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We investigate the behavior of nonequilibrium phase transitions under the influence of disorder
that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equi-
librium systems such “random-field” disorder destroys the phase transition in low dimensions by
preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder
fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized
contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the
dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between
two different absorbing states. In the two-dimensional case, we map the dynamics onto that of the
well studied low-temperature random-field Ising model. We also study the critical behavior of the
nonequilibrium phase transition and characterize its universality class in one dimension. We support
our results by large-scale Monte-Carlo simulations, and we discuss the applicability of our theory to
other systems.

PACS numbers: 05.70.Ln, 64.60.Ht, 02.50.Ey

I. INTRODUCTION

The effects of quenched disorder on phase transitions
can be drastic. For example, disorder can change the uni-
versality class of a continuous phase transition [1, 2], de-
stroy it by smearing [3], or round a first-order phase tran-
sition [4–6]. In particular, disorder that locally breaks
the symmetry between two equivalent macroscopic states
while preserving the symmetry globally (in the statisti-
cal sense) has strong effects on phase transitions. This
type of disorder is usually called random-field disorder
as it corresponds to a random external field in a mag-
netic system. An experimental realization of a random-
field magnet was recently found in LiHoxY1−xF4 [7–9];
in this system, random fields arise from the interplay of
dilution, dipolar interactions, and a transverse magnetic
field. Moreover, impurities and vacancies generically gen-
erate random-field disorder if the order parameter of the
phase transition breaks a real-space symmetry. Such be-
havior occurs, e.g., in nematic liquid crystals in porous
media [10] and stripe states in high-temperature super-
conductors [11].

Random-field disorder at equilibrium phase transitions
was discussed by Imry and Ma [12]. Their argument
can be summarized as follows. Consider a domain of
one state embedded in a larger domain of the competing
state. The formation of the domain requires a domain
wall with a free energy cost of the order of the domain
wall area, i.e., Ld−1 [13], where L is the linear size of
the embedded domain and d is the space dimension. In
contrast, the average free energy gain due to aligning the
embedded domain with the prevailing local random-field
is of the order of Ld/2 as follows from central limit theo-
rem. Consequently, in d > 2 the system gains free energy
by increasing the size of the domain without limit. On
the other hand, for d < 2, the system prefers forming
domains of a limited size. Based on this heuristic argu-
ment, Aizenman and Wehr [6] provided a rigorous proof

that in all dimensions d ≤ 2 (d ≤ 4), random-field dis-
order prevents spontaneous symmetry breaking for dis-
crete (continuous) symmetry. Thus, equilibrium phase
transitions in sufficiently low dimensions are destroyed
by random-field disorder.

Recently, nonequilibrium phase transition between dif-
ferent steady states have attracted lots of attention.
Analogous to equilibrium phase transitions, these tran-
sitions are characterized by large-scale fluctuations and
collective behavior over large distance and long times.
Examples include surface growth, granular flow, chemical
reactions, spreading of epidemics, population dynamics
and traffic jams [14–18]. The effects of so-called random-
mass disorder, i.e., disorder that spatially modifies the
tendency toward one phase or the other without break-
ing any symmetries, on nonequilibrium phase transitions
have been studied in some detail. They turn out to be
similar to the effects on classical and quantum equilib-
rium phase transitions, and include infinite-randomness
criticality, Griffiths singularities, and smearing (see, e.g.,
Ref. [19] and references therein). This similarity remains
true even in the case of long-range correlated random-
mass disorder [20] and for topological disorder with long-
range correlations [21] . Accordingly, it is important to
investigate the effects of random fields on nonequilibrium
phase transitions. Does an analog of the Aizenman-Wehr
theorem also hold for nonequilibrium phase transitions?

To address this question, we study in this paper the
generalized contact process (GCP) with two symmet-
ric inactive states in one and two space dimensions. In
the GCP, the nonequilibrium phase transition occurs be-
tween an active fluctuating phase and an inactive absorb-
ing phase in which the system ends up in one of the inac-
tive states, and all fluctuations cease entirely. Random-
field disorder is introduced via transition rates that lo-
cally prefer one of the two competing absorbing states
over the other. By studying the dynamics of the relevant
degrees of freedom in the absorbing phase, which are do-
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FIG. 1. (Color online) Time evolution of the GCP in the
inactive phase: (a) without (µ = 5/6) and (b) with random-
field disorder (µh = 1, µl = 2/3). I1 and I2 are shown in
yellow and blue (light and dark grey). Active sites between
the domains are marked in red (middle grey). The difference
between the diffusive domain wall motion (a) and the much
slower Sinai walk (b) is clearly visible (part of a system of 105

sites for times up to 108).

main walls between the two inactive states, we show that
the competition between the two types of domains still
ends with the system reaching one of the two absorbing
states. This means that random field disorder does not
destroy the absorbing state phase transition.
The dynamics of the system in the inactive phase can

be mapped onto that of a low-temperature random-field
Ising system. In one space dimension, the long-time dy-
namics of the domain walls is given by a Sinai walk re-
sulting in an ultraslow decay toward the absorbing state
where the density of domain walls decays as ln−2(t) (see
Fig. 1). In d ≥ 2, the domain size asymptotically in-
creases logarithmically with time. This leads to a slower
decay of the domain walls density, ln−1(t), than in the
one-dimensional case. We also investigate the critical
behavior of the phase transition between the active and
inactive phases in one space dimension. At the critical
point, the dynamics is even slower than in the inactive
phase. We support our theoretical findings by perform-
ing large-scale Monte Carlo simulations of this model in
one and two space dimensions.
This paper is organized as follows. We introduce the

GCP with several absorbing states and random-field dis-
order in Sec. II. In Secs. III and IV we present our
theory and Monte Carlo simulation results, respectively.
We conclude in Sec. V. A short account of part of this
work was already published in Ref. [22].

II. GENERALIZED CONTACT PROCESS AND

RANDOM-FIELD DISORDER

First, we define the simple contact process [23], which
is a prototypical model of a nonequilibrium phase tran-
sition. Every site r of a d-dimensional hypercubic lattice
can either be in the active state A or in the inactive state
I. As time evolves, inactive sites can be activated by
there active nearest neighbors at a rate λm/(2d), where
m is the number of active nearest neighbors, while ac-

tive sites can spontaneously become inactive at a decay
rate of µ. The behavior of the system is then determined
by the ratio of the activation rate λ to the decay rate
µ. It controls a nonequilibrium continuous phase transi-
tion between an active phase and an absorbing (inactive)
phase, which is in the directed percolation (DP) [24] uni-
versality class. If λ ≫ µ, the activation process survives
in an infinite system for infinite times, i.e., the system
reaches a steady state in which the density of active sites
is nonzero, defining the active phase. In the opposite
case, λ ≪ µ, all the sites in the system eventually be-
come and remain inactive, i.e., the system will reach a
state that it cannot escape, with zero density of active
sites, defining the absorbing (inactive) phase.
In the GCP introduced by Hinrichsen [25], each site

can be in an active state A or in one of n inactive states
Ik (k = 1 . . . n). We define the time evolution of the GCP
through the transition rates of pairs of nearest neighbors
as follows:

w(AA→ AIk) = w(AA→ IkA) = µ̄k/n , (1)

w(AIk → IkIk) = w(IkA→ IkIk) = µk , (2)

w(AIk → AA) = w(IkA→ AA) = λ , (3)

w(IkIl → IkA) = w(IkIl → AIl) = σ , (4)

with k, l = 1 . . . n and k 6= l (all other rates are zero).
For n = 1 and µ̄k = µk = µ, we retrieve the simple
contact process with a proper rescaling of the parameters.
The boundary activation rate σ generates activity at the
boundary between domains of different inactive states.
This limits the number of absorbing macroscopic states to
that of the inactive microscopic states n. In other words,
the boundary activation rate σ defined by (4) prevents
the trapping of the system in an inactive macroscopic
state unless all sites are in the same inactive microscopic
state. Without loss of generality, one can chose the time
unit such that one of the rates equals unity, so we set σ =
1. Moreover, to keep the parameter space manageable,
we set µ̄k = µk and λ = σ = 1 [26], unless otherwise
mentioned. In the following, our focus will be on n = 2
and dimensions d = 1, 2.
Consider the symmetric case, in which the decay rates

toward the two inactive states I1 and I2 are equal,
µ1 = µ2 = µ. If µ is small enough (active phase), the sys-
tem eventually reaches a steady state with nonzero den-
sity of active sites ρ. In this phase, the symmetry between
I1 and I2 is not broken, since both states have identical
occupation probabilities. In the opposite limit where µ
is increased beyond the critical point µ0

c (µ0
c ≈ 0.628 for

d = 1 and µ0
c ≈ 1.000 for d = 2 [25, 27, 28]) the sys-

tem undergoes a nonequilibrium phase transition to an
absorbing state with all sites either in state I1 or all in
state I2, resulting in a spontaneous breaking of the sym-
metry between I1 and I2. Therefore, the critical behavior
of the transition is not in the DP universality class but
in the parity conserving (PC) universality class for d = 1
[25, 27, 29] and in the generalized voter (GV) universal-
ity class for d = 2 [28, 30–32]. In the asymmetric case,
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µ1 6= µ2, the favored inactive state will asymptotically
play the dominant role, and the critical behavior reverts
back to the DP universality class.
To introduce random-field disorder, we need to break

the symmetry between I1 and I2 locally. Therefore, we
make µ1(r) and µ2(r), the decay rates at site r toward I1
and I2 respectively, independent random variables drawn
from a probability distribution W (µ1, µ2). A sufficient
condition to preserve the symmetry globally (in the sta-
tistical sense) is W (µ1, µ2) = W (µ2, µ1). Accordingly,
the random variable α(r) = ln[µ2(r)/µ1(r)] has a sym-
metric probability distribution, w(α) = w(−α). The
value of α provides a dimensionless measure of the broken
symmetry. The binary distribution

W (µ1, µ2) =
1

2
δ(µ1−µh)δ(µ2−µl)+

1

2
δ(µ1−µl)δ(µ2−µh)

(5)
is an example, where µh or µl are the possible local decay
rate values. The corresponding random variable α has
the symmetric probability distribution

W (α) =
1

2
δ(α+ α0) +

1

2
δ(α− α0) (6)

where α0 = ln(µh/µl).

III. THEORY

A. Overview

Let us consider the GCP in the presence of binary
random-field disorder defined by (5). If the boundary
activation process is turned off (σ = 0), the difference
between the two inactive states (I1 , I2) is no longer
dynamically relevant, i.e., the system is in an inactive
macroscopic state if each site is in any of the two inactive
states (I1 , I2). In this case, the dynamics of the system
is identical to that of the simple contact process with an
effective decay rate µeff = µh + µl. This results in a
continuous phase transition between an active phase and
an absorbing phase in which the system ends up in ran-
dom combination of the states I1 and I2. Turning on the
boundary activation rate (σ > 0) favors the active phase.
Moreover, the only two inactive macroscopic states are
those in which all sites of the system are in the same
inactive state, either I1 or I2 (symmetry-broken phase).
In this case, the question regarding the survival of the
phase transition in the presence of random-field disorder
is equivalent to asking whether a symmetry-broken phase
exists if µh 6= µl.
To address this question, we consider the large-µ

regime where all decay rates are much larger than the
clean critical value µ0

c . In this regime the decay processes
(1) and (2) dominate over the activation process (3). In
an initially active system, almost all sites quickly decay
into one of the two inactive states I1 and I2. As a result,
the system consists of a combination of domains of states

I1 and I2. However, the domain walls can move as a re-
sult of a boundary activation process (4) followed quickly
by a decay process (2) which results in the original site
being in a different inactive state. The domain wall hop-
ping rate at site r thus depends on the decay rates µ1(r)
and µ2(r) which are random. Consequently, the left-right
(d = 1) symmetry of the hopping rates is locally bro-
ken. However, their symmetry is preserved globally in
a statistical sense because W (µ1, µ2) = W (µ2, µ1). The
resulting random walk of the domain walls with random
hopping rates governs the dynamics of the system in the
large-µ regime and long-time limit.

B. One space dimension, d = 1

A one-dimensional random walk with random hop-
ping rates is a well studied mathematical problem and
is known as the Sinai walk [33]. The typical displace-
ment of a Sinai walker grows as [ln(t/t0)]

1/ψi with time
t where ψi = 1/2. Here, t0 is a microscopic time scale,
and we use a subscript i on the exponent ψ to mark the
inactive phase. This is much slower than the t1/2 law
of the conventional random walk (see Fig. 1). When
two neighboring domain walls run into each other, they
annihilate, resulting in a single domain instead of three
domains. The typical distance between domain walls sur-
viving at time t is therefore proportional to [ln(t/t0)]

1/ψi .
Correspondingly, the density of surviving domains decays
as [ln(t/t0)]

−1/ψi . As the domains grow without limit,
eventually the symmetry between I1 and I2 will be spon-
taneously broken when a single domain dominates the
entire system, i.e., all sites are in the same inactive state,
either I1 or I2. The initial conditions and the details of
the stochastic time evaluation of the system determine
which of the two absorbing states will be the fate of the
system. The existence of a symmetry broken phase im-
plies the persistence of the nonequilibrium transition in
the presence of random-field disorder.
The time evolution of the density of active sites can

also be estimated from the Sinai walk. In the large-µ
regime, active sites can only exist in the vicinity of do-
main walls as a result of the boundary activation process.
This implies that, asymptotically, the density of active
sites ρ is proportional to the density of the domain walls.
Thus we expect that

ρ(t) ∼ [ln(t/t0)]
−ᾱi , (7)

with ᾱi = 1/ψi = 2. We have introduced the decay ex-
ponent ᾱi in analogy to the critical density decay expo-
nent α, i stands for the inactive phase, as above, and the
bar corresponds to a logarithmic rather than a power-law
time dependence.
To emphasize the importance of the absorbing nature

of the inactive states (I1, I2) and its role in the survival
of the nonequilibrium phase transition in the presence
of a random-field disorder, we compare the domain wall
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dynamics in our system with that of an analogous equi-
librium system, namely the random-field Ising chain.
At sufficiently low temperatures the macroscopic state

of the random-field Ising model consists of domains of
up and down spins. The domain wall dynamics in the
random-field Ising chain is analogous to that of our sys-
tem. In fact, the hopping rates of the domain walls in the
two systems can be mapped onto each other, as we show
in Appendix A. However, in the random-field Ising chain
there is an additional process: A spin inside a domain of
spin up(down) can flip down(up) due to a thermal fluc-
tuation. This process breaks the original domain by cre-
ating two new domain walls inside it. As a result of such
processes, the growth of a typical domain size is limited,
preventing spontaneous symmetry breaking as suggested
by the Imry-Ma criterion [12]. In contrast, in our system
a site in an inactive state (I1 or I2) can be activated only
if at least one of its nearest neighbors is in a different
state (1-4). As a result, the interior of an inactive uni-
form domain (all sites in state I1 or all in state I2) is
dynamically dead, and the typical domain size growth is
unlimited.
A more comprehensive understanding of the domain

wall dynamics can be obtained from the real-space renor-
malization group of the random-field Ising chain devel-
oped by Fisher, Le Doussal and Monthus [34–36]. Trans-
lating their results into the language of the GCP, the
asymptotic behavior of the linear size R(t) of a domain
and the density ρ(t) of active sites after a quench from
the active into the inactive phase (which corresponds to
a decay run, i.e. a start from a completely active lattice
in the Monte Carlo simulations) are found to be

R(t) ∼ [ln(t/t0)]
1/ψi , (8)

ρ(t) ∼ [ln(t/t0)]
−ᾱi , (9)

with ᾱi = 1/ψi = 2. Similarly, starting from a single fi-
nite domain in the inactive state I1 (I2) that is embedded
in an infinite system of the inactive state I2 (I1) (spread-
ing runs in Monte Carlo simulations) and measuring the
survival probability Ps(t) of the finite domain yields

Ps(t) ∼ [ln(t/t0)]
−δ̄i , (10)

with δ̄i = 1/ψi − φ = (3 −
√
5)/2. Here, the linear size

of the surviving domain has the same scaling behavior
(Eq.(8)) as the linear size R(t) of a domain in the decay
runs. Moreover, in the inactive phase of the GCP, active
sites live only at domain walls, thus the number of active
sites in a surviving system scales with the total domain
wall size R(t)d−1 ∼ [ln(t/t0)]

(d−1)/ψi . If we define an
exponent Θ̄i via the scaling of the number Ns of active
sites averaged over all systems via

Ns(t) ∼ [ln(t/t0)]
Θ̄i , (11)

then the number of active sites in surviving systems must
scale as Ns/Ps ∼ [ln(t/t0)]

Θ̄i+δ̄i ∼ [ln(t/t0)]
(d−1)/ψi . We

thus obtain Θ̄i = (d−1)/ψ− δ̄i. In one dimension, d = 1,
this implies that Θ̄i = −δ̄i.

FIG. 2. (Color online) Simulation snapshots of the two-
dimensional GCP with random-field disorder, starting from
a fully active lattice with size of 5000× 5000 and µ ≈ 3.0. I1
and I2 are shown in yellow and blue (light and dark grey).
There is a small number of active sites at domain walls that
are marked in red (middle grey). Top: Snapshot at t = 3×103

(pre-asymptotic regime). Bottom: Snapshot at t ≈ 3.6 × 104

(asymptotic regime).

C. Two space dimension, d = 2

In contrast to the one-dimensional case where the do-
main wall size in the inactive phase is fixed (it always
consists of a single I1I2 bond); in higher space dimen-
sions domain walls may change size (i.e. length or area,
see Fig. 2) as the hopping of a domain wall segment
might result in the annihilation of existing segments or
the creation of a new ones. Therefore, the theory devel-
oped in the last section do not directly apply. However,
in d = 2, we can still map the domain wall hopping rates
of the GCP with random-field disorder in the inactive
phase onto those of the random-field Ising model in the
low-temperature regime, as we show in Appendix A.

Grinstein and Fernandez investigated the domain
growth dynamics of the random-field Ising model at low
temperature following a quench from high temperature
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[37]. They found that the linear size R of a domain
grows as ln2(t) with time up to some crossover length
Rx, beyond which R grows as ln(t). Eventually, the do-
main growth stops because thermal fluctuations prevent
symmetry breaking in the random-field Ising model, in
agreement with the Imry-Ma argument. As this mecha-
nism does not exist in the GCP, we can ignore it. Based
on their findings and the mapping (Appendix A) between
the GCP and the random-field Ising model, we obtain
that in the inactive phase of the GCP, the linear size of
a domain R grows with time as

R(t) ∼







α−2
0 ln2(t/t0) (t < tx)

α−2
0 ln(t/t0) (t > tx)

, (12)

where tx is the crossover time between the two regimes.
In contrast to the Ising model where the crossover time
tx can be controlled independently by the temperature,
in the GCP the ratio of tx/t0 depends only on the lattice
geometry in the small-σ limit, σ ≪ µ. (Specifically, from
the Monte Carlo simulations in Sec. IV D we get an
estimate of ln(tx/t0) ≈ 8.3.)
In the inactive phase of the GCP, active sites exist

mainly due to the boundary activation process. There-
fore, active sites can only exist in the vicinity of domains
boundaries. This implies that, asymptotically, the num-
ber of active sites is proportional to the total size (length)
of domain walls. Accordingly the density of active sites
ρ is proportional to R−1. Thus we expect that

ρ(t) ∼







α2
0 ln

−2(t/t0) (t < tx)

α2
0 ln

−1(t/t0) (t > tx)
. (13)

D. Scaling at the critical point

In this subsection, we give a brief summary of the scal-
ing theory for an infinite-randomness fixed point with
activated scaling. It was predicted to occur in the one-
dimensional disordered contact process using a strong-
disorder renormalization group [38] and later confirmed
numerically in one, two and three dimensions [39–41].
Here, we generalize it to the case where the exponents β
and β′ differ from each other.
As the decay rate µ approaches its critical value µc

starting from the active phase, the steady-state density
ρstat and the ultimate survival probability Ps(∞) ap-
proach zero, following power-laws as

ρstat ∼ ∆β , (14)

Ps(∞) ∼ ∆β′

, (15)

where ∆ = (µc − µc)/µc is the dimensionless distance
from criticality, β and β′ are the order parameter and

the survival probability critical exponents, respectively.
Moreover, the divergence of the (spatial) correlation
length ξ⊥, approaching criticality follows the power-law

ξ⊥ ∼ |∆|−ν⊥ , (16)

where ν⊥ is the correlation length critical exponent. All
the critical exponents defined so far describe the static
behavior of observables near the critical point. The ul-
traslow dynamics at an infinite-randomness fixed point
is reflected in the activated scaling, i.e., the correlation
time ξ‖ scales with the correlation length ξ⊥ as

ln(ξ‖/t0) ∼ ξψ⊥, (17)

where ψ is the so-called tunneling exponent and t0 is a
nonuniversal microscopic time scale. This leads to

ln(ξ‖/t0) ∼ |∆|−ν̄‖ . (18)

Here ν̄‖ = ψν⊥ is the correlation time exponent. Gener-
ally, the four critical exponents β, β′, ν⊥ and ν̄‖, form a
complete set that characterizes an absorbing state phase
transition. For some special cases, e.g. the transition in
the DP universality class, symmetry considerations re-
duce this set to only three exponent, because β = β′

[16]. In terms of these exponents we can write the finite-
size(time) scaling of the density ρ of active sites in a decay
experiment as function of ∆, ln(t/t0), and system size L
as

ρ(∆, ln(t/t0), L) = bβ/ν⊥ρ(∆b−1/ν⊥ , ln(t/t0)b
ψ, Lb),

(19)
Here b is an arbitrary dimensionless scale factor. Simi-
larly, in a spreading experiment the survival probability
Ps, number of active sites in the active cloud Ns and the
mean-square radius of this cloud R have the scaling forms

Ps(∆, ln(t/t0), L) = bβ
′/ν⊥Ps(∆b

−1/ν⊥ , ln(t/t0)b
ψ, Lb),

(20)

Ns(∆, ln(t/t0), L) =

b(β+β
′)/ν⊥−dNs(∆b

−1/ν⊥ , ln(t/t0)b
ψ, Lb) (21)

and

R(∆, ln(t/t0), L) = b−1R(∆b−1/ν⊥ , ln(t/t0)b
ψ, Lb).

(22)
We can find the asymptotic time dependencies of ob-

servables in the thermodynamic limit (L → ∞) and at
criticality (∆ = 0) from the scaling relations above, by
setting the scale factor b to ln(t/t0)

−1/ψ . This leads to a
logarithmic time decay of the density of active sites and
the survival probability as

ρ(t) ∼ [ln(t/t0)]
−ᾱ, (23)

Ps(t) ∼ [ln(t/t0)]
−δ̄, (24)
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where ᾱ = β/ν̄‖ and δ̄ = β′/ν̄‖. Analogously, the number
of active sites in the active cloud and the mean-square
radius of this cloud starting from a single active seed site
increase logarithmically with time as

Ns(t) ∼ [ln(t/t0)]
Θ̄, (25)

R(t) ∼ [ln(t/t0)]
1/ψ , (26)

with Θ̄ = (dν⊥ − β − β′)/ν̄‖. This exponent relation can
be rewritten in terms of the time dependence exponents
as

ᾱ+ δ̄ + Θ̄ = d/ψ. (27)

It is similar to the hyperscaling relation for absorb-
ing state transitions with conventional power-law scaling
[16].

IV. MONTE CARLO SIMULATIONS

A. Method and overview

To test our predictions, we perform Monte Carlo sim-
ulations [27, 28] of the GCP defined by (1) to (4) in the
presence of random-field disorder in one and two space
dimensions. In the one-dimensional case, we perform the
simulations with two different types of initial conditions,
(i) decay runs and (ii) spreading runs. Decay runs start
from a completely active lattice (all sites in state A), and
we monitor the time evolution of the density ρ of active
sites as well as the densities ρ1 and ρ2 of inactive sites
I1 and I2, respectively. Spreading runs start from a fully
inactive lattice with all sites in inactive state I1 except
a single active (seed) site in the active state A. Here,
we measure the survival probability Ps, the number of
active sites in the active cloud Ns and the mean-square
radius R2 of this cloud as functions of time. In the two-
dimensional case we perform decay run simulations only.
We implement the random-field disorder through the dis-
tribution (5) using 3µl/2 = µh ≡ µ.
In both types of runs, the simulation proceeds as a se-

quence of individual events. Each event consists of ran-
domly selecting a pair of nearest-neighbor sites from the
active region. In the spreading runs, the active region ini-
tially consists of the seed site and its nearest-neighbors.
Its size increases as activity spreads in the system. In
contrast, in the decay runs, the active region is the en-
tire system. The selected pair is updated through one of
the possible processes (1) to (4) with probability τw. The
time step τ is fixed at a constant value which is chosen
such that the total probability of an outcome of the pro-
cess (1-4) with the highest total rate is unity. Each event
result in a time increment of τ/Npair where Npair is the
number of nearest-neighbor pairs in the active region.
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FIG. 3. (Color online) Density ρ vs. time t in one dimension
for several values of the decay rate µ. The data are averages
over 60 to 1000 disorder configurations. Inset: The log-log
plot shows that the density decay is slower than a power-law
for all µ.
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FIG. 4. (Color online) ρ−1/ᾱi vs. ln(t) for several values of
the decay rate µ. The dashed straight lines are fits to the
predicted behavior ρ ∼ [ln(t/t0)]

−ᾱi with ᾱi = 2.

B. Absorbing phase in one space dimension, d = 1

We studied systems with sizes up to L = 105 and times
up to tmax = 2×108. An overview over the density decay
runs is provided in Fig. 3 which shows the time evolution
of the density of active sites. The inset of Fig. 3 shows
that for systems with both decay rates µh = µ and µl =
2µ/3 greater than the clean critical value µ0

c = 0.628,
the density ρ continues to decay up to the longest times
studied. Still, the decay is obviously slower than a power-
law. Our theoretical arguments led to Eq. (7) which
predicts that asymptotically ρ−1/ᾱi depends linearly on
ln(t). This prediction is tested in Fig. 4. We see that
all curves with µ > 1 follow the predicted behavior over
several orders of magnitude in time.

Similarly, Eqs.(8) and (10) predict linear dependences

of both P
−1/δ̄i
s and Rψi on ln(t) (asymptotically for
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FIG. 5. (Color online) P
−1/δ̄i
s and Rψi vs. ln(t), with

δ̄i = (3 −
√
5)/2 and ψi = 1/2. Main panel: GCP with

random-field disorder, with µ = 3 and λ = 0.01. The data
are averages over 36000 samples with 4000 individual runs per
sample. Inset: Toy model consisting of two random walkers
with random hopping probabilities. The ratio between right
and left hopping probabilities αi at site i is drawn from a
time-independent binary distribution with possible values of
(2/3)±1. If the first walker see a ratio αi, the second walker
sees the inverted ratio α−1

i . The data are averages over 600
samples with 1000 individual runs per sample.

t → ∞). To verify these predictions, we performed
spreading simulations deep in the inactive phase with
µ = 3 and λ = 0.01 (µ/λ ≫ 1). Our simulation re-
sults are presented in Fig. 5. The figure shows that Rψi

meets the prediction over about one and half orders of

magnitude in time. The behavior of P
−1/δ̄i
s seems to be

pre-asymptotic, i.e. P
−1/δ̄i
s slowly approaches the pre-

dicted asymptotic linear dependence on ln(t) but has not
quite reached it at the end of our simulations. Increasing
the time in order to reach the true asymptotic behavior,
requires prohibitively large numerical effort.

As domain walls between the two inactive states are
the only relevant degrees of freedom in the absorbing
phase, we used a toy model in which we replace the two
domain walls (I1I2 and I2I1) in the spreading simulation
by two random walkers with random right and left hop-
ping probabilities. The ratio between right and left hop-
ping probabilities at a given site is proportional to the
ratio between the decay rates toward the two inactive
states (µ1/µ2 for the walker representing I1I2 and µ2/µ1

for the other walker representing I2I1). This toy model is
numerically simpler and allows us to reach longer times.
The inset of Fig. 5 shows that the data for Ps and R ob-
tained from the random walk toy model follow the predic-
tions of Eqs.(8) and (10) over several orders of magnitude
in time.

0.10.02 0.45

1

0.1

2

N
S

PS

(top to bottom)
 0.72     0.82     0.88
 0.74     0.83     0.89
 0.76     0.835   0.91
 0.78     0.84     1.00
 0.80     0.85
 0.81     0.86 

FIG. 6. (Color online) Double-log plot of Ns vs. Ps for several
values of the decay rate µ. The data are averages over 1000 to
8000 disorder configurations with 100 to 400 trials each. The
straight dashed line is a power-law fit of the asymptotic part
of the critical curve (µ = 0.835) yielding θ̄/δ̄ = −0.27(5).

C. Criticality in one space dimension, d = 1

We now turn to the critical point in one space dimen-
sion. In a previous work [22], we obtained a rough es-
timate of the critical decay rate µc. The more detailed
simulations reported here have led to a better estimate
of µc as well as a complete set of critical exponents.

Because the critical point separates an active system
from an ultimately dead one (in the absorbing state), the
dynamics at criticality is expected to be slower than the
dynamics in the inactive phase. Since, observables in the
inactive phase evolve as power-laws of ln(t/t0), a simple
power-law dependent on t time evolution at criticality
can be ruled out. Instead, let us assume that the critical
behavior follows the activated scaling scenario outlined
in sec. III D.

In simulations of absorbing state transitions, the crit-
ical point is often identified by plotting the data such
that the critical time dependence lead to a straight line.
In the case of activated scaling, this is hampered by the
unknown microscopic scale t0 which acts as a strong cor-
rection to scaling.

However, Vojta et al. [40] provided a method to over-
come the absence of a t0 value by observing that t0
should be the same for all observables measured in the
same simulation run because t0 is related to the time
scale of the underlying strong-disorder renormalization
group. Therefore, asymptoticly, observables have power-
law dependencies on each other. For example, combining

Eqs.(24) and (25) gives Ns ∼ P−Θ̄/δ̄
s . Using this method,

the data plotted in Fig. 6 indicate a critical decay rate of
µc = 0.835(3) and yield a value of Θ̄/δ̄ = −0.27(5). The
numbers in brackets give the error estimate of the last
digits. Our error estimate contains the statistical and the
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FIG. 7. (Color online) ρ−1/ᾱ, Rψ, and P
−1/δ̄
s vs. ln(t) at

criticality. Here, ψ = 0.62(7), ᾱ = 1.4(1) and δ̄ = 0.225(8) are
determined from the data by requiring that the corresponding
curves become straight lines asymptotically. Inset: Double-
log plot of Ns vs. Ps at criticality as in Fig. 6

systematic errors as well as the error due to the uncer-
tainty of µc. (Possible correlations between errors from
different sources have been ignored.) To obtain the expo-
nents ᾱ, δ̄ and ψ, we search for values that yield linear de-

pendencies of each of ρ−1/ᾱ, P
−1/δ̄
s and Rψ (see Eqs.(23,

24, 26)) on ln(t/t0) at the critical µc = 0.835. We find
values of ᾱ = 1.4(1), δ̄ = 0.225(8) and ψ = 0.62(7) (Fig.
7). Moreover, using the measured values of Θ̄/δ̄ and δ̄, we
find Θ̄ = −0.060(12). The hyperscaling relation, Eq.(27),
is satisfied by the obtained critical exponents ᾱ, δ̄, ψ and
Θ̄, within the given errors.
So far, we obtained only three independent critical ex-

ponents. In order to find a complete set of critical ex-
ponents that is required to characterize the universality
class of the transition, we need to find one more criti-
cal exponent independently. Thus, we turn to the den-
sity scaling relation, Eq.(19). Setting the scale factor
b = ln(t/t0)

−1/ψ and in the limit L→∞, we get

ρ ln(t/t0)
ᾱ = X̃(∆ν̄‖ ln(t/t0)), (28)

Here X̃ is a scaling function. At the critical point
(∆ = 0), the quantity ρ ln(t/t0)

ᾱ asymptotically ap-

proaches a constant value (X̃(0) = constant). As we
deviate from the critical point toward the active phase,
the quantity ρ ln(t/t0)

ᾱ represents the scaling function X̃
with an argument that is scaled by ∆ν̄‖ as shown in Fig.
(8).
In Fig (9), we rescale the abscissa of each of the off-

critical curves with a scaling factor x until they all col-
lapse onto a reference curve. According to Eq.(28), a
fit of the scaling factor x to the power-law dependence
x = (∆/∆ref )

−ν̄‖ (see upper inset in Fig. (9)), yields the
correlation time critical exponent ν̄‖ = 1.78(4).
With the help of the scaling relations, Eqs.(19-22),

other critical exponent can be calculated (Table I), e.g.
the scaling relation β = ᾱν̄‖ gives the order parameter
critical exponent β = 2.5(2). The steady-state density
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FIG. 8. (Color online) ρ ln(t/t0)
ᾱ vs. ln(t/t0) for several de-

cay rates µ at and below the critical decay rate µc = 0.835.
The quantity ρ ln(t/t0)

ᾱ has zero scale dimension. Thus,
asymptotically it is time independent at criticality, µc =
0.835.
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FIG. 9. (Color online) scaling plot of ρ ln(t/t0)
ᾱ vs. ln(t/t0)/x

for several decay rates µ below the critical decay rate µc =
0.835 (the same off-critical decay rate values listed in Fig.
(8)). x is the scaling factor necessary to scale the data onto
the curve of µ = µref = 0.74. Upper inset: Double-log plot
of the scaling factor x vs. ∆µ/∆0.74 where ∆µ = (µc−µ)/µc.
The straight solid line is a power-law fit yielding ν̄‖ = 1.78(4).
Lower inset: Double-log plot of the stationary density ρst
vs. ∆µ. The straight solid line is a power-law fit yielding
β = 2.42(8).

ρstat, Eq.(14), yields another independent estimate of the
exponent β = 2.42(8) (see lower inset in Fig. (9)).
We conclude that all the Monte-Carlo simulations data

are well described within the activated scaling scenario.

D. Two space dimension, d = 2

In two dimensions our simulations focused on the in-
active phase. We studied systems with sizes of up to
2000× 2000 sites and times up to tmax = 5 × 104. Fig-
ure 10 shows an overview of the time evolution of the
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Critical point Inactive phase

ᾱ 1.4(1) ᾱi 2

ψ 0.62(7) ψi 1/2

δ̄ 0.225(8) δ̄i (3−
√
5)/2

ν̄‖ 1.78(4)

β 2.42(8)

Θ̄ -0.060(12) Θ̄i (
√
5− 3)/2

ν⊥ 2.9(4)

β′ 0.40(2)

TABLE I. Critical and inactive phase exponents for the one
dimensional generalized contact process with two symmetric
inactive states in the presence random-field disorder. The val-
ues for the inactive phase are found analytically. The values
for the generic transition emerge from fits of our data (above
the horizontal line) and from scaling relations (below the hor-
izontal line). The numbers in brackets gives the estimated
error of the last given digits, where possible correlations be-
tween errors from different sources are ignored
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FIG. 10. (Color online) Density ρ vs. time t in two dimen-
sions for several values of the decay rate µ. The data are
averages over 100 disorder configurations. Inset: The log-log
plot shows that the density decay is slower than a power-law
for all µ.

density of active sites from decay runs. Similar to the
one-dimensional case, in two-dimensional systems with
both decay rates µh = µ and µl = 2µ/3 greater than the
clean critical value µ0

c = 1.000, the density ρ continues to
decay slowly (slower than a power-law) up to the longest
times studied, as shown in the inset of Fig. 10.

According to our theory, Eq.(13), the time evolution
of the density of active sites ρ is predicted to consist of
two regimes, a pre-asymptotic regime and an asymptotic
regime. In the pre-asymptotic regime ρ−1/2 depends lin-
early on ln(t) up to a crossover time tx, after which ρ

−1

depends linearly on ln(t). The prediction of Eq.(13) is
tested in Fig. 11, where it shows that for all curves with
µ > 2, the predicted behavior is evident up to the longest
times studied. Moreover, our results give an estimate of
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FIG. 11. (Color online) Upper panel: ρ−1 vs. time t for
several values of the decay rate µ. The solid straight lines
are fits to the predicted asymptotic behavior ρ ∼ ln−1(t/t0).

Lower panel: ρ−1/2 vs. time t for several values of the decay
rate µ. The solid straight lines are fits to the predicted pre-
asymptotic behavior ρ ∼ ln−2(t/t0).

ln(tx/t0) ≈ 8.3.

V. CONCLUSIONS

To summarize, we have studied the effects of random-
field disorder on the nonequilibrium phase transitions of
the one- and two-dimensional GCP. We have found that
these transitions survive the presence of random-field dis-
order, in contrast to equilibrium transitions in one and
two space dimensions that are destroyed by such disor-
der. Moreover, we have investigated in detail the criti-
cal behavior of the one-dimensional GCP with random-
field disorder by means of large-scale Monte-Carlo sim-
ulations. We have found that the scaling is of activated
type comparable to that of the infinite-randomness crit-
ical point in the disordered contact process, but with
different values of the exponents.

The main difference between the effects of random-field
disorder in the GCP and in equilibrium systems such as
random-field Ising model, is the absorbing nature of the
inactive states I1 and I2 in the former. The interior of
a uniform domain in an equilibrium system (e.g. a spin-
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up or spin-down domain in the Ising model) can give
rise to a new domain of a different state, due to ther-
mal fluctuations. This splits the original domain. Thus,
the growth of the typical domain size is limited to its
Imry-Ma equilibrium size, resulting in the destruction
of the equilibrium transition in sufficiently low dimen-
sions. In contrast, no new domains (nor active sites) can
ever, spontaneously, appear in the interior of an I1 or
I2 domain. We thus expect that our results are qualita-
tively valid for all nonequilibrium phase transitions with
random-field disorder that locally breaks the symmetry
between two absorbing states. Actually, Pigolotti and
Cencini [42] have observed spontaneous symmetry break-
ing using a model of two competing biological species in
a two-dimensional landscape with local habitat prefer-
ence. The response of other nonequilibrium transitions
may be different. For example our theory does not apply
to transitions with random fields that break the symme-
try between two active states. Furthermore, destabilizing
the absorbing character of an inactive state by sponta-
neous fluctuations, even with small rates, results in the
destruction of the phase transition [43].

The dynamics in the inactive phase of the GCP with
random-field disorder is ultraslow. In one dimension, it
is controlled by the Sinai walk of domain walls between
the two inactive states. As a result, the densities of do-
main walls and active sites decay logarithmically with
time. The dynamics in two dimensions can be mapped
to that of the well studied low-temperature random-field
Ising model in the regime before the Imry-Ma limit for
the domain size is reached. In this regime, the domain
wall density decays logarithmically with time. Because
an Imry-Ma limit is absent in our system (due to the
absorbing nature of the inactive states), this logarithmic
time decay of the densities of domain walls and active
sites continues for infinite time. Let us also mention the
well-studied voter model. In this model each voter (site)
can have one of two opinions (I1, I2), and two neighbor-
ing voters can convince one another of their own opinion
with equal chances. Here, random-field disorder can be
introduced in terms of local preference of one opinion
over the other. Analogous to the GCP, the dynamics in
the random-field one-dimensional voter model is solely
controlled by the Sinai walk of domain walls. We there-
fore expect its dynamics to be, asymptotically, similar to
that of the inactive phase of the one-dimensional GCP
with random-field disorder.

We also note that the survival of a nonequilibrium
continuous phase transitions in the presence of random-
field disorder, implies the survival of the correspond-
ing nonequilibrium first-order phase transition between
the two absorbing states (This transition can be tuned
through a global preference of one of the two absorb-
ing states). In contrast, Mart́ın et al. [44] have illus-
trated that nonequilibrium first-order phase transitions
between fluctuating and absorbing states are destroyed
by quenched disorder, in agreement with the Imry-Ma
criterion.

In the higher-dimensional (d > 2) GCP, the mapping
of domain wall hopping rates onto the random-field Ising
model at low-temperatures still holds, but only qualita-
tively [45]. In addition, the interior of a uniform absorb-
ing state domain, is still free of any spontaneous fluc-
tuations. Furthermore, the Imry-Ma argument predicts
weaker effects of random fields on equilibrium transitions
in higher dimensions. All of the above suggests that do-
main formation will not be able to destroy the absorbing
state transition in higher dimensions. However, other un-
related mechanisms may destroy the transition. For ex-
ample, to the best of our knowledge, not even the clean
GCP in dimensions d > 2 has been studied in detail. Its
transition could be destroyed in analogy with the related
voter model that never reaches an absorbing state where
one opinion dominates, for d > 2 [46].
While straightforward experimental realizations of ab-

sorbing state transitions were lacking for a long time [47],
appealing examples were recently found in driven suspen-
sions [48, 49], turbulent liquid crystals [50], and super-
conducting vortices [51]. Moreover, the nonequilibrium
nature of biological systems suggests them as a poten-
tial candidates for observing nonequilibrium transitions.
For example experiments in colony biofilms [52] are accu-
rately represented by a model of two competing strains of
bacteria [53] reveling a transition in the GV universality
class (the same class as the clean two-dimensional GCP).
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APPENDIX A: DOMAIN WALL HOPPING

RATES

In this appendix, we map the domain wall hop-
ping rates of the random-field Ising chain in the low-
temperature regime onto those of the GCP with random-
field disorder in the inactive phase, in one and two space
dimensions. We first define state variables si for the GCP
in analogy to the Ising variables, such that si = −1 and
si = +1 correspond to site i being in the inactive state I1
and I2, respectively. Also, we denote the decay rates to-

ward the states I1 and I2 at any site i as µ
(−1)
i and µ

(+1)
i ,

respectively. Since we are considering only the absorbing
phase of the GCP, we can chose the activation rate λ to
be much smaller than any other rate in the system such
that the activation process (3) can be ignored.
First we consider the mapping in one space dimension.

Figure 12 shows a schematic of the (+−) domain wall
dynamics. As shown in the figure, the hopping of the do-
main wall across site i from left to right and from right to
left is based on two consecutive processes, an activation
of site i through the boundary activation process (4) with
probability rate σ, followed by a decay toward an inactive
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FIG. 12. (Color online) Schematics of the dynamics of a +−
domain wall in one space dimension. Red, yellow and blue
(middle, light and dark grey) squares represent a site in the
active state A, and inactive states I1 and I2 respectively.

states (I1or I2) with a total decay rate µ
(−1)
i +µ

(+1)
i . The

total effective probability rate w of the two consecutive
processes behaves as the inverse of their typical total time

τ1 + τ2 where τ1 = 1/σ and τ2 = 1/(µ
(−1)
i + µ

(+1)
i ). i.e.

w = 1/(τ1+τ2). The outcome of this combined process is
the hopping of the domain wall from the right (left) to the

left (right) of site i with probability of µ
(−1)
i τ2 (µ

(+1)
i τ2)

provided that the active site i decays to an inactive state
that is different than the initial one. However, with prob-

ability of µ
(+1)
i τ2 (µ

(−1)
i τ2) the decay process leaves site

i in the same initial inactive state, i.e. the domain wall
does not move. The hopping rates w(←) and w(→) to
the left (right) can be found by multiplying w with the
probability that the active site i ends up in a different
inactive state than the initial one. Doing so we get:

w(←) =
σµ

(−1)
i

σ + µ
(−1)
i + µ

(+1)
i

, (29)

w(→) =
σµ

(+1)
i

σ + µ
(+1)
i + µ

(−1)
i

. (30)

In general we can write

w(←) =
σµ

(−si)
i

σ + µ
(−si)
i + µ

(si)
i

, (31)

w(→) =
σµ

(si)
i

σ + µ
(−si)
i + µ

(si)
i

, (32)

where si is the state of site i when its to the left of the
domain wall. The ratio of the hopping rates is

w(→)

w(←)
=

µ
(si)
i

µ
(−si)
i

. (33)

Using the variable αi = ln(µ
(+1)
i /µ

(−1)
i ), we can write

siαi = ln(µ
(si)
i /µ

(−si)
i ). This lead to

w(→)

w(←)
= exp(siαi). (34)

Now, we turn to the case of the random-field Ising
model defined by the Hamiltonian

H = −J
∑

<i,j>

sisj −
∑

i

hisi, (35)

where J > 0 and hi is a random variable drawn from a
symmetric distribution such that < hi >= 0. The tran-
sition rates ratio can be found from the detailed balance
equation as

w(→)

w(←)
= exp(−∆E/T ) = exp(2sihi/T ), (36)

where ∆E is the change in the system energy as the spin
at site i flips from −si to si. From Eq. (34) and Eq. (36)
the two systems have equal hopping rate ratios if

αi = 2hi/T. (37)

For the binary distribution (5,6), this implies

ln(µh/µl) = α0 = 2h0/T, (38)

where hi is drawn from a symmetric binary distribution
with possible values of ±h0.
We now turn to two dimensions. In contrast to the

one-dimensional case where the domain wall size is fixed
(it always consists of a single +− bond); domain walls
in two space dimensions may change size length as the
hopping of a domain wall segment might result in the
creation of new segments or the annihilation of existing
ones (Fig. 13). Therefore, the domain wall geometry
must be taken into account. We consider the domain
wall motion due to a single site changing from +1 to −1
or from −1 to +1, as sketched in Fig. 13. As in the one-
dimensional case, the hopping consists of two consecutive
processes. First the inactive site i in the inactive state si
must be activated with probability rate of ndifσ followed
by a decay toward an inactive states −si or si with a total

decay rate ndifµ
(−si)
i + (4− ndif )µ(si)

i . Here, ndif is the
number of inactive neighbors in a different state than si,
i.e. in state −si. (In order to suppress any activation of
one of the neighbors of site i before the decay of site i
to an inactive state, we work in the limit µ±si

i /σ ≫ 1).
The effective probability rate w of the two consecutive
processes is

w =
ndifσ(ndifµ

(−si)
i + (4 − ndif )µ(si)

i )

ndifσ + ndifµ
(−si)
i + (4− ndif )µ(si)

i

. (39)

The probability that site i will end up in a different inac-
tive state than the initial one at the end of this process
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FIG. 13. (Color online) Schematics of the dynamics of a +−
domain wall in two space dimensions. Red, yellow and blue
(middle, light and dark grey) squares represent a site in an
active state A, inactive states I1 and I2 respectively.

is ndifµ
(−si)
i /(ndifµ

(−si)
i + (4 − ndif )µ(si)

i ). As a result,
the hopping rate wsi→−si from state si to −si is

wsi→−si =
n2
difσµ

(−si)
i

ndifσ + ndifµ
(−si)
i + (4− ndif )µ(si)

i

. (40)

The hopping rate of site i back to its initial state w−si→si

can simply be found by interchanging si with −si and
ndif with 4− ndif in Eq. (40),

w−si→si =
(4− ndif )2σµ(si)

i

(4 − ndif)σ + (4− ndif )µ(si)
i + ndifµ

(−si)
i

.

(41)
The ratio between si → −si and −si → si hopping rates
is

wsi→−si

w−si→si

=

(

ndif
4− ndif

)2
(

µ
(−si)
i

µ
(si)
i

)(

(4− ndif )σ + (4 − ndif )µ(si)
i + ndifµ

(−si)
i

ndifσ + ndifµ
(−si)
i + (4− ndif )µ(si)

i

)

. (42)

In the limit µ±si
i /σ ≫ 1, the right most factor of Eq.

(42) is equal to unity, the middle factor is similar to
the random-field factor in the one-dimensional case (Eq.
(33)) and the first factor encodes the geometry. There-
fore, we can write,

wsi→−si

w−si→si

=

(

ndif
4− ndif

)2

exp(siαi). (43)

Considering the possible values of ndif for a site at a
domain wall, we get:

wsi→−si

w−si→si

=



















1/9 exp(siαi) (ndif = 1)

exp(siαi) (ndif = 2)

9 exp(siαi) (ndif = 3)

. (44)

In the case of two-dimensional random-field Ising
model, the transition rates ratio can be found from the
detailed balance equation as

wsi→−si

w−si→si

= exp(4(ndif − 2)J/T + 2sihi/T ), (45)

substituting for the possible values of ndif we get:

wsi→−si

w−si→si

=



















exp(−4J/T + sihi/T ) (ndif = 1)

exp(sihi/T ) (ndif = 2)

exp(4J/T + sihi/T ) (ndif = 3)

.

(46)

The comparison between Eq. (44) and Eq. (46), suggests
the same mapping of the random-field term as in the one-
dimensional case,

hi/T = αi/2, (47)

while the ratio J/T is constant,

J/T = ln(3)/2. (48)

APPENDIX B: DOMAIN WALL DYNAMICS IN

THE RFIM

Here we consider the random-field Ising model defined
by the Hamiltonian 〈κ〉

H = −J
∑

<i,j>

sisj −
∑

i

hisi, (49)

where 〈hi〉 = 0 and 〈hihj〉 = h2δi,j in the limit h ≪
J . (The results in this appendix have been derived in
Refs.[37, 54, 55], we summarize them for the convenience
of the reader).

Interface roughening in the RFIM

In the absence of disorder (h = 0) the interface be-
tween spin-up and spin-down domains will tend to be
flat in order to minimize the surface energy EJ . However,
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FIG. 14. (Color online) Interface separating domains of spin-
up (blue (dark grey)) and spin-down(yellow (light grey)) with
interface profile z(r⊥).

random-field disorder prefers an interface profile that fol-
lows the random-field fluctuations in order to minimize
the field energy Eh. Let z(r⊥) be the interface profile
function (Fig. 14). The increase of the surface energy
compared to its flat interface value can be estimated as

∆EJ ∼ J
∫

dd−1
r⊥

(

1 + (∇z)2
)1/2 − J

∫

dd−1
r⊥. (50)

If z(r⊥) fluctuates on a scale of ω(L), where ω(L) ≪ L,

we can approximate
(

1 + (∇z)2
)1/2

by 1+1/2(ω(L)/L)2

to obtain

∆EJ ∼ JLd−3ω2(L). (51)

The gain in random-field due to reshaping the interface
to a favorable profile is (based on a central-limit theorem
argument) proportional to the square root of the interface
volume and h such that

∆Eh ∼ −h
(

Ld−1ω(L)
)1/2

. (52)

If we minimize the total energy change ∆E = ∆EJ+∆Eh
with respect to ω(L), we get

ωmin ∼ (h/J)
2/3

L(5−d)/3, (53)

which corresponds to energy gain of

∆Emin ∼ J (h/J)
4/3

L(d+1)/3. (54)

Based on Eq. (53) the interface width (ωmin) is bounded
(smooth) for d > 5 and infinitely increasing for d < 5,
where

lim
L→∞

ωmin =

{

0 (d > 5)
∞ (d < 5),

(55)

However, the ratio

ωmin
L
∼ (h/J)2/3 L(2−d)/3, (56)

is bounded for d > 2, where

lim
L→∞

ωmin
L

=

{

0 (d > 2)
∞ (d < 2).

(57)

Accordingly, the interface is rough on scale of w(L)≪ L
for 2 < d < 5.

Asymptotic Interface Dynamics

Consider a spherical d-dimensional spin-up (spin-
down) domain of radius R embedded in a much larger
spin-down (spin-up) domain. Also, consider that the in-
terface profile minimizes the random-field energy locally
(the interface is in a favorable position w.r.t. the random-
field). According to the above results, the interface is
rough on a scale w ≪ R for 2 < d < 5. The embedded
domain wishes to reduce the surface energy by shrinking
but the random-field creates an energy barrier against
the interface motion.
In order to estimate the energy barrier height, we as-

sume that the radius of the embedded domain shrinks
from R to R − ∆r. As a result, the surface energy will
decrease as

∆EJ ∼ −JRd−2∆r. (58)

As the interface moves it covers a volume proportional to
Rd−1∆r. The typical value of the random-field energy in
an unfavorable configuration is

∆Eh ∼ h
(

Rd−1∆r
)1/2

. (59)

The total energy change is then

∆E ∼ −JRd−2∆r + h
(

Rd−1∆r
)1/2

, (60)

where proportionality factors are suppressed. As ∆r
start to increase from zero, the random-field term ∆Eh
initially dominates over the surface term ∆EJ in Eq.
(60). As ∆r continue to increase the surface term will
win eventually, and the interface reaches a new favorable
position w.r.t. the random-field. The typical height of
the energy barrier can be found by maximizing ∆E given
in Eq. (60). This leads to a barrier height of

∆Emax ∼ h2R/(4J), (61)

with a typical width of

∆rmax ∼ h2R3−d/(4J2). (62)

The time taken to overcome an energy barrier of height
∆E at temperature T depends exponentially on the ratio
∆E/T , i.e.

t = t0 exp(∆E/T ), (63)

where t0 is a microscopic time scale. This means that at
time t, energy barriers lower than T ln(t/t0) have been
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FIG. 15. (Color online) Interface separating domains of spin-
up (blue (dark grey)) and spin-down(yellow (light grey)) with
a double kink of spin-down on top of otherwise flat interface.

overcome, while energy barriers higher than T ln(t/t0)
have not yet been overcome. Therefore, the typical do-
main radius R (based on Eq. (61)) at time t is

R ∼ (JT/h2) ln(t/t0). (64)

Note that smaller domains have been eliminated by
shrinking; (when a domain starts shrinking, it collapses
because the smaller the radius the lower the barrier).

Pre-asymptotic Interface Dynamics

The previous results are in the asymptotic regime
R ≫ 1, where all energies are much greater than the
microscopic scales J and h. In this case, treating ∆E as
continuous is justified. However, the change in the inter-
face energy ∆EJ cannot be less than J . This means that
Eq. (61), which governs the dependence of the barrier

height ∆Emax on R, break down as R decreases below
the crossover value Rx ∼ J2/h2.
In this regime(R ≪ Rx), microscopic considerations

must be taken into account. First, we consider this
regime in two dimensions. Start with a domain wall that
is flat except for a double kink as shown in Fig. 15. Only
spins right next to the kink can flip without increasing
the interface length . A spin flip that increases the inter-
face length costs energy of order of J ≫ h. Therefore, it
is unlikely to happen. Instead, sides of the double kink
can move left and right, with probabilities that depend
only on the random-field values, until they meet and can-
cel each other. Before the sides of the double kink meet
there is no gain in the interface energy ∆EJ . However,
there is energy cost (barrier) of ∆Eh ∼ hR1/2 where R is
the distance between the kinks. The characteristic decay
time is t = t0 exp(∆Eh/T ), which leads to

R ∼ (T 2/h2) ln2(t/t0). (65)

In higher dimensions (d > 2), we consider an island of size
Rd−1 on top of otherwise flat interface. In this case the
elimination of such an island can be done by eliminating
one-dimensional rows in any of the (d − 1) directions at
a time. Each row elimination involves a barrier of hR1/2

and result in an energy gain of ∼ J . Therefore, two-
dimensional results applies for all d ≥ 2. In summary,
the typical domain radius behaves as

R ∼







(T 2/h2) ln2(t/t0) (t < tx)

(JT/h2) ln(t/t0) (t > tx),
, (66)

where

ln(tx/t0) ∼ J/T. (67)
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