
i g

(1−α)
i

)
for α ≥ 0.

The Lorenz curve, introduced by Lorenz in economics [52], encodes another complete set
of monotones. Lorenz curves were applied recently to Helmholtz resource theories [19]. In a
grand-potential theory, the rescaled Lorenz curve LR : [0, 1]→ [0, 1] represents the state R.
The curve is the piecewise linear function that connects the points

(tk, LR(tk)) =

{
(0, 0) k = 0(∑k

j=1 gπ(j),
∑k

j=1 rπ(j)

)
k ∈ {1, . . . , dR}

, (8)

wherein π denotes a permutation such that the sequence (rπ(j)/gπ(j))j is non-increasing. In
accordance with [19, 52], we define the rescaled Lorenz curve as a monotonically increasing
concave function. (Different conventions appear elsewhere [27].)

Having defined the f -divergences and the rescaled Lorenz curve, we will state their rela-
tionship with equimajorization. Ruch, Schranner, and Seligman first proved this relationship
for continuous systems [44], using tools from measure theory. Uhlmann proved the relation-
ship more directly, for discrete systems, which we address [46]. By following Uhlmann, we
will prove this proposition in Appendix B:
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Proposition 3. For any states R and S in the grand-potential resource theory defined by
(β, µ), the following are equivalent:

(a) R �β,µ S.

(b) LR(t) ≥ LS(t) for all t ∈ [0, 1].

(c) φfa(R) ≥ φfa(S) for every function fa(t) = max{0, t− a} associated with any a ∈ R.

(d) φf (R) ≥ φf (S) for all continuous convex functions f .

An illustration appears in Fig. 1.

0 1
0

1

t

L
(t
)

R1

R2

R3

G

FIG. 1: (Color online) Rescaled Lorenz curves for three resources (R1, R2, R3) and an
equilibrium state (G). The Lorenz curve encodes the quasiorder on states, as equilibrating

operations can transform R into R′ if and only if LR(t) ≥ LR′(t) t ∈ [0, 1]. Here,

R1
β,µ7−−→ R3 and R2

β,µ7−−→ R3, but R1 and R2 are incomparable. The equilibrium state, having
the linear Lorenz curve LG(t) = t, is at the bottom of the quasiorder.

Having characterized LR in terms of eigenvalues, we explain its relationship with hypoth-
esis testing. The rescaled Lorenz curve is equivalent to the minimal Type II error probability,
cast as a function of the Type I error probability, in an asymmetric hypothesis test. Har-
remoës noted the relationship between Lorenz curves and hypothesis tests [53]; we establish
the relationship more concretely.

An asymmetric hypothesis test is used to distinguish whether a given state is ρ or σ. As
indicated by our notation, hypothesis testing can be defined in quantum contexts. A test can
be thought of as a two-outcome positive operator-valued measurement (POVM) {Q,1−Q}.
If the measurement yields the outcome Q, the state is likely ρ. If the measurement yields
1−Q, the state is likely σ. A Type I error occurs if the state is ρ but 1−Q obtains, so the
state seems likely to be σ. A Type II error occurs if the state is σ but seems likely to be ρ.
The optimal test minimizes the Type II error probability while preventing the Type I error
probability from exceeding some tolerance ε ∈ [0, 1].

The optimal Type II error probability is

bε(ρ||σ) := min
Tr[Qρ]≥1−ε

0≤Q≤1

Tr[Qσ]. (9)
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The condition Tr[Qρ] ≥ 1− ε is called the constraint, and Tr[Qσ] is the objective function.
Equation (9) defines a semidefinite program, a type of convex optimization, which has a
dual form:

bε(ρ||σ) = max
µρ−σ≤τ
µ,τ≥0

{(1− ε)µ− Tr[τ ]} . (10)

The primal and dual forms’ equivalence follows from properties of semidefinite programs [54].
In quasiclassical notation, Q is represented by a matrix, and traces are replaced by sums.

Hypothesis testing can be related to rescaled Lorenz curves as follows. Consider distin-
guishing between the state vector r in the quasiclassical state R = (r,H,N) and the gR in
the equilibrium state GR = (gR, H,N).

Lemma 4. The inverse of ε 7→ bε(r||gR) is the piecewise linear function that connects the
points (LR(tk), 1− tk), wherein tk and LR(tk) define the rescaled Lorenz curve for R. That
is,

(tk, 1− LR(tk)) = (bε(r||gR), ε). (11)

The proof appears in Appendix B.

V. ONE-SHOT WORK YIELD AND COST

Let us quantify the work required to create, and the work extractable from, one copy of
a state R = (r,H,N) via protocols that can fail, as realistic protocols can. Upon motivat-
ing the calculation, we introduce the hypothesis-testing entropy Dε

H, incorporate a failure
probability into equilibrating operations, and define work in thermodynamic resource theo-
ries. Finally, we calculate the extractable work and bound the work cost. Proofs appear in
Appendix C.

Conventional thermodynamics concerns the average work 〈Wgain〉 extractable from, and
the average cost 〈Wcost〉 of creating, states by infallible protocols in the asymptotic limit.
In the asymptotic limit, or thermodynamic limit, infinitely many identical copies of R are
extracted from or created. 〈Wgain〉 and 〈Wcost〉 depend on the Shannon entropy SS, itself an
average:

SS(r) :=
∑
i

ri ln ri = 〈ln ri〉r. (12)

If few copies of a state are extracted from or created, the average cost or yield quantifies
the protocol’s efficiency poorly. Alternatives to SS, called one-shot entropies, quantify effi-
ciencies in information-processing (e.g., [55–59]) and statistical-mechanics (e.g., [19, 21, 60–
63]) problems that involve few systems or trials. In addition to involving finite numbers,
realistic protocols have nonzero probabilities of failing to accomplish their purposes. Failure
probability has been incorporated into one-shot entropies as a parameter ε [54, 55].

One alternative to SS is the hypothesis-testing entropy Dε
H. Dε

H is defined in terms of
the hypothesis test quantified in Eq. (9). The work extractable from, and the work cost of
creating, one copy of a state R will be quantified with Dε

H.
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Definition 3. The hypothesis-testing relative entropy between quantum states ρ and γ is
defined as

Dε
H(ρ||γ) := − ln bε(ρ||γ) (13)

or, equivalently, by bε(ρ||γ) = e−D
ε
H(ρ||γ).

Let us incorporate failure probability and work into thermodynamic resource theories.
A faulty operation is defined as a transformation whose output approximates the desired

output. Operationally, a state R′ approximates a state R if no testing procedure consistent
with quantum mechanics can reliably distinguish the states. For simplicity, we focus on ap-
proximations R′ that differ from R only because of their density operators: If R = (ρ,H,N),
then R′ = (ρ′, H,N). If R′ approximates R, we write R′ ≈ε R and say that R′ is ε-close to
R. (Equivalently, we write ρ′ ≈ε ρ and say that ρ′ is ε-close to ρ.) Since density operators’
distinguishability is related to the trace distance, we define R′ ≈ε R by 1

2
‖ρ′ − ρ‖1 ≤ ε.

We define work in terms of the changing of the energy level occupied by a battery. In
statistical physics and mechanics, work is defined as an integral along a path in real space or
in phase space. Quantum states can follow paths along which work integrals cannot easily
be calculated [64]. Work on and by quantum systems has been defined more operationally in
terms of a “work bit” that has a gap W [19] and in terms of a weight that stores gravitational
potential energy [65]. We define work similarly to [65].

Our battery B is any system that has the following qualities: (a) The energies in the
range accessed by the agent are finely spaced. (b) The battery occupies an energy eigenstate,
being a reliable energy reservoir. By BE, we denote the battery resource (|E〉〈E|, H,N). We
assume βE � 1, for if βE ≈ 1, agents can use the battery’s equilibrium state to drive
processes that require energy E. Such a use would contradict our physical notion of useful
work.

Having defined B, we can define the work extractable from, and the work cost of, a
state transformation. If the battery transitions from BEi to BEf while R transforms into S,
the transformation outputs the work Ef −Ei (which is negative if the transformation costs
work). The ε-work value of a resource R is defined as the greatest W for which

R +BE
β,µ7−−→ε BE+W . (14)

The work cost of ε-approximately creating R is the least W such that

BE+W
β,µ7−−→ε R +BE. (15)

Formally,

W ε
gain(R) = max{W : R +BE

β,µ7−−→ε BE+W , βE � 1} (16)

W ε
cost(R) = min{W : BE+W

β,µ7−−→ε R +BE, βE � 1}. (17)

The simplicity of our battery model facilitates calculations. Realistic features could be
incorporated as follows. First, the battery could occupy a mixed state, or a superposition
of energy eigenstates, at any stage in either protocol. Second, the system and battery could
begin or become entangled. Such entanglement could be analyzed as in [66]. Frenzel et
al. point out that a classical field is often assumed to raise and lower a quantum system’s
energy levels. But fields are not classical and become entangled with the system. A battery
might become entangled similarly.

Having defined work, we state the work value, and bound the work cost, of R.
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Theorem 5. The ε-work value of a state R = (r,H,N) associated with the free state GR =
(gR, H,N) is

W ε
gain(R) = 1

β
Dε

H(r||gR). (18)

The work cost of creating an ε-approximation to a state R is bounded by

max
δ∈(0,1−ε]

[
1
β
D1−ε−δ

H (r||gR)− 1
β

log
(

1
δ

)]
≤ W ε

cost(R) ≤ 1
β
D1−ε

H (r||gR)− 1
β

log
(

1−ε
ε

)
. (19)

A proof appears in Appendix C. Each expression in the theorem contains an entropy
Dε

H(r||gR), for some error probability ε. The factor 1
β

introduces dimensions of energy. Each

bound contains a logarithmic correction.
Theorem 5 bounds optimal efficiencies. Thermodynamic optima tend to characterize

physically unrealizable processes. Example processes include quasistatic, or infinitely slow,
evolutions. Experiments cannot proceed infinitely slowly. What implications can Theorem 5
have for real physical processes? As a process is performed increasingly slowly, its efficiency
is expected approach our predictions. A similar approach has been reported in [67]. Koski
et al. erased a bit of information repeatedly. As the erasure’s speed dropped, the amount
of heat dissipated dropped to near the Landauer limit.

VI. WORK YIELD AND COST OF MANY COPIES OF A RESOURCE

From the previous section’s one-shot work quantities, we can recover results reminis-
cent of traditional thermodynamics and can compare how W ε

gain differs from W ε
cost as the

thermodynamic limit is approached. We denote n copies of R = (r,H,N) by R⊗n =
(r⊗n,

∑n
i=1 Hi,

∑n
i=1Ni). In the thermodynamic limit, or asymptotic limit, n → ∞. Also

in the limit, we show, W ε
gain(R⊗n) and W ε

cost(R
⊗n) tend to the difference between the grand

potential of R and the grand potential of the associated equilibrium state GR. As the
thermodynamic limit is approached, W ε

gain(R⊗n) and W ε
cost(R

⊗n) differ by terms of order√
n.
To derive the thermodynamic limits of Eq. (18) and Ineqs. (19), we invoke the Asymptotic

Equipartition Property of Dε
H [54]:

lim
n→∞

1

n
Dε

H(r⊗n||s⊗n) = D(r||s) ∀ε ∈ (0, 1), (20)

wherein r = (r1, r2, . . . , rd) and s = (s1, s2, . . . , sd) denote probability distributions over the
same alphabet. We have used the definition

D(r||s) :=
d∑
i=1

ri ln

(
ri
si

)
(21)

of the relative entropy, defining 0 ln 0 = 0 [68].
Applying Eq. (20) to Eq. (18) and to both sides of Ineqs. (19) yields

lim
n→∞

1

n
W ε

gain(R⊗n) = lim
n→∞

1

n
W ε

cost(R
⊗n) =

1

β
D(r||gR). (22)
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In the asymptotic limit, the bounds in Ineqs. (19) converge. All strategies of work extraction
and state formation, from risky (ε ≈ 1) to conservative (ε ≈ 0), become equivalent.

To understand Eq. (22) further, we invoke the definition of the relative entropy:

1

β
D(r||gR) =

1

β

∑
i

ri

(
ln ri − ln

e−β(Ei−µni)

Z

)
(23)

= 〈H〉r − T · kBSS(r)− µ〈N〉r + kBT lnZ (24)

= Φβ,µ(R)− Φβ,µ(GR). (25)

Recall that Φ := E − TS − µN denotes the grand potential, and −kBT lnZ denotes the
equilibrium state’s free energy, in conventional thermodynamics. Using one-shot information
theory, we have recovered the convergence, in the asymptotic limit, of a state’s average work
cost and average work yield to a difference between free energies.

Equation (22) implies that all resources can be reversibly converted into one another in
the asymptotic limit. For any states R and S and for fixed ε, there exists an ngreat enough

that R⊗n
β,µ7−−→ε S

⊗mn for some mn ≥ 1. To create mn copies of S from n copies of R, one
extracts all the work possible from R⊗n, then constructs (S⊗mn)′ ≈ε S⊗mn from the work.
We define the optimal asymptotic conversion rate R(R 7→ S) as the asymptotic limit of
the supremum of the rates mn/n achievable by conversion protocols that approximate the
desired output arbitrarily well in the asymptotic limit (protocols for which ε → 0). This
rate is

R(R 7→ S) =
D(r||gR)

D(s||gS)
. (26)

Thus, all nonequilibrium states can be reversibly converted into each other in the asymp-
totic limit. This result may be surprising. One might have thought that resourcefulness
can be “locked” into one form—energy, particle number, or information—preventing an R
whose resourcefulness manifests in energy from transforming into an S whose resourcefulness
manifests in particle number. Apparently, such locking does not occur. This asymptotic
reversible convertibility resembles that in Helmholtz theories [20] and in the nonuniformity
theory [15, 16]. Asymptotic reversible convertibility in general resource theories is discussed
in [69].

The Asymptotic Equipartition Theorem dictates the leading order (order-n) behavior of
Dε

H; a more-refined analysis reveals the next-leading-order terms. Applying techniques from
information theory, we show in Appendix D that the latter terms are of order

√
n:

W ε
gain(R⊗n) =

1

β
[nD(r||gR)−O(

√
n)], and (27)

W ε
cost(R

⊗n) =
1

β
[nD(r||gR) +O(

√
n)]. (28)

As one might expect, the work cost W ε
cost(R

⊗n) lies above the thermodynamic value, whereas
W ε

gain(R⊗n) lies below. This discrepancy contrasts with conventional thermodynamics, ac-
cording to which a reversible cycle can extract work from R and use that work to recreate R.
Outside the thermodynamic limit, such reversible cycles are impossible. The resource-theory
framework refines the Second Law of Thermodynamics, as discussed in [21].
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VII. CONCLUSIONS

We have extended the resource-theory formulation of thermodynamics beyond heat baths.
Earlier thermodynamic resource theories model heat exchanges; but many physical systems
exchange heat, particles, volume, magnetization, and other observables. We model these ex-
changes with a set of families of thermodynamic resource theories. Each family corresponds
to one one free energy, one type of interaction, and one type of bath.

To illustrate mathematical results, we focused on grand-potential theories, whose free
operations conserve energy and particle number. We showed, using resource-theory princi-
ples, why free states must be grand canonical ensembles. We characterized the quasiorder
on states by an extension of majorization, here termed equimajorization. We showed that
equimajorization can be formulated in terms of rescaled Lorenz curves and of the optimal er-
ror probability in asymmetric hypothesis testing. The hypothesis-testing entropy was shown
to be proportional to the amount of work extractable from a state R and to bound the work
cost of creating R. In the asymptotic limit n→∞, W ε

gain(R⊗n) and W ε
cost(R

⊗n) were shown
to converge to a difference Φ(R)−Φ(GR) between grand potentials. The convergence rates
were shown to differ on the order of

√
n. In the limit, all states were shown to be reversibly

interconvertible.
Opportunities for bringing these resource theories closer to experiments remain. Exam-

ples include the finite sizes of heat baths, catalysts (ancillas that facilitate transformations
while suffering no or little degradation), limitations on how much of a resource can be ex-
changed, and the speeds with which transformations can be implemented. In the presence of
an infinitely large heat bath and enough work, every resource R can be converted into every
other. As the number n of copies R grows large, the size of the required bath scales only
superlinearly with n [20]. A finite-sized bath limits the resource hierarchy, possibly spoiling
the interconvertibility of all resource states. The effects of the bath’s finiteness might be
incorporated as in [70], which concerns the cost of erasing with a small bath (albeit outside
the resource-theory framework). Another open question concerns how finite-sized catalysts
affect the work cost of resource interconversion [21]. Finally, the optimal efficiencies in the
present paper might characterize only quasistatic—infinitely slow—protocols. Realistic pro-
tocols proceed at finite rates. Extensions of our results to finite speeds may draw inspiration
from [71, 72]. As noted in the final reference, finite speeds relate directly to the density of
accessible bath levels.

Generalized thermodynamic resource theories open a host of realistic thermodynamic
systems to modeling with resource theories. Particular physical platforms call out for mod-
eling: heat-and-particle exchanges, electrochemical batteries, chemical reactions, etc. As
thermodynamic potentials other than the Helmholtz free energy F characterize common
experiments, generalized thermodynamic resource theories offer opportunities for realizing
one-shot statistical mechanics experimentally.
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VIII. APPENDICES

Below, we prove claims, presented above, about grand-potential theories. We derive the
grand-canonical forms of free state vectors; describe the quasiorder; calculate the work W ε

gain

extractable from, and bound the work W ε
cost required to create, one copy of a state; and show,

via second-order asymptotics, that W ε
gain does not always equal W ε

cost.

Appendix A DERIVATIONS OF FREE STATES’ FORMS

A Proof of Theorem 1(a)

The state vectors of the free states in grand-potential theories are shown to be grand
canonical ensembles. We first review the derivation, in [16], of the forms of the free states in
the resource theory of nonuniformity, which models closed isolated systems [28]. From the
nonuniformity result, we deduce the canonical form of the free states in Helmholtz theories.
From the Helmholtz result, we bootstrap to grand-potential theories.1

Free operations in the nonuniformity theory are called noisy operations. Each noisy
operation consists of three steps: Any free state u (whose form is to be derived) can be
created, any permutation π can be implemented, and any subsystem A can be discarded
(marginalized) [15–17]:

r 7→
∑
A

π(r ⊗ u). (29)

Resource states are defined here as states that are not free u’s (or, in general thermodynamic
resource theories, states that are not free G’s) that appear explicitly in the definition of free
operations. A resource theory is trivial if its free operations alone can generate resource
states.

As shown in [16], the free states must be uniform probability distributions, lest the
nonuniformity theory be trivial. (Indeed, the quasiorder of resources becomes trivial: From
enough copies of any state, free operations can generate any other state.) The free states’
form is derived as follows [16]: Suppose that some nonuniform state u0 is free. By Shannon
compressing many copies of u0 [73], agents can create pure states (1, 0, 0, . . . , 0) for free.
Via noisy operations, agents can create noise for free. Able to generate purity and noise,
free operations can generate arbitrary states. Only if all free states are uniform is the
nonuniformity theory nontrivial.

General thermodynamic resource theories contain the nonuniformity theory as a special
case. In grand-potential theories, for example, free operations can arbitrarily permute levels
within each sector SE,N that corresponds to one energy E and one particle number N . Hence
the weight that each free state has on a sector SE,N is distributed uniformly across the levels
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in SE,N . We call this uniformity the uniform-eigensubspace condition. The condition is
defined in Helmholtz theories as follows.

Definition 4. Let R = (r,H) denote a state in any Helmholtz theory, wherein r =
(r1, . . . , rd). R obeys the uniform-eigensubspace condition if, for every degenerate eigenvalue
E of H, all the ri associated with E equal each other.

Let us apply the nonuniformity-theory argument to the uniform-eigensubspace condition.

Proposition 6. The free states in each thermodynamic resource theory obey the uniform-
eigensubspace condition. If the free states disobeyed the condition, there would exist resources
R that equilibrating operations alone could generate: G 7→ R.

Suppose that free states disobeyed the uniform-eigensubspace condition. Each free state’s
state vector g would have some weight p on each sector S that corresponds to some energy,
some particle number, etc. Equilibrating operations could distribute p arbitrarily across the
levels in S but could not change the value of p.

The uniform-eigensubspace condition implies the following three lemmas, which complete
our derivation of the canonical form of the free states in Helmholtz theories.

Lemma 7. Let H1 and H2 denote any Hamiltonians that share an energy gap ∆ (and whose
spectra are discrete). Let E1 and E1 + ∆ denote eigenvalues of H1, and let E2 and E2 + ∆
denote eigenvalues of H2. Define G1 = (g1, H1) as a Helmholtz-theory state whose weights
on E1 and E1 +∆ are g1(E1) and g1(E1 +∆). Define G2 = (g2, H2), g2(E2), and g2(E2 +∆)
analogously. If G1+G2 satisfies the uniform eigensubspace condition, the ratio of the weights
depends only on the gap:

g1(E1 + ∆)

g1(E1)
=
g2(E2 + ∆)

g2(E2)
. (30)

Proof. The eigenenergy E1 + E2 + ∆ of G1 + G2 has a twofold degeneracy. Since G1 + G2

satisfies the uniform eigensubspace condition, the weight of g1 ⊗ g2 on one degenerate level
equals the weight on the other:

g1(E1)g2(E2 + ∆) = g1(E1 + ∆)g2(E2). (31)

Since E1 and E2 are arbitrary, each ratio of probabilities depends only on ∆; the other
details of H1 and H2 are irrelevant.

Lemma 8. Let G = (g,H) denote any free Helmholtz-theory state that has weights g(E) and
g(E + ∆) on either side of an energy gap ∆. The ratio of the weights varies exponentially
with the gap:

g(E + ∆)

g(E)
= e−β∆, (32)

wherein β ∈ R.

Proof. Consider a state G = (g,H) that has three energies separated by gaps ∆:

H = E|1〉〈1|+ (E + ∆)|2〉〈2|+ (E + 2∆)|3〉〈3|+
d∑
i=4

Ei|i〉〈i|. (33)
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Let us apply Lemma 7 to two copies of G, defining E1 = E and E2 = E+ ∆. Equation (30)
becomes

g(E + 2∆)

g(E + ∆)
=
g(E + ∆)

g(E)
=: f(∆), (34)

which implies

[f(∆)]2 =
g(E + 2∆)

g(E + ∆)

g(E + ∆)

g(E)
=
g(E + 2∆)

g(E)
= f(2∆). (35)

This scaling implies that, if f is continuous, it is an exponential:

f(∆) = e−β∆ (36)

for some β ∈ R. (The realness of β follows from the probabilities’ realness.)
Let G′ denote any free state that has the same gap ∆ as G. The composition G + G′

obeys the uniform-eigensubspace condition. Hence G′ satisfies Eq. (36), by Lemma 7, even
if G′ does not have the form in Eq. (33).

Lemma 9. All the gaps in all the free states in any given Helmholtz theory correspond to
the same β.

Proof. Let G = (g,H) and G′ = (g′, H ′) denote free states in some Helmholtz theory. Let
∆ denote a gap in H; and let ∆′ = n∆, wherein n denotes a positive integer, denote a gap
in H ′. We wish to show that g and g′ correspond to the same β. The proof will be extended
to rational proportionality constants, then to arbitrary constants.

Some free state G′′ = (g′′, H ′′) has p > n equally spaced levels E,E + ∆, . . . , E + p∆.
For example, G′′ might denote a harmonic oscillator. This G′′ will serve as a thermometer
that interrelates the temperatures of G and G′. Let E1 = E and E2 = E + m∆ for any
m ∈ {1, 2, . . . , p}. By an argument like the one used to prove Lemma 8,

f(m∆) :=
g′′(E +m∆)

g′′(E)
(37)

=

[
g′′(E + ∆)

g′′(E)

]m
(38)

=: f(∆)m, (39)

wherein g′′(E + k∆) denotes the weight on level k.
Consider substituting m = n and ∆ = 1

n
∆′ into the left-hand side (LHS) of, f(m∆) =

f(∆)m:

f(∆′) = f (∆)n . (40)

We have related the ratio of the weights across the gap of G′ to the ratio of the weights
across the gap of G. That is, we have related the temperature of G′ to the temperature of
G.

Now, suppose that ∆′ = m
n

∆. Consider substituting m∆ = n∆′ into the LHS of
f(m∆) = f(∆)m: f(n∆′) = f(∆)m. This equation’s LHS also equals f(∆′)n, by Eq. (39).
Equating the two expressions for f(n∆′) yields

f(∆′) = f(∆)m/n. (41)
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We have related the temperature of G′ to the temperature of G, effectively by considering
multiple copies of each state.

Finally, suppose that ∆′ = α∆, wherein α denotes an irrational number. α can be
approximated arbitrarily well by a ratio m/n. Arbitrarily many copies of G and G′ relate
the temperature of G to that of G′ via Eq. (41).

Lemmas 7-9, with the normalization condition, imply that the free states in Helmholtz
theories are canonical ensembles. This result will facilitate our proof of Theorem 1 about
grand-potential theories.

Theorem. Consider any grand-potential resource theory in which each pair (H,N) corre-
sponds to exactly one free state G = (g,H,N). If g is not a grand canonical ensemble, some

resources R can be generated solely with equilibrating operations: G
β,µ7−−→ R.

Proof. First, we show that each element of g has the form e−β(Ei)Ei+α(nj)nj/Z, wherein β(Ei)
and α(nj) denote functions of the energy and particle number. Second, by comparing the
grand-potential theory with Helmholtz theories, we will show that β and α are constant
functions.

Consider the most general state vector associated with H and N . Each element has
the form e−β(Ei)Ei+α(nj)nj+f(Ei,nj)/Z, wherein f denotes some function and Z normalizes
the state. Recall that every Helmholtz-theory problem can be decomposed into single-
energy lemmas that are equivalent to nonuniformity-theory problems. Likewise, every grand-
potential–theory problem can be decomposed into lemmas that feature just one nj apiece
and that are equivalent to Helmholtz-theory problems. Therefore, the elements of g that
correspond to the same n must form a canonical ensemble. (Rather, they would form
a canonical ensemble if normalized appropriately.) These g elements could not form a
canonical ensemble if f depended on energy nontrivially. Hence f(Ei, nj) = f(nj). By an
analogous argument, f cannot depend on nj. Hence f is a constant, and each element of g
has the form e−β(Ei)Ei+α(ni)ni/Z.
G could feature in a problem in which every number operator is trivial: N = 0. Such a

problem is equivalent to a problem in a Helmholtz theory. In each Helmholtz theory, all free
states share a β that is a constant function of energy. This β must characterize the grand-
potential theory. Analogously, all free states in the grand-potential theory share an α ∈ R.
Hence each element of g has the form e−βEi+αnj/Z. Define µ ∈ R such that α = −βµ.

B Proof Sketch of Theorem 1(b)

Here we provide a proof sketch for Theorem 1(b). For simplicity, we consider a Helmholtz-
theory context. We must show that, if the free states do not have the Boltzmann form, the
quasiorder on states is trivial: Any state can be created from any other by equilibrating
operations. We follow an argument by Janzing et al. [18] about the effective temperatures
present in many copies of a non-Boltzmann state. These effective temperatures can be used
to cool a qubit.

Consider the transformation of R = (r,H) into S = (s,H). It suffices to operate suc-
cessively on pairs of levels, such as the first and the jth. An equilibrating operation of the
following form converts rj/r1 into sj/s1. Let Ej denote the gap between the two levels. Fol-
lowing [18, Sec. 3], we suppose that we have access to a free state on three levels, separated
by gaps Ej, the probabilities on which are not Boltzmann-weighted. As shown by Janzing
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et al., the product of n → ∞ copies of this free state contains pairs of levels, separated
by Ej, characterized by essentially any desired relative probability pj/p1. Two levels of the
resource-and-free-state composite are degenerate. One degenerate level is the product of the
resource’s lower level and the free state’s upper level; the other degenerate level consists of
the reverse. Swapping the degenerate levels is an equilibrating operation. Easy calculation
shows that the swap transforms the resource’s probabilities into

r′j = rj + δ and r′1 = r1 − δ, wherein δ = r1pj − rjp1. (42)

If pj +p1 = 1, any relative probability r′j/r1 could be reached by appropriate choice of pj/p1.
Generally, pj + p1 is very small (exponentially small in n in the Janzing et al. example).
Hence the relative weights of the levels in R can be changed by only a tiny amount. Repeat-
ing the procedure sufficiently many times, however, yields the desired relative probability
sj/s1. Unless the free state has Boltzmann weights, therefore, the quasiorder induced by
equilibrating operations is trivial.

Appendix B QUASIORDER PROOFS

Let us prove three statements, introduced in Sec. IV, about the quasiorder on states:
Theorem 2, Proposition 3, and Lemma 4.

Theorem (2). Let R and S denote states in the grand-potential theory defined by (β, µ).
There exists an equilibrating operation that maps R to S if and only if R equimajorizes S:

R
β,µ7−−→ S ⇐⇒ R �β,µ S. (43)

Proof. This proof is adapted from the proof of [18, Theorem 5], a Helmholtz-theory analog
of our Theorem 2.2 Let R = (r,HR, NR) and S = (s,HS, NS). By dR and dS, we denote the
numbers of elements in r and s. By GR = (gR, HR, NR) and GS = (gS, HS, NS), we denote
the equilibrium states associated with R and S. We begin with the easier part of the proof,
showing that the existence of an equilibrating operation implies equimajorization.

Assume that some equilibrating operation maps R to S:

R
β,µ7−−→ (E(R), HS, NS) = (S,HS, NS). (44)

Let v = (v1, . . . , vdR) denote any vector that contains dR elements. The dR × dS matrix M
that implements E can be defined by

Mv = E(v). (45)

By the definition of E , Mr = s. Since equilibrating operations map equilibrium states to
equilibrium states, MgR = gS. We can see as follows that M is stochastic: If v represents a
(normalized) state,

∑
i vi = 1. Equilibrating operations preserve normalization, so

1 =

dR∑
i=1

[E(v)]i =

dR∑
i=1

[Mv]i, (46)

2 An alternative approach to the Helmholtz-theory analog appears in [19].
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wherein [w]i denotes the ith element of any vector w. Mapping normalized vectors to nor-
malized vectors, M is stochastic. By Definition 2, R �β,µ S.

Now, we proceed to the converse claim. Assume that R �β,µ S. One can prove that some
equilibrating operation maps R to S by augmenting three lines in the proof of Theorem 5
by Janzing et al. [18]. After outlining the latter proof, we explain how to augment it.

Janzing et al. define a particular energy-preserving transformation implemented with a
heat bath; consider the limit as the bath’s size approaches infinity; and show that, in the
limit, the transformation converts the initial state into the equimajorized state. Blending
their notation with ours, we denote the initial state by (p,Hp), the final state by (p̃, Hp̃), and
the associated equilibrium states by (g,Hp) and (g̃, Hp̃). The Hamiltonian Hp has l levels,

and Hp̃ has l̃ levels.
Janzing et al. consider the set Sn of pure eigenstates of Hp + Hn

p + Hn
p̃ + Hp̃, wherein

Hn denotes n copies of H. Each state in Sn is characterized by two length-(n + 1) strings.

Each letter in the first (second) string is a number between 1 and l (l̃) that indicates on
which energy level of Hp (Hp̃) the state’s weight lies. Denote by ui ∈ [0, n + 1] the number
of times that i ∈ [1, l] appears in the first string; and by vj ∈ [0, n+ 1], the number of times

that j ∈ [1, l̃] appears in the second string. If two states in Sn correspond to the same pair

u = (u1, u2, . . . , ul) and v = (v1, v2, . . . , vl̃), (47)

the states correspond to the same energy. (u and v are called r and s in [18].)
A permutation πn : Sn → Sn is defined in terms of the matrix assumed to map p to p̃.

Because πn maps each input to an output that has the same (u, v), πn conserves energy. πn
is applied to the probability distribution Pn defined by p⊗g⊗n⊗ g̃⊗n⊗ g̃. A set Tn of typical
(u, v) tuples is defined in terms of Pn and the limit n → ∞. In this limit, Janzing et al.
show, πn maps Pn to the distribution defined by g ⊗ g⊗n ⊗ g̃⊗n ⊗ p̃.

To adapt this Helmholtz proof to grand-potential theories, replace p, p̃, g, and g̃ with r,
s, gR, and gS. If two states in Sn correspond to the same (u, v), they correspond not only to
the same energy, but also to the same particle number. Just as πn conserves energy, it con-
serves particle number. The rest of the proof in [18] shows that, from the equimajorization
condition, an equilibrating operation can be constructed.

The proof technique used above extends from grand-potential theories to thermodynamic
resource theories in which extensive-variable operators other than H and N commute with
each other [28]. Before proceeding to Proposition 3, we establish Lemma 4 for convenience.

Lemma (4). The inverse of ε 7→ bε(r||gR) is the piecewise linear function that connects the
points (LR(tk), 1− tk), wherein tk and LR(tk) define the rescaled Lorenz curve for R:

(LR(tk), 1− tk) = (bε(r||gR), ε). (48)

Proof. Let π denote a permutation such that the sequence (rπ(k)/gπ(k))k is nonincreasing.
Let Rm :=

∑m
k=1 rπ(k) and Gm :=

∑m
k=1 gπ(k) for all m ∈ {1, 2, . . . , dR}, wherein dR denotes

the number of elements in r. For m = 0, define R0 = G0 = 0. The points that define the
rescaled Lorenz curve are (Gm, Rm) for m ∈ {0, 1, . . . , dR}. To prove the claim, we first
show that (Gm, 1−Rm) equals the (bε(r||gR), ε) associated with an optimal hypothesis test
for each m. Then, we show that optimal tests interpolate linearly between the points.

We begin with m = 0. The optimal test for ε = 1 is Q = 0; thus, b1 = 0. Hence
(b1, 1) = (0, 1) = (G0, 1−R0). Now, consider the hypothesis test for an εm = 1 − Rm for
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which m 6= 0. Define Qm as a dR×dR matrix that projects onto the m values of k for which
rπ(k)/gπ(k) is greatest. Operation by Qm on a vector v preserves the part of the support of v
that lies on these m values of k and maps all other elements of v to zero. As

∑
i[Qmr]i = Rm,

Qm is a feasible measurement element in the primal definition of bεm [Eq. (9)].3 Therefore,

bεm(r||gR) ≤
∑
i

[QmgR]i = Gm. (49)

To show that equality holds, we consider the dual problem in Eq. (10). A feasible pair4

(µm, τm) that satisfies the constraint µmr − gR ≤ τm is given by defining µm such that
rπ(m+1)/gπ(m+1) ≤ 1/µm < rπ(m)/gπ(m) and τm =

∑m
k=1

(
µmrπ(k) − gπ(k)

)
eke

T
k , wherein ek

denotes the unit vector that has exactly one nonzero element, which corresponds to the
[π(k)]th energy–and–particle-number level, and the superscript T denotes the transpose.
Evaluating Eq. (10) shows that the two contributions dependent on µm cancel, by 1 −
εm = Rm and by the definition of Rm. Hence bεm(r||g) ≥ Gm. Combining this result with
Ineq. (49), shows that

bεm(r||gR) = Gm. (50)

Now, consider a Type I error for which εm ≥ ε ≥ εm+1. Set λ ∈ (0, 1) such that

1− ε = (1− λ)(1− εm) + λ(1− εm+1). (51)

Note that (1− ε) = (1− εm) + λrπ(m+1). Since ε 7→ bε(r||gR) is convex,

bε(r||gR) ≤ (1− λ)bεm(r||gR) + λbεm+1(r||gR). (52)

Let us show that Ineq. (52) holds if the inequality is reversed. In the dual problem, if
µ = gπ(m+1)/rπ(m+1) and τ =

∑m
k=1

(
µrπ(k) − gπ(k)

)
eke

T
k , then

bε(r||gR) ≥ µ[(1− εm) + λrπ(m+1)]− µRm +Gm (53)

= λgπ(m+1) +Gm (54)

= (1− λ)Gm + λGm+1 (55)

= (1− λ)bεm(r||gR) + λbεm+1(r||gR). (56)

The final equality follows from Eq. (50). Inequalities (52) and (56) show that interpolating
linearly between (Gm, 1 − Rm) and (Gm+1, 1 − Rm+1) amounts to interpolating linearly
between (bεm(r||gR), εm) and (bεm+1(r||gR), εm+1).

Finally, we give a mostly self-contained proof of Proposition 3.

Proposition (3). For any states R and S in the grand-potential resource theory defined by
(β, µ), the following are equivalent:

(a) R �β,µ S.

(b) LR(t) ≥ LS(t) for all t ∈ [0, 1].

3 Q is said to be feasible if the measurement {Q,1 − Q} corresponds to a Type I error probability of at

most ε. The feasible measurement that minimizes the Type II error probability is optimal.
4 (µ, τ) is said to be feasible if it satisfies the constraints in Eq. (10).
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(c) φfa(R) ≥ φfa(S) for every function fa(t) = max{0, t− a} and every a ∈ R.

(d) φf (R) ≥ φf (S) for all continuous convex functions f .

Proof. We will show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a). R, S, GR, and GS are defined as
in the proof of Theorem 2.

(a)⇒ (b) Let M denote the stochastic matrix from the equimajorization condition. Let Q define
the optimal test that distinguishes s from gS with a Type I error probability of at most
ε. To distinguish r from gR, one can apply M and then measure {Q,1 − Q}. This
test might distinguish between r and gR suboptimally. Hence bε(r||gR) ≤ bε(s||gS).
Lemma 4 implies (b).

(b)⇒ (c) The dual formulation of ε 7→ bε(r||gR) can be written as

bε(r||gR) = max
µ

{
(1− ε)µ−

∑
i

[{µr − gR}+]i

}
. (57)

Hence b1−ε(r||gR) is the Legendre transform of∑
i

[{µr − gR}+]i = µ
∑
i

gif1/µ

(
ri
gi

)
= µ φf1/µ(r, gR), (58)

wherein fa(t) = max{0, t− a}. Since bε(r||gR) ≤ bε(s||gS), φf1/µ(r, gR) ≥ φf1/µ(s, gS).

(c)⇒ (d) In [46] (see also [47, Lemma 1.2.5]), Uhlmann shows that every continuous convex
function f(x) can be approximated to arbitrary accuracy by a linear combination, that
has positive coefficients, of functions fa(x). [In Uhlmann’s phrasing, a concave f(x)
is approximated by positive linear combinations of −fa(x)]. Because φfa(R) ≥ φfa(S)
for all fa, φf (R) ≥ φf (S).

(d)⇒ (a) Following [47, Theorem 1.4.4], we prove the contrapositive. Assume that no stochastic
matrix M satisfies Mr = s and MgR = gS. Since the set of stochastic matrices is
convex and compact (all entries being in the unit interval), the set of vectors Mr⊕MgR
is convex and compact. As this set does not contain s ⊕ gS, a hyperplane separates
s⊕gS from {Mr⊕MgR} [74, Theorem 3.5]. That is, a vector x⊕y satisfies x·s+y·gS >
x ·Mr + y ·MgR for all stochastic matrices M . Taking the maximum over M on the
right-hand side (RHS) and denoting by [gR]k the kth element of gR gives

x · s+ y · gS > max
M
{x ·Mr + y ·MgR} (59)

= max
M

∑
jk

(xjMjkrk + yjMjk[gR]k) (60)

=
∑
k

max
j
{xjrk + yj[gR]k} . (61)

Maximizing on the LHS produces∑
k

max
j
{xjsk + yj[gS]k} >

∑
k

max
j
{xjrk + yj[gR]k} . (62)

But f(s, t) = maxj {xjs+ yjt} is a convex function, so φf (S) ≥ φf (R). The contra-
positive implies (a).
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Appendix C ONE-SHOT WORK-YIELD AND WORK-COST PROOFS

Equilibrating operations can extract work from one copy of a state R = (r,H,N) and
can store the work in a battery. From enough stored work, equilibrating operations can
generate R. Each protocol can have a probability ε ∈ [0, 1] of failing to accomplish its
purpose. We calculate the maximum work W ε

gain(R) extractable from, and bound the least
work W ε

cost required to create, R with error-prone protocols. First, we prove a helpful lemma.
Anticipating applications of the lemma, we use the notation G and G′ associated with free
states. However, the lemma holds if G denotes an arbitrary quantum state and G′ denotes
an arbitrary quasiclassical state.

We use the following notation: By eE, we denote a vector of the eigenvalues of the pure
state |E〉〈E|. The element associated with energy E is one, and the other elements are
zeroes. By [v]i, we denote the ith element of any vector v. If r and s denote equal-sized
vectors, their scalar product is r · s :=

∑
i risi.

Lemma 10. Let R = (r,H,N) denote any state; and (eE, H
′, N ′), any pure state. Let

G = (g,H,N) and G′ = (g′, H ′, N ′). The optimal hypothesis test between r and g is related
to the optimal test between r ⊗ eE and g ⊗ g′ by

bε(r ⊗ eE||g ⊗ g′) = (g′ · eE) bε(r||g). (63)

Proof. Consider any feasible measurement operator Q in bε(r ⊗ eE||g ⊗ g′). We can find
a feasible Q′ that gives the same value of the objective function and that has the form
Q′ =

∑
iQE′i

⊗ eE′ie
T
E′i

. Here, QE′i
= (1⊗ eE′i)Q(1⊗ eTE′i), and the superscript T denotes the

transpose. Without loss of generality, we focus on Q′ operators that have this form.
The constraint becomes

∑
i[QE r]i ≥ 1− ε, and the objective function becomes

∑
i

[Q′(g ⊗ g′)]i =
∑
i

{
(g′ · eE′i)

∑
j

[QE′i
g]j

}
. (64)

The minimum follows from setting QE′i
= 0 for all E ′i 6= E:

bε(r ⊗ eE||g ⊗ g′) = min{(g′ · eE)
∑
j

[QE g]j

∣∣∣ ∑
j

[QE r]j ≥ 1− ε, 0 ≤ QE ≤ 1} (65)

= (g′ · eE) bε(r||g). (66)

This lemma implies another lemma, associated with ε = 0, that will facilitate our work-
bound proofs.

Lemma 11. Let R denote any state in a grand-potential resource theory defined by β and
µ. Let W denote the work extractable from R, and let W ′ denote the work cost of creating
R, with error tolerance ε = 0. There exist batteries B such that

R +BE �β,µ BE+W ⇔ R �β,µ BW and (67)

BE+W ′ �β,µ R +BE ⇔ BW ′ �β,µ R. (68)
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Proof. Consider a battery BE+W that consists of two noninteracting parts (e.g., two batter-
ies, BE and BW ). The total Hamiltonian is the sum of the subsystems’ Hamiltonians, and
the total number operator is a sum. Suppose that the first Hamiltonian has d1 eigenvalues
and the second has d2. The joint-system state vector eE ⊗ eW is an energy-(E +W ) eigen-
state. The joint system’s equilibrium state is the composition of the constituent systems’
equilibrium states, whose state vectors we denote by g and g′. That is, BE+W = BE +BW .

Applying several results, we can prove the equivalences in (67):

R +BE �β,µ BW +BE ⇔ LR+BE(t) ≥ LBW+BE(t) ∀t ∈ [0, 1] (69)

⇔ bε(r ⊗ eE||g ⊗ g′) ≥ bε(eW ⊗ eE||g ⊗ g′) (70)

⇔ bε(r||g) ≥ bε(eW ||g) (71)

⇔ LR(t) ≥ LBW (t) ∀t ∈ [0, 1] (72)

⇔ R �β,µ BW . (73)

The first equivalence follows from Proposition 3; the second, from Lemma 4; the third, from
Lemma 10; the fourth, from Lemma 4; and the fifth, from Proposition 3. Similar reasoning
justifies the equivalence of Eqs. (68).

Having simplified the model of work, we will calculate W ε
gain.

Theorem (5). The ε-work value of a state R = (r,H,N) associated with the free state
GR = (gR, H,N) is

W ε
gain(R) = 1

β
Dε

H(r||gR). (74)

Proof. In the converse part of the proof, we show that the RHS is an upper bound on the
extractable work. In the direct part, we construct an equilibrating operation that attains
the bound.

For the converse, define an equilibrating operation by E(r⊗eE) ≈ε eE⊗eW . The channel’s
output is ε-close, in the l1 norm, to the desired state:

1

2
|E(r ⊗ eE)− eE ⊗ eW |1 ≤ ε. (75)

Since equilibrating operations map equilibrium states to equilibrium states, E(gR⊗ g′) = g′.
Using E , we can construct a hypothesis test between r ⊗ eE and gR ⊗ g′. The test consists
of an application of E followed by an energy measurement.5 If the measurement yields
E + W , we guess that the state is r ⊗ eE. Otherwise, we guess gR ⊗ g′. By construction,
the probability that we correctly guess r ⊗ eE is at least 1 − ε. The test is feasible for
Dε

H(r ⊗ eE||gR ⊗ g′), and

e−D
ε
H(r⊗eE ||gR⊗g′) ≤ E(gR ⊗ g′) · eE+W (76)

= (g ⊗ g′) · eE+W (77)

=
e−β(E+W )

Z
. (78)

5 The proof does not depend on how, or whether, measurements are defined in the resource theory. Be-

cause the proof is not a protocol for extracting work, the resource-theory agent need not perform the

measurement.
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By Eq. (63),

e−D
ε
H(r||gR) ≤ e−βW , (79)

which is equivalent to the upper bound.
For the proof’s direct part, we define the state vector

g̃′ :=
1

1− 1
Z
e−β(E+W )

[
g′ − 1

Z
e−β(E+W )eE+W

]
. (80)

Using the optimal measurement Q in Dε
H(r ⊗ eE||gR ⊗ g′), we define the operation E by

E(s⊗ u) =

{
1−

∑
i

[Q(s⊗ u)]i

}
g̃′ +

{∑
i

[Q(s⊗ u)]i

}
eE+W (81)

for state vectors s and u. By construction, E(r ⊗ eE) has the form of the desired output.
Since E is an equilibrating operation, E(gR⊗g′) = g′. This condition determines the possible
values of W and is equivalent to∑

i

[Q(gR ⊗ g′)]i =
e−β(E+W )

Z
. (82)

This equation is equivalent to Ineq. (78), except for containing an equality. Therefore, free
operations can distill at least the work W that satisfies

e−D
ε
H(r||gR) = e−βW , (83)

which is equivalent to the lower bound.

Having calculated the work extractable from R, we bound the work cost of creating R
[Ineqs. (19)].

Theorem (5, ctd.). The work cost of creating an ε-approximation to a state R is bounded
by

max
δ∈(0,1−ε]

[
1
β
D1−ε−δ

H (r||gR)− 1
β

log
(

1
δ

)]
≤ W ε

cost(R) ≤ 1
β
D1−ε

H (r||gR)− 1
β

log
(

1−ε
ε

)
. (84)

Proof. To derive the lower bound, we suppose that E is an equilibrating operation that
satisfies E(eE+W ) ≈ε r⊗ eE. Using E , we can transform the optimal dual program for eE+W

and g′ into a feasible dual program for E(eE+W ) and gR ⊗ g′. This feasible program can be
related to the hypothesis-testing entropy of r relative to gR.

Consider distinguishing between eE+W and g′ by hypothesis test. Let 1 denote the state
on a one-dimensional space. By Lemma 10,

e−D
1−ε
H (eE+W ||g′) = (g′ · eE+W )e−D

1−ε
H (1||1) (85)

= ε (g′ · eE+W ). (86)

The dual formulation of Dε
H reads,

e−D
1−ε
H (eE+W ||g′) = max

µ eE+W−g′≤τ
µ,τ≥0

{
εµ−

∑
i

τi

}
, (87)
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wherein τi denotes the ith element of τ . Comparing Eqs. (86) and (87) shows that µ =
g′ · eE+W and τ = 0 are the optimal choices in the dual formulation.

Acting on each side of the constraint, µ eE+W ≤ g′, with E yields µE(eE+W ) ≤ gR ⊗ g′.
Therefore, µ = g′ · eE+W and τ = 0 are feasible for D1−δ

H (E(eE+W )||gR ⊗ g′):

e−D
1−δ
H (E(eE+W )||gR⊗g′) ≥ δ

e−β(E+W )

Z
(88)

for all δ ∈ [0, 1]. Since 1
2
‖r ⊗ eE − E(eE+W )‖1 ≤ ε,∣∣∣∑

i

[Q{r ⊗ eE − E(eE+W )}]i
∣∣∣ ≤ ε (89)

for every Q. Suppose Q is the optimal choice in D1−η
H (r ⊗ eE||gR ⊗ g′), such that

∑
i[Q (r⊗

eE)]i = η. For this Q,
∑

i[Q E(eE+W )]i ≥ η − ε. Therefore,

e−D
1−η+ε
H (E(eE+W )||gR⊗g′) ≤

∑
i

[Q (gR ⊗ g′)]i (90)

= e−D
1−η
H (r⊗eE ||gR⊗g′) (91)

=
e−βE

Z
e−D

1−η
H (r||gR). (92)

If η = ε+ δ,

δe−βW ≤ e−D
1−ε−δ
H (r||gR). (93)

We have lower-bounded W ε
cost(R) for every δ ∈ (0, 1 − ε]. The tightest of these bounds

follows from a maximization over δ.
To derive upper bound, we construct an equilibrating operation that maps eE+W to r̃⊗eE,

wherein r̃ ≈ε r, for a suitably chosen value of W . The work system is approximated, whereas
the battery is not. The associated work-cost bound may be suboptimal.

By Condition (c) of Proposition 3, such an equilibrating operation exists if and only if

Kin(a) ≥ Kout(a) (94)

for all a ∈ R and forKR(a) defined as follows. In Proposition 3, the function fa(t) := max{0, t− a}
appears in

φfa(R) :=

dR∑
i=1

gifa

(
ri
gi

)
(95)

=

dR∑
i=1

gi max

{
0,
ri
gi
− a
}

(96)

=

dR∑
i=1

max{0, ri − gia}. (97)
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To simplify notation, we will relabel this sum as KR(a). Because r and g are normalized,
KR(a) = (1− a) if a ≤ 0. We can rewrite the LHS of Ineq. (94) as

Kin(a) =

(
1− ae

−β(E+W )

Z

)
+

. (98)

This function is linear and satisfies Kin(0) = 1 and Kin(Zeβ(E+W )) = 0. We can rewrite the
RHS of Ineq. (94) as

Kout(a) =
∑
i

(
r̃i − gia

e−βE

Z

)
+

. (99)

Just as for the input state, Kout(0) = 1. As a sum of convex functions, Kout(a) is convex.
Thus, the condition Kin(a) ≥ Kout(a) for all t ∈ R reduces to

Kout(Ze
β(E+W )) = 0. (100)

Let us find a value of W for which the transformation is possible. First, we construct a
suitable r̃ from the dual form of D1−ε

H (r||gR). Suppose that µ and τ are the optimal choices,
so that

e−D
1−ε
H (r||gR) = εµ−

∑
i

τi (101)

and µr− gR ≤ τ . We define r′ = TrT † for T = g
1/2
R (gR + τ)−1/2, using the pseudoinverse (the

inverse on the support). These definitions satisfy µr′ ≤ gR. Let us bound the trace distance

1
2
‖r − r′‖1 = 1

2

∑
k

|rk − r′k| (102)

= 1
2

∑
k

|rk − gkrk(gk + τk)
−1| (103)

= 1
2

∑
k

rk|1− gk(gk + τk)
−1| (104)

= 1
2

∑
k

rk
τk

gk + τk
(105)

≤ 1
2

∑
k

1
µ
τk (106)

=

∑
i τi

2µ
(107)

≤ ε
2
. (108)

To derive the first inequality, we used the inequality µr ≤ gR + τ ; to derive the second,

εµ−
∑

i τi = e−D
1−ε
H (r||gR) ≥ 0. Let r̃ = r′/

∑
i r
′
i. By the Triangle Inequality,

1
2
‖r − r̃‖1 ≤ 1

2
‖r − r′‖1 + 1

2
‖r̃ − r′‖1 (109)

≤ ε
2

+ 1
2

(
1∑
i r
′
i

− 1

)
‖r′‖1 (110)

= ε
2

+ 1
2

(
1−

∑
i

r′i

)
(111)

≤ ε. (112)
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The fourth inequality follows from
∑

i ri −
∑

j r
′
j ≤ ‖r − r′‖1. We have constructed a state

r̃ ≈ε r.
Moreover, µ (

∑
i r
′
i) r̃ ≤ g. Applying this inequality to (99) yields

Kout(a) ≤
∑
i

gi

(
1

µ
∑

i r
′
i

− ae
−βE

Z

)
+

(113)

=

(
1

µ
∑

i r
′
i

− ae
−βE

Z

)
+

. (114)

Hence Kout(Ze
β(E+W )) satisfies

Kout(Ze
β(E+W )) ≤

(
1

µ
∑

i r
′
i

− eβW
)

+

(115)

≤
(

1

µ(1− ε)
− eβW

)
+

(116)

≤
(

ε

1− ε
eD

1−ε
H (r||g) − eβW

)
+

. (117)

The second inequality follows from
∑
r′i ≥ 1 − ε; the third, from εµ ≥ εµ −

∑
i τi =

e−D
1−ε
H (r||gR). We can satisfy (100) by choosing W such that

eβW =
ε

1− ε
eD

1−ε
H (r||gR). (118)

Since W ε
cost(R) ≤ W , the upper bound follows directly.

One can show that the upper bound is a nonnegative quantity, using e−D
1−ε
H (r||gR) ≤ ε.

(This inequality follows from the choice Q = ε1.) Because ε ≤ ε
1−ε , e

−D1−ε
H (r||gR) ≤ ε

1−ε . The
latter implies the upper bound’s nonnegativity. The lower bound is nonnegative in all the
numerical examples we tested.

Appendix D COMPARISON OF ONE-SHOT WORK YIELD AND WORK COST

We will use second-order asymptotics to show that W ε
gain(R⊗n) tends to differ from the

bounds on W ε
cost(R

⊗n), and that the bounds lie arbitrarily close together, as the thermo-
dynamic limit is approached. Consider distilling work from, or creating, n copies R⊗n of
R = (r,H,N). The work involved depends on the normal approximation to the hypothesis-
testing relative entropy [75, Theorem 5] (see also [76, 77]):6

Dε
H(r⊗n||g⊗nR ) = nD(r||gR) +

√
n s(r||gR) Φ−1(ε) +O(log n), (119)

wherein gR denotes the state vector of the equilibrium state associated with R, the square-
root of the relative entropy variance is

s(r||gR) :=
√
V (r||gR) =

√
Tr(r[log r − log gR]2)−D(r||gR)2, (120)

6 The quantum version of Eq. (119) appears in [75, 78], but we have specialized to commuting density

operators.
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and the inverse error function is

Φ−1(ε) := sup

{
z ∈ R

∣∣ 1√
2π

∫ z

−∞
e−

1
2
t2dt ≤ ε

}
. (121)

Equation (121) admits of the following interpretation. Suppose that, if a hypothesis test
is performed on the null-hypothesis state R, the outcome is distributed normally. The
probability that a Type I error occurs equals Φ−1(ε). Let us apply Eq. (119) to Eq. (18)
and to Ineqs. (19).

To characterize the latter expressions’ approach toward D(r||gR), we evaluate the nor-
malized differences between each W ε,β

(
R⊗n

)
and 1

β
D(r||gR), assuming n is large. The actual

distillable work differs from the asymptotic distillable work as

lim
n→∞

1√
n

[
n

1

β
D(r||gR)−W ε

gain

(
R⊗n

)]
= lim

n→∞

1

β

[
−s(R||gR)Φ−1(ε)− O(log n)√

n

]
(122)

=
1

β
s(R||gR)Φ−1(1− ε). (123)

The final equation follows from Φ−1(ε) = −Φ−1(1−ε). If the Type I error probability is small
(ε < 1

2
), Eq. (123) is positive because the work distilled at the optimal asymptotic efficiency

exceeds the work distilled at any sub-asymptotic efficiency [i.e., Eq. (122) is positive].
The lower work-cost bound differs from the asymptotic cost by

lim
n→∞

1√
n

[
W ε

cost

(
R⊗n

)
v − n 1

β
D(r||gR)

]
≥ lim

n→∞

1

β
max

δ∈(0,1−ε]

[
s(r||gR)Φ−1(1− ε− δ)−

log 1
δ√
n

]
=

1

β
max

δ∈(0,1−ε]
s(r||gR)Φ−1(1− ε− δ) (124)

=
1

β
s(r||gR)Φ−1(1− ε). (125)

The first equality holds if δ grows more slowly than e
√
n. The last equality holds since, by

the definition and monotonicity of Φ−1, the least possible δ-value maximizes Φ−1(1− ε− δ).
In the limit, this difference arising from the lower bound matches that of the upper bound,
as the work cost’s upper bound differs from the asymptotic work cost as

lim
n→∞

1√
n

[
W ε

cost

(
R⊗n

)
− n 1

β
D(r||gR)

]
≤ lim

n→∞

1

β

[
s(r||gR)Φ−1(1− ε)− 1√

n
log

(
1− ε
ε

)]
=

1

β
s(r||gR)Φ−1(1− ε). (126)

The final equality holds if 1−ε
ε

grows more slowly than e
√
n.

Let us compare these normalized work differences. If n is large, the work-cost bounds
exceed the optimal asymptotic work cost 1

β
D(r||gR) by an amount proportional to

√
n. In

contrast, 1
β
D(r||gR) exceeds the work gain by an amount proportional to

√
n. The work

gain and work cost differ in general, unlike in the thermodynamic limit, as in [19, 21]. As
creating R⊗n requires more work than can be extracted from R⊗n, resources degrade.
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