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Abstract

We derive from first principles a one-way radiative transfer equation for the wave intensity

resolved over directions (Wigner transform of the wave field) in random media. It is an initial

value problem with excitation from a source which emits waves in a preferred, forward direction.

The equation is derived in a regime with small random fluctuations of the wave speed but long

distances of propagation with respect to the wavelength, so that cumulative scattering is significant.

The correlation length of the medium and the scale of the support of the source are slightly larger

than the wavelength, and the waves propagate in a wide cone with opening angle less than 180o, so

that the backward and evanescent waves are negligible. The scattering regime is a bridge between

that of radiative transfer, where the waves propagate in all directions and the paraxial regime,

where the waves propagate in a narrow angular cone. We connect the one-way radiative transport

equation with the equations satisfied by the Wigner transform of the wave field in these regimes.
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I. INTRODUCTION

Light propagation in scattering media can be modeled by a boundary value problem

for the radiative transfer equation [1–3]. The light intensity resolved over directions, also

known as the Wigner transform of the wave field, satisfies this equation with incoming

boundary conditions on the illuminated part of the boundary, and outgoing conditions on

the remainder of the boundary. The problem is of interest in applications such as optical

tomography, where structural variations in tissue are to be determined from measurements

of scattered light [4].

The derivation of the radiative transfer equation from the wave equation is a fundamental

challenge. Existing heuristic derivations from the wave equation in random media, obtained

when the wavelength, the correlation length of the medium and the scale of variation of the

source are of the same order, and much smaller than the propagation distance, use either

multiscale asymptotic analysis [2] or diagrammatic perturbation theory [5, 6]. However, as

discussed by Mandel and Wolf in their monography [7], or more recently in the tutorial [8],

there is no satisfactory or rigorous derivation of the macroscopic theory of radiative transfer

from the microscopic theory of wave propagation in random media, except in some special

cases. Therefore, the rigorous derivation of a radiative transfer-like equation from the wave

equation, beyond the special cases mentioned in these references, would be of interest for

the radiative transfer community.

The radiative transfer equation poses formidable computational challenges in optical

tomography, where repeated solutions of the equation are needed to solve the inverse problem

with optimization [3, 4]. This is why a simplified diffusion model is often used [4], where the

medium is assumed optically thick, so that light is diffusive due to very strong scattering.

This leads to considerable simplification, but may produce anomalies in the reconstructed

images [9]. A recent study [10] shows that in mesoscopic scattering regimes, where light

penetrates to about one centimeter depth in tissue [11], scattering is forward-peaked and

a simpler one-way radiative transport model can be used, where the intensity satisfies an

initial value problem. The one-way radiative transfer equation is obtained in [10] from

the standard radiative transfer equation by simply ignoring the intensity in the backward

directions.

Our first goal in this paper is to derive rigorously the one-way radiative transfer equation,
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from first principles, starting from the wave equation in random media. The second goal is

to bridge between the mesoscopic scattering regime, the standard radiative transfer regime

on one side, and the paraxial approximation regime on the other side. We also connect to

the diffusion approximation.

To derive the one-way transfer equation we consider waves in media with small random

fluctuations of the wave speed, at long propagation distances with respect to the wavelength,

where cumulative scattering effects are significant. The typical size of the inhomogeneities,

measured by the correlation length, and the scale of variation of the source are slightly

larger than the wavelength, so that the waves propagate in an angular cone with axis along

a preferred forward direction called range. We analyze the propagation in this regime using

a plane wave decomposition of the field, with amplitudes that are range dependent random

fields. They satisfy a system of coupled stochastic differential equations driven by the

random fluctuations of the wave speed, and can be analyzed in detail with probabilistic

limit theorems. Consequently, we can quantify the loss of coherence of the wave field i.e., its

randomization due to scattering, and derive the radiative transfer equation satisfied by the

Wigner transform of the wave amplitudes. The result extends the model proposed in [10],

and defines the differential scattering cross-section and the total scattering cross-section in

terms of the autocovariance of the fluctuations of the wave speed.

Once we derive the one-way transfer equation we show that it is equivalent to the standard

radiative transfer equation [2] in regimes with negligible backscattering. We also connect to

the diffusion approximation theory, by considering the high-frequency limit of the equation.

Transport in the paraxial approximation, which applies to waves propagating in a narrow

angle cone along the range axis, is analyzed in [12], using the Itô-Schrödinger model of wave

propagation. Here we rediscover the results starting from the one-way radiative transfer

equation, in the high-frequency limit and for a large support of the source.

The paper is organized as follows: We begin in section II with the model of the random

medium and the formulation of the problem. The main results are stated in section III.

We describe the mean wave field and the randomization of the components of the wave

quantified by the scattering mean free paths. We also state the one-way radiative transfer

equation. The connection to the equation in [10] is in subsection IIIA, and to the standard

radiative transfer theory in subsection IIIB. The connection to the paraxial approximation

is in subsection IIIC. The derivation of the results is in section IV. We begin with the
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scaling regime in subsection IVA, and then give the wave decomposition in subsection

IVB. The probabilistic limit of the wave amplitudes is studied in subsection IVC and

appendix A. We use it to describe the evolution of the mean field in subsection IVD and to

derive the one-way radiative transfer equation for the Wigner transform in subsection IVE.

The high-frequency limit which leads to either the diffusion approximation or the paraxial

approximation is studied in section V. We end with a summary in section VI.

II. FORMULATION OF THE PROBLEM

The time-harmonic field u(~x) satisfies the wave equation:

ω2

c2(~x)
u(~x) + ∆~xu(~x) = −F

( x
X

)
δ(z), (1)

for ~x = (x, z) ∈ R
d+1 and frequency ω ∈ R. Here ∆~x is the Laplacian operator in R

d+1

and since the frequency is constant, we suppress ω from the arguments of u and F . The

excitation is due to a localized source F which emits waves in the direction z, called range.

The function F depends on the dimensionless vector r ∈ R
d, and its magnitude is negligible

for |r| > O(1), so that X scales the spatial support of the source.

The waves propagate in a linear medium with speed of propagation c(~x) satisfying

1

c2(~x)
=

1

c2o

[
1 + 1(0,L)(z)αν

(~x
ℓ

)]
. (2)

It is a random perturbation of the constant speed co, modeled by the random process ν. The

perturbation extends over the range interval z ∈ (0, L), as given by the indicator function

1(0,L)(z). We assume that ν(~r) is a dimensionless stationary random process of dimensionless

argument ~r ∈ R
d+1, with zero mean E

[
ν(~r)

]
= 0 and autocovariance

E
[
ν(~r)ν(~r′)

]
= R(~r − ~r′), ∀ ~r, ~r′ ∈ R

d+1.

Moreover, ν is bounded and R is integrable, with Fourier transform, the power spectral

density

R̃(~q) =

∫

Rd+1

d~rR(~r)e−i~q·~r, (3)

that is either compactly supported in a ball of radius O(1) in R
d+1, or is negligible outside

this ball. The autocovariance is normalized by
∫

Rd+1

d~rR(~r) = O(1), R(0) = O(1).
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Then, the length scale ℓ is the correlation length and the positive and small dimensionless

parameter α quantifies the typical amplitude (standard deviation) of the fluctuations.

The problem is to characterize the wave field u(~x) in the scaling regime

λ < ℓ ∼ X ≪ L, α ∼
(
λ/L

) 1

2 ≪ 1. (4)

Here λ = 2πco/ω is the wavelength and the reference length scale is L, which is of the

order of the distance of propagation. We are particularly interested in the coherent (mean)

field E[u(~x)] and the intensity resolved over directions of propagation, the mean Wigner

transform of u(~x). Its evolution in z is governed by the one-way radiative transfer equation

that we derive.

III. MAIN RESULTS

Because the interaction of the waves with the random medium depends on the direction of

propagation, we decompose u(~x) over plane waves, using the Fourier transform with respect

to the transverse coordinates x ∈ R
d of ~x = (x, z),

û(κ, z) =

∫

Rd

dx u(x, z)e−ikκ·x. (5)

Here κ ∈ R
d is the normalized transverse wave vector, and we suppressed the wavenumber

k = ω/co in the argument of û. We show in section IV that in the scaling regime (4), the

field û(κ, z) consists of forward propagating waves with longitudinal wavenumber kβ(κ),

where

β(κ) =
√

1− |κ|2, |κ| < 1. (6)

The amplitudes of these waves (modes) are denoted by a(κ, z). They are complex-valued

z-dependent random fields which model wave scattering in the random medium.

The wave field u(~x) is given by the Fourier synthesis of the modes, the plane waves with

wave vector k~κ = k(κ, β(κ)),

u(~x) =

∫

|κ|<1

d(kκ)

(2π)d
a(κ, z)

β
1

2 (κ)
eik~κ·~x, ~x = (x, z), (7)

where have used the notation d(kκ) = kddκ for the infinitesimal volume in R
d. The mode

amplitudes are normalized by the factors β
1

2 (κ) in order to simplify the formulae that follow

[13]. In the scaling regime (4) the mode amplitudes form a Markov process whose statistical
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moments can be characterized explicitly, as explained in subsection IVC. Here we describe

the expectation of a(κ, z), which defines the coherent field, and its second moments, which

define the mean Wigner transform of u(~x).

The mean mode amplitudes are

E[a(κ, z)] = ao(κ) exp[Q(κ)z],

where ao(κ) are the amplitudes in the homogeneous medium, defined in Eq. (36) by the

source excitation. The effect of the random medium is in the complex exponent

Q(κ) = −k2α2ℓd+1

4

∫

|κ′|<1

d(kκ′)

(2π)d
1

β(κ)β(κ′)

×
∫ ∞

0

dζ

∫

Rd

drR(r, ζ)e−ikℓ
(
κ−κ

′,β(κ)−β(κ′)
)
·(r,ζ). (8)

Since R is even, the real part of Q(κ) is determined by the power spectral density R̃ defined

in (3), which is non-negative by Bochner’s theorem [14] [15]. Thus Re
[
Q(κ)

]
< 0, and the

mean amplitudes decay exponentially in z, with the decay rate

1

S(κ) = −Re
[
Q(κ)

]
. (9)

The length S(κ) is the scattering mean free path. By choosing the magnitude α of the

fluctuations as in (4), we have L ∼ S(κ), so the decay with z is significant in our scaling

regime. It is the manifestation of the randomization of the wave, due to scattering in the

medium.

The strength of the random fluctuations of the mode amplitudes is described by the

energy density (Wigner transform)

W(κ,x, z) =

∫
d(kq)

(2π)d
exp

[
ikq ·

(
∇β(κ)z + x

)]

×E

[
a
(
κ+

q

2
, z
)
a
(
κ− q

2
, z
)]

, (10)

where the bar denotes complex conjugate and the integral is over all q ∈ R
d such that

|κ± q/2| < 1. The Wigner transform satisfies the transport equation

∂zW(κ,x, z)−∇β(κ) · ∇xW(κ,x, z) =
∫

|κ′|<1

d(kκ′)

(2π)d
Q(κ,κ′)

[
W(κ′,x, z)−W(κ,x, z)

]
, (11)
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for z > 0, with differential scattering cross section

Q(κ,κ′) =
k2α2ℓd+1

4β(κ)β(κ′)
R̃

(
kℓ
(
κ− κ′

)
, kℓ
(
β(κ)− β(κ′)

))
. (12)

The total scattering cross section is

Σ(κ) =

∫

|κ′|<1

d(kκ′)

(2π)d
Q(κ,κ′) = −2Re

[
Q(κ)

]
=

2

S(κ) . (13)

Equation (11) looks like the radiative transfer equation, except that it is an initial value

problem in z, with W(κ,x, z = 0) given by the Wigner transform of mode amplitudes ao(κ)

in the homogeneous medium. As we show in subsection IIIA it is in fact a general form of

the one-way radiative transfer equation introduced recently in the biomedical imaging liter-

ature [10]. We also establish in subsection IIIB the connection between equation (11) and

the standard radiative transfer theory: We show that Eq. (11) can be obtained heuristically

from the standard radiative transfer equation by applying a forward scattering approxima-

tion. Such a calculation is heuristic, because the standard radiative transfer equation has

no rigorous derivation [8], whereas Eq. (11) is derived here from first principles. The

connection to the Itô-Schrödinger model is in subsection IIIC: We show that Eq. (11) can

be reduced to the transport equation in the paraxial geometry by taking the limit of very

small angles. Therefore Eq. (11) can be seen as a bridge between the radiative transfer and

paraxial approximation regimes.

A. Connection with the one-way radiative transfer equation

The one-way radiative transfer equation was proposed recently in [10] for the application

of diffusion optical tomography in forward-peaked scattering media. The equation is stated

in [10] in two dimensions (d+ 1 = 2),

sin θ∂zI + cos θ∂xI = µs

∫ π

0

p(θ − θ′)
[
I(θ′)− I(θ)

]
dθ′, (14)

for I(θ, x, z) the light intensity at position (x, z) in the direction (cos θ, sin θ), with θ ∈ [0, π].

The coefficient µs is the total scattering cross section and the scattering phase function

p(θ − θ′) is chosen of the Henyey-Greenstein form [10, 16],

p(θ − θ′) =
1

2π

1− g2

1 + g2 − 2g cos(θ − θ′)
, (15)
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satisfying
∫ 2π

0
p(θ)dθ = 1. Parameter g ∈ (0, 1) is the anisotropy factor and it is argued that

the one-way radiative transfer equation is valid when g ∼ 1, so scattering is forward-peaked.

The light intensity I is in fact the Wigner transform W introduced in (10), with κ =

cos θ ∈ (−1, 1). Indeed, in statistically isotropic media, i.e., R(~x) = Riso(|~x|), we obtain

from (11) (multiplied by sin θ), using that β(κ) = sin θ and ∇β(κ) = − cot θ,

sin θ∂zW + cos θ∂xW =
k3ℓ2α2

4

×
∫ π

0

dθ′ R̆iso

(
kℓ
√
2(1− cos(θ − θ′)

)[
W(θ′)−W(θ)

]
, (16)

with

R̆iso(q) =

∫ ∞

0

ds sRiso(s)J0(qs). (17)

This is exactly (14) with the identification:

µsp(θ − θ′) =
k3ℓ2α2

4
R̆iso

(
kℓ
√

2(1− cos(θ − θ′)
)
. (18)

The scattering phase function (15) is a particular case of (18), corresponding to a Lorentzian

for R̆iso, that is

R̆iso(q) =
R̆o

1 + q2
. (19)

This corresponds (through (17) and [17, formula 6.521.2]) to an autocovariance function of

the form Riso(s) = R̆oK0(s), where K0 is the Bessel function of the second kind of order zero.

This is the zeroth von Kármán correlation function [18]. It has a logarithmic divergence at

s = 0, which can be regularized by introducing an ultraviolet cutoff in (19). By substituting

(15) and (19) into (18) we obtain the anisotropy parameter and total scattering cross section

g = 1 +
1

2(kℓ)2
− 1

kℓ

√
1 +

1

4(kℓ)2
, µs =

(1− g

1 + g

)πk3ℓ2α2
R̆o

2
.

The validity condition g ∼ 1 in [10] is equivalent to λ < ℓ. This completes the proof that

(14) is a special case of our Eq. (11). It justifies the model (14), as our results in this paper

show that it can be rigorously derived from the wave equation in random media, in the

scaling regime (4).
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B. Connection to the radiative transfer theory

To connect our transport equation (11) to the standard radiative transfer theory in ran-

dom media [2, 19, 20], we let d + 1 = 3 and adhere to the notation in [2]. Following [2,

Eq. (3.42)], we define

f(~K, ~x) = π
[
− i

k

~K

|~K|
· ~∇~xu(~x) + u(~x)

]
,

where we use a different constant of proportionality than in [2], to simplify the relation in

(24). The Wigner transform W (~K, ~x) introduced in [2, Eq. (3.41)] is

W (~K, ~x) =

∫

R3

d~y

(2π)3
f
(
~K, ~x− ~y

2

)
f
(
~K, ~x+

~y

2

)
ei

~K·~y, (20)

and satisfies the transport equation [2, Eq. (4.38)]

~∇~Kω(
~K) · ~∇~xW (~K, ~x) =

∫

R3

d~K
′
σ(~K, ~K

′
)W (~K

′
, ~x)

−Σ(~K)W (~K, ~x), (21)

with dispersion relation ω(~K) = co|~K|, and integral kernel, the differential scattering cross-

section,

σ(~K, ~K
′
) =

πc2ok
2ℓ3α2

2(2π)3
R̃
[
ℓ(~K− ~K

′
)
]
δ[ω(~K)− ω(~K

′
)]. (22)

The scalar Σ(~K) is the total scattering cross section

Σ(~K) =

∫

R3

d~K
′
σ(~K, ~K

′
). (23)

Substituting (7) into (20), we obtain after some algebraic manipulations that

W (~K, ~x) =
δ
[
Kz − kβ(K/k)

]

β(K/k)
W(K/k,x, z), (24)

with W the Wigner transform (10). The Dirac factor in Eq. (24) expresses the fact that

in our scaling regime, in which the wave field has the form (7), the forward scattering

approximation is valid and the intensity resolved over directions of propagation is supported

on the wave vectors K with positive Kz. Next we rewrite the three terms of (21) to show

that the equation is equivalent to (11).
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1) Since (24) gives that W (~K, ~x) is supported at vectors ~K of the form ~K = k~κ, with

~κ = (κ, β(κ)), the operator on the left hand side of (21) is

~∇~Kω(
~K) · ~∇~x = coβ(κ)

[
∂z −∇β(κ) · ∇x

]
,

and we obtain that

~∇~Kω(
~K) · ~∇~xW (~K, ~x) = coδ

[
Kz − kβ(K/k)

]

×
[
∂z −∇β(K/k) · ∇x

]
W(K/k,x, z). (25)

2) The integral kernel in (21) is supported at ~K
′
= k~κ′, with ~κ′ = (κ′, β(κ′)), by (24),

so the Dirac distribution in (22) is

δ
[
ω(~K)− ω(k~κ′)

]
=

δ
[
Kz − kβ(K/k)

]

coβ(K/k)
.

Thus, we have
∫

R3

d~K
′
σ(~K, ~K

′
)W (~K

′
, ~x) =

cok
2ℓ3α2

4
δ
[
Kz − kβ(K/k)

]

×
∫

|κ′|<1

d(kκ′)

(2π)2
R̃
[
ℓ(K− kκ′), kℓ(β(K/k)− β(κ′))

]

β(K/k)β(κ′)
W(κ′,x, z), (26)

where |κ′| < 1 because we have only propagating waves.

3) From (23) we find that

Σ(~K) =
c2ok

2ℓ3α2

4(2π)2

∫

R3

d~K
′
δ
[
ω(~K

′
)− ω(~K)

]
R̃
(
ℓ(~K− ~K

′
)
)
,

so for ~K = k(κ, β(κ)),

Σ(~K)W (~K, ~x) =
cok

2ℓ3α2

4
δ
[
Kz − kβ(K/k)

] ∫

|κ′|<1

d(kκ′)

(2π)2

× R̃
[
ℓ(K− kκ′), ℓk(β(K/k)− β(κ′))

]

β(K/k)β(κ′)
W(K/k,x, z). (27)

Finally, substituting (25), (26), and (27) into the transport equation (21) satisfied by

W , we obtain that the Wigner transform W satisfies the transport equation (11). This

completes the proof that Eq. (11) can be obtained from the standard radiative transfer

equation (21) by applying a forward scattering approximation. However, as stated before,

there is no rigorous derivation of the standard radiative transfer equation from the wave

equation in random media. In this paper we obtain a rigorous derivation of Eq. (11) from

the wave equation in random media, in the scaling regime (4).
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C. Connection to the paraxial theory

It is shown in [12] that if λ ≪ ℓ ≪ L so that the medium Fresnel number ℓ2/(λL) ∼ 1,

and if the standard deviation α of the fluctuations is small so that α2 ∼ λ2/(ℓL), then the

inverse Fourier transform of the mode amplitudes, denoted by apa(κ, z),

ǎpa(x, z) =

∫

|κ|<1

d(kκ)

(2π)d
apa(κ, z)e

ikκ·x,

satisfies the random paraxial wave equation (or Itô-Schrödinger model) [12]

dǎpa(x, z) =
i

2k
∆xǎpa(x, z)dz +

ik

2
ǎpa(x, z) ◦ dB(x, z). (28)

Here B is the Brownian field i.e., a Gaussian process with mean zero and covariance

E[B(x, z)B(x′, z′)] = α2ℓmin(z, z′)C
(x− x′

ℓ

)
, C(r) =

∫ ∞

−∞

dζ R(r, ζ).

The symbol ◦ stands for the Stratonovich integral. This integral is the suitable form of

stochastic integral for the Itô-Schrödinger model as shown in [12], and as could be predicted

by the general Wong-Zakai theorem [21]. Alternatively, we can characterize apa(κ, z) as the

solution of

dǎpa(x, z) =
i

2k
∆xǎpa(x, z)dz +

ik

2
ǎpa(x, z)dB(x, z)− k2ℓα2C(0)

8
ǎpa(x, z)dz,

where the stochastic integral is now understood in the usual Itô’s form.

The derivation of (28) from the wave equation in random media, given in [12], involves

two main steps: first show that the forward scattering approximation is valid; second show

that the effect of the fluctuations of the random medium on the wave field can be captured

in distribution by a white noise (in z) model.

Using the Itô-Schrödinger model (28) we find by Itô’s formula that the mean field

Ǎpa(x, z) = E[ǎpa(x, z)] satisfies

∂zǍpa(x, z) =
i

2k
∆xǍpa(x, z)−

k2ℓα2C(0)

8
Ǎpa(x, z).

It decays with z on the scale

Spa =
8

k2ℓα2C(0)
=

8

k2ℓα2
∫∞

−∞
dζ R(0, ζ)

,
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which corresponds to the scattering mean free path S(κ) defined by (8-9), for λ ≪ ℓ and

|κ| = O(λ/ℓ).

The Wigner transform is

Wpa(K,x, z) =

∫

Rd

dy eiK·y
E

[
ǎpa
(
x− y

2
, z
)
ǎpa
(
x+

y

2
, z
)]

=

∫

Rd

d(kq)

(2π)d
eikq·xE

[
apa
(K
k

+
q

2
, z
)
apa
(K
k

− q

2
, z
)]
,

which corresponds to (10) for K = kκ and |κ| = O(λ/ℓ). Using Itô’s formula it is shown in

[12] to satisfy the transport equation

∂zWpa +
1

k
K · ∇xWpa =

k2ℓd+1α2

4

∫

Rd

dK′

(2π)d
R̃
(
ℓ(K−K

′), 0
)[
Wpa(K

′)−Wpa(K)
]
, (29)

with differential scattering cross section

Qpa(K,K′) =
k2ℓd+1α2

4
R̃
(
ℓ(K−K

′), 0
)

corresponding to (12) for K = kκ, K′ = kκ′, and |κ|, |κ′| = O(λ/ℓ).

This establishes the connection between Eq. (11) and the transport equation (29) derived

in [12]. Together with the result in section IIIB it completes the proof that Eq. (11) is a

bridge between the radiative transfer and paraxial approximation regimes.

We end the section with the note that, as shown for instance in [1, Chapter 13], the radia-

tive transfer equation in the white-noise paraxial regime (29) can also be derived heuristically

from the standard radiative transfer equation in the “approximation of large particles”, or

equivalently in the “small angle approximation”, which corresponds to a random medium

with large correlation radius.

IV. DERIVATION OF RESULTS

To derive the transport equation (11) from the wave equation, we use multiscale analysis

and probabilistic limit theorems. The asymptotic regime of separation of scales (4) is defined

in terms of three small dimensionless parameters

ε =
λ

L
, γ =

λ

ℓ
, η =

λ

X
, (30)
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ordered as

0 < ε ≪ γ ∼ η < 1,

and the standard deviation α of the fluctuations of the random medium is of order ε
1

2 . We

begin with the wave decomposition, and obtain a stochastic system of differential equations

satisfied by the mode amplitudes. We consider both forward and backward going waves, but

then show that we can neglect the backward waves in the limit ε → 0 (subsection IVC).

The ε → 0 limit of the mode amplitudes defines the Markov process whose expectation and

Wigner transform are described in section III.

A. Scaled equation

We let L be the reference length scale, which is similar to the distance of propagation, and

introduce the scaled length variables x′ = x/(εL), z′ = z/L, L′ = L/L = 1, ℓ′ = ℓ/L = ε/γ

andX ′ = X/L = ε/η. The scaled standard deviation is α′ = α/ε1/2. The scaled wavenumber

is k′ = kLε = 2π.

Let us denote the wave field by uε. Substituting in (1) and dropping all the primes, as

all the variables are scaled henceforth, we obtain

{
∂2
z +

1

ε2
∆x +

k2

ε2

[
1 + ε

1

2αν
(
γx,

γz

ε

)]}
uε(x, z) = −1

ε
F
(
ηx
)
δ(z), (31)

for 0 ≤ z ≤ L. At ranges z < 0 and z > L the equations are simpler, as the term involving

the process ν vanishes. Since the wave field depends linearly on the source, we scaled F by

1/ε to obtain an order one result in the limit ε → 0.

B. Wave decomposition

We decompose the field uε(x, z) in plane waves using the Fourier transform with respect

to x ∈ R
d, as in (5):

ûε(κ, z) =

∫

Rd

dx uε(x, z)e−ikκ·x. (32)

The transformed field ûε(κ, z) is a superposition of forward and backward going waves

(modes) along z, as explained next. To ease the explanation we begin with the reference

case in the homogeneous medium, and then consider the random medium.
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1. Homogeneous media

The transformed field in homogeneous media ûε
o(κ, z) satisfies the ordinary differential

equation

∂2
z û

ε
o(κ, z) +

k2

ε2
β(κ)2ûε

o(κ, z) = − 1

εηd
F̂
(kκ

η

)
δ(z), (33)

with β(κ) defined in (6) and F̂ the Fourier transform of F ,

F̂ (q) =

∫

Rd

F (r)e−iq·rdr. (34)

The solution is outgoing and bounded away from the source, and it is given explicitly, for

z 6= 0, by

ûε
o(κ, z) =

ao(κ)

β
1

2 (κ)
e

ik
ε
β(κ)z1(0,∞)(z) +

bo(κ)

β
1

2 (κ)
e−

ik
ε
β(κ)z1(−∞,0)(z). (35)

Thus, the wave field

uε
o(x, z) =

∫

|κ|<1

d(kκ)

(2π)d
ûε
o(κ, z)e

ikκ·x

is a synthesis of plane waves with wave vectors k
(
κ,±β(κ)

)
. The plus sign corresponds to

forward going waves, and the negative sign to backward going waves. The amplitudes are

determined by the jump conditions at the source

ûε
o(κ, 0+)− ûε

o(κ, 0−) = 0,

∂zû
ε
o(κ, 0+)− ∂zû

ε
o(κ, 0−) = − 1

εηd
F̂
(kκ

η

)
,

which gives

ao(κ) = bo(κ) =
i

2kηdβ
1

2 (κ)
F̂
(kκ

η

)
. (36)

The radius of the support of F̂ (q) is one, so the scaling parameter η controls the support

in κ of the wave modes generated by the source i.e., the opening angle of the initial wave

beam. Consistent with (4) and (30), we assume henceforth that

η

k
< 1. (37)

so that in (36) we have |κ| ≤ η/k < 1. Then β(κ) defined by (6) is real valued, and there

are no evanescent waves in the decomposition (35).
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2. Random media

The field ûε(κ, z) in the random medium satisfies the equation

∂2
z û

ε +
k2

ε2
β(κ)2ûε + 1(0,L)(z)Mεûε = − 1

εηd
F̂
(kκ

η

)
δ(z), (38)

derived from (31), with radiation conditions at z < 0 and z > L, and source conditions at

z = 0. The leading O(1/ε2) term in the right hand side is the same as in the homogeneous

medium, so we can use a similar wave decomposition to that in section IVB1. The random

perturbation is in the operator Mε defined by

Mεûε(κ, z) =
ikα

ε
1

2γd

∫
d(kκ′)

(2π)d

ν̂
(

k(κ−κ
′)

γ
, γz

ε

)

[β(κ)β(κ′)]
1

2

ûε(κ′, z),

where ν̂ is the Fourier transform of ν with respect to the first argument in R
d as in (34).

The wave decomposition is

aε(κ, z) =
1

2

(
β(κ)

1

2 ûε(κ, z) +
ε

ikβ(κ)
1

2

∂zû
ε(κ, z)

)
e−

ik
ε
β(κ)z ,

bε(κ, z) =
1

2

(
β(κ)

1

2 ûε(κ, z)− ε

ikβ(κ)
1

2

∂zû
ε(κ, z)

)
e

ik
ε
β(κ)z,

so that we can write as in the homogeneous medium

ûε(κ, z) =
1

β(κ)
1

2

(
aε(κ, z)e

ik
ε
β(κ)z + bε(κ, z)e−

ik
ε
β(κ)z

)
, (39)

∂zû
ε(κ, z) =

ikβ(κ)
1

2

ε

(
aε(κ, z)e

ik
ε
β(κ)z − bε(κ, z)e−

ik
ε
β(κ)z

)
. (40)

The forward and backward going wave amplitudes aε(κ, z) and bε(κ, z) are no longer con-

stant, but random fields due to scattering in the range interval z ∈ (0, L). The medium is

homogeneous outside this interval and we have the radiation conditions

aε(κ, z) = 0 if z < 0 and bε(κ, z) = 0 if z ≥ L. (41)

Moreover, aε(κ, z) = aε(κ, L) for z > L, and bε(κ, z) = bε(κ, 0−) for z < 0.

The jump conditions at the source are as in section IVB1, and give

aε(κ, 0+) = ao(κ) and bε(κ, 0−) = bo(κ) + bε(κ, 0+). (42)

As expected, the forward going waves leaving the source are the same as in the homogeneous

medium, because the scattering effects in the random medium manifest only at long distances
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of propagation. The waves at z < 0 are given by the superposition of those emitted by the

source, modeled by bo(κ), and the waves backscattered by the random medium, modeled by

bε(κ, 0+).

To determine the amplitudes in the random medium, we substitute equations (39)-(40)

into (38). We obtain that

∂z


aε(κ, z)

bε(κ, z)


 =

ikα

2γdε
1

2

∫
d(kκ′)

(2π)d
ν̂
(k(κ− κ′)

γ
,
γz

ε

)

×Γ
(
κ,κ′,

z

ε

)

aε(κ′, z)

bε(κ′, z)


 , (43)

in z ∈ (0, L), with boundary conditions (41)-(42). We are interested in the propagating

waves, corresponding to |κ| < 1 in (43), and we explain in section IVC that in our regime

the evanescent waves may be neglected. The 2× 2 complex matrices

Γ(κ,κ′, ζ) =


Γaa(κ,κ′, ζ) Γab(κ,κ′, ζ)

Γba(κ,κ′, ζ) Γbb(κ,κ′, ζ)


 , (44)

couple the mode amplitudes. The superscripts on their entries indicate which types of waves

they couple. We have

Γaa(κ,κ′, ζ) =
eik[β(κ

′)−β(κ)]ζ

β
1

2 (κ)β
1

2 (κ′)
, Γab(κ,κ′, ζ) =

e−ik[β(κ′)+β(κ)]ζ

β
1

2 (κ)β
1

2 (κ′)
,

Γbb(κ,κ′, ζ) =− Γaa(κ,κ′, ζ), Γba(κ,κ′, ζ) = −Γab(κ,κ′, ζ), (45)

where the bar denotes complex conjugate, and substituting in (43) we obtain the energy

conservation identity

∫

|κ|<1

d(kκ)

(2π)d

[
|aε(κ, z)|2 − |bε(κ, z)|2

]
= constant in z.

C. The Markov limit

Here we describe the ε → 0 limit of the solution of (43) with boundary conditions (41)-

(42). We begin in section IVC1 by writing the solution in terms of propagator matrices,

and show in section IVC2 that we can neglect the backward and evanescent waves. The

limit of the forward going amplitudes is in section IVC3.
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1. Propagator matrices

The 2× 2 propagator matrices Pε(κ, z;κo) are solutions of

∂zP
ε(κ, z;κo) =

ikα

2γdε
1

2

∫

|κ′|<1

d(kκ′)

(2π)d
ν̂
(k(κ− κ′)

γ
,
γz

ε

)

×Γ
(
κ,κ′,

z

ε

)
Pε(κ′, z;κo), (46)

for z > 0, with initial condition Pε(κ, z = 0;κo) = δ(κ− κo)I, where I is the 2× 2 identity

matrix. They allow us to write the solution of (43) as


aε(κ, z)

bε(κ, z)


 =

∫

|κo|<1

dκo P
ε(κ, z;κo)


 ao(κo)

bε(κo, 0)


 , (47)

for all z > 0. In particular, when z = L, the backward going amplitude bε(κ, L) in the left

hand side vanishes by (41).

2. The forward scattering approximation

Equation (47) shows that the interaction of the forward and backward going wave ampli-

tudes aε and bε depends on the coupling of the entries of the propagator. The ε → 0 limit

of the propagator

Pε(κ, z;κo) =


P aa,ε(κ, z;κo) P ab,ε(κ, z;κo)

P ba,ε(κ, z;κo) P bb,ε(κ, z;κo)




can be obtained and identified as a Markov process that satisfies a system of stochastic

differential equations. We refer to [22, 23] and appendix A for details. Here we state the

results.

The stochastic differential equations for the limit entries of P ab,ε(κ, z;κo) and P ba,ε(κ, z;κo)

are coupled to the limit entries of P aa,ε(κ′, z;κo) and P bb,ε(κ′, z;κo) through the coefficients

R̃

(
k(~κ− ~κ

′−)

γ

)
= R̃

(
k(κ− κ′)

γ
,
k(β(κ) + β(κ′))

γ

)
,

where R̃ is the power spectral density (3) and ~κ = (κ, β(κ)) and ~κ− = (κ,−β(κ)) are

the wave vectors of the forward and backward going waves. The second argument in these
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coefficients comes from the phase factors ±k(β(κ) + β(κ′))ζ in the matrices Γab and Γba.

The coupling between P aa,ε(κ, z;κo) and P aa,ε(κ′, z;κo) is through the coefficients

R̃

(
k(~κ− ~κ′)

γ

)
= R̃

(
k(κ− κ′)

γ
,
k(β(κ)− β(κ′))

γ

)
,

because the phase factors in matrices Γaa are k(β(κ)− β(κ′))ζ . The matrices Γbb have the

same factors so the same coefficients couple the entries P bb,ε.

We conclude that the coupling of the entries of the propagator and therefore the inter-

action of the waves depends on the decay of the power spectral density R̃. We now explain

that when the mode amplitudes are supported initially at |κ| ≤ η/k < 1, and γ is as in (30),

we can neglect the backward going waves over distances of propagation of order L.

The power spectral density R̃(~q) is negligible when |~q| > 1, so R̃(k~κ/γ) is negligible

when |~κ| > γ/k. From (4) and (30), it is possible to choose some κ
M

∈ (η/k, 1) such that γ

satisfies
kβ(κM)

γ
> 1. (48)

Then, for all κ′ satisfying |κ′| < κ
M
, the coupling coefficients between P aa,ε and P ab,ε vanish

because
k|~κ− ~κ

′−|
γ

≥ k(β(κ) + β(κ′))

γ
≥ kβ(κM)

γ
> 1,

and R̃
(
k(~κ−~κ

′−)/γ
)
is negligible. This implies the asymptotic decoupling of aε and bε, and

due to the homogeneous boundary condition bε(κ, L) = 0, we conclude that we can neglect

the backward going waves in the limit ε → 0.

The forward going amplitudes interact with each other, because the coupling coefficients

of the entries P aa,ε of the propagator are large for at least a subset of transverse wave vectors

satisfying |κ|, |κ′| ≤ κ
M

and

|κ− κ′|, |β(κ)− β(κ′)| < γ

k
.

Due to this coupling there is diffusion of energy from the waves emitted by the source with

|κ| < η/k, to waves at larger values of |κ|. This is why we take κ
M

> η/k in (48). By

assuming that aε(κ, z) are supported at |κ| ≤ κ
M

< 1 we essentially restrict z by ZM ,

so that the energy does not diffuse to waves with |κ| > κ
M

for z ≤ Z
M
. Physically, the

wave vectors (κ, β(κ)) of the forward going waves remain within a cone with opening angle

smaller than 180 degrees.
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We will see that the evolution of the κ-distribution of the wave energy is described by

a radiative transfer equation, which means that the wave energy undergoes a random walk

(or diffusion). We can estimate from Eq. (59) that the diffusion coefficient is of the order

α2γ, so the κ-distribution of the wave energy reaches κ
M

after a propagation distance of the

order of Z
M
, such that α2γZ

M
= κ2

M
. In dimensional units, this means α2Z

M
/ℓ = κ2

M
. Since

α2L/ℓ = (α2L/λ)(λ/ℓ) < 1 by (4), it is possible to choose Z
M
∼ L and a suitable κ

M
< 1.

The evanescent waves can only couple with the propagating waves with wave vectors of

magnitude close to 1. Thus, as long as the energy of the wave is supported at |κ| < κ
M
,

assumption (48) implies that the evanescent waves do not get excited.

3. Markov limit of the forward going mode amplitudes

We just explained that in the limit ε → 0 we can can neglect all the backward going

waves and the evanescent ones. It remains to describe the limit of the forward going wave

amplitudes aε(κ, z) which satisfy the initial value problem

∂za
ε(κ, z) =

ikα

2γdε
1

2

∫

|κ′|<1

d(kκ′)

(2π)d
ν̂
(k(κ− κ′)

γ
,
γz

ε

)

×Γaa
(
κ,κ′,

z

ε

)
aε(κ′, z), (49)

for z > 0, and the initial condition aε(κ, 0) = ao(κ). These equations conserve energy,

meaning that for all ε > 0 and all z ≥ 0,

∫

|κ|<1

d(kκ)

(2π)d
|aε(κ, z)|2 =

∫

|κ|<1

d(kκ)

(2π)d
|ao(κ)|2 . (50)

The details of the ε → 0 limit of aε(κ, z) are in appendix A. In particular, we explain

there that the process

Xε(z) =


Re

(
aε(κ, z))

Im
(
aε(κ, z))



κ∈O

for O = {κ ∈ R
d, |κ| < 1}, (51)

converges weakly in C([0, L],D′) to a Markov process X(z), where D′ is the space of dis-

tributions, dual to the space D(O,R2) of infinitely differentiable vector valued functions in

R
2, with compact support. The generator of X(z) is given in appendix A, and we denote

henceforth the limit amplitudes by (a(κ, z))κ∈O = X1(z) + iX2(z). Their first and second

moments are described in the next two sections.
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D. The coherent field

The coherent wave field is

E
[
uε
(x
ε
, z
)]

≈
∫

|κ|<1

d(kκ)

(2π)d
E[a(κ, z)]

β
1

2 (κ)
ei

k
ε
~κ·~x,

where we replaced E[aε(κ, z)] by its ε → 0 limit E[a(κ, z)]. As explained in appendix A, the

mean field A(κ, z) = E[a(κ, z)] satisfies the initial value problem

∂zA(κ, z) = Q(κ)A(κ, z), z > 0, (52)

with initial condition A(κ, 0) = ao(κ), and Q(κ) given by

Q(κ) = − k2α2

4γd+1

∫

|κ′|<1

d(kκ′)

(2π)d
1

β(κ)β(κ′)

×
∫ ∞

0

dζ

∫

Rd

drR(r, ζ)e−i k
γ

(
κ−κ

′,β(κ)−β(κ′)
)
·(r,ζ). (53)

This is the same as (8) in our scaling.

The solution of (52) is

A(κ, z) = exp
[
Q(κ)z

]
ao(κ), (54)

so as stated in section III, the random medium effects do not average out. The mean

amplitudes are not the same as the amplitudes in the homogeneous medium at z > 0, and

they decay with z on the κ dependent scales S(κ) = −1/Re[Q(κ)], the scattering mean free

paths. The real part of Q(κ), which is non-positive, is an effective diffusion term in (52),

which removes energy from the mean field and gives it to the incoherent fluctuations. This

is due to the randomization or loss of coherence of the waves. The imaginary part of Q(κ) is

an effective dispersion term, which does not remove energy from the mean field and ensures

causality[24].

E. The one-way radiative transfer equations

The mean intensity in the direction of κ is

I(κ, z) = lim
ε→0

E
[
|aε(κ, z)|2

]
, (55)

and it evolves in z > 0 as modeled by equation

∂zI(κ, z) =
∫

|κ′|<1

d(kκ′)

(2π)d
Q(κ,κ′)

[
I(κ′, z)− I(κ, z)

]
, (56)
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with initial condition I(κ, 0) = |ao(κ)|2 (see Appendix A). The differential scattering cross

section

Q(κ,κ′) =
k2α2

4γd+1β(κ)β(κ′)
R̃

(k
γ

(
κ− κ′, β(κ)− β(κ′)

))

is the same as (12) in our scaling, and from (53) we see that −2Re[Q(κ)] equals the total

scattering cross section

−2Re[Q(κ)] =

∫

|κ′|<1

d(kκ′)

(2π)d
Q(κ,κ′). (57)

We also note that the intensities satisfy the conservation identity

∫

|κ|<1

d(kκ)

(2π)d
I(κ, z) =

∫

|κ|<1

d(kκ)

(2π)d
|ao(κ)|2, for all z > 0,

which is consistent with (50).

Using the generator of the Markov limit process X(z) given in appendix A, we can also

calculate the ε → 0 limit of the second moments E
[
aε(κ, z)aε(κ′, z)

]
of the mode amplitudes.

We obtain that when κ 6= κ′,

lim
ε→0

E

[
aε(κ, z)aε(κ′, z)

]
= lim

ε→0
E[aε(κ, z)]E[aε(κ′, z)],

meaning that the waves traveling in different directions are asymptotically decorrelated [25].

This is because these waves see different regions of the random medium. It is only when the

waves propagate in similar directions i.e., |κ′ − κ| = O(ε), that the mode amplitudes are

correlated, so we define the energy density (Wigner transform) as

W(κ,x, z) = lim
ε→0

∫
d(kq)

(2π)d
exp

[
ikq ·

(
∇β(κ)z + x

)]

×E

[
aε
(
κ+

εq

2
, z
)
aε
(
κ− εq

2
, z
)]

. (58)

It satisfies the transport equation

∂zW(κ,x, z)−∇β(κ) · ∇xW(κ,x, z)

=

∫

|κ′|<1

d(kκ′)

(2π)d
Q(κ,κ′)

[
W(κ′,x, z)−W(κ,x, z)

]
, (59)

for z > 0, as stated in section III. When the initial condition ao(κ) is smooth in κ, we have

from (58) that

W(κ,x, 0) = δ(x)|ao(κ)|2,

21



and therefore at z > 0

W(κ,x, z) = δ
(
x+∇β(κ)z

)
I(κ, z).

This shows that the energy is transported on the characteristic

x = −∇β(κ)z =
κ

β(κ)
z.

V. THE HIGH-FREQUENCY LIMIT

In the high-frequency limit γ → 0 the transport equations simplify. We quantify the

scattering mean free paths in this limit, and show how to derive the diffusion approximation

and paraxial model from the transport equations (59).

A. Quantification of scattering mean free paths

If we expand in powers of γ the right hand side of (57), we obtain the following expression

of the scattering mean free paths

S(κ) = − 1

Re
[
Q(κ)

] = 8γβ2(κ)

k2α2
∫∞

−∞
dζ R

(
κζ
β(κ)

, ζ
) +O(γ2).

They are of order γ and decrease as the negative power of 2 with the frequency ω = kco,

meaning that higher frequency waves lose coherence faster. We also expect that S(κ) de-

crease monotonically with |κ|, because a plane wave mode with wavevector k(κ, β(κ)) travels

the distance z/β(κ) in the random medium when it propagates up to z. The closer |κ| is
to one, the longer the distance and thus, the faster the loss of coherence quantified by the

scale S(κ). The monotone dependence of S(κ) on |κ| can be seen explicitly in statistically

isotropic media, where R(~x) = Riso(|~x|), and

R

( κζ

β(κ)
, ζ
)
= Riso

(√
|κ|2ζ2
β2(κ)

+ ζ2

)
= Riso

( |ζ |
β(κ)

)
.

Then

S(κ) = 4γβ(κ)

k2α2
∫∞

0
dζ Riso(ζ)

+ O(γ2),

and the decay with |κ| is captured by β(κ) =
√

1− |κ|2.
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B. The diffusion approximation

The mean mode intensities I(κ, z) defined in (55) satisfy (56), with initial condition at

z = 0 derived from (36):

I(κ, 0) = 1

4k2β(κ)η2d

∣∣∣F̂
(kκ

η

)∣∣∣
2

.

This is independent of γ and for fixed η.

The diffusion model is obtained by expanding Eq. (56) in powers of γ. We obtain that

∂zI(κ, z) ≈ γ

[ d∑

j,l=1

Ajl(κ)∂
2
κjκl

+ γ
d∑

j=1

Bj(κ)∂κj

]
I(κ, z), (60)

where the approximation means that we neglect higher powers in γ, and the diffusion and

drift coefficients are independent of k and γ:

Ajl(κ) =− α2

8β(κ)2

∫ ∞

−∞

dζ ∂2
rjrl

R

( κζ

β(κ)
, ζ
)
, j, l = 1, . . . , d,

and

Bj(κ) =
d∑

l,m=1

α2∂2
κlκM

β(κ)

8β(κ)2

∫ ∞

−∞

dζ ζ∂3
rjrlrm

R

( κζ

β(κ)
, ζ
)

−
d∑

l=1

α2κl

4β(κ)4

∫ ∞

−∞

dζ ∂2
rjrl

R

( κζ

β(κ)
, ζ
)
, j = 1, . . . , d.

Note that the diffusion is the dominant term in (60).

C. The paraxial approximation

The paraxial (beam-like) propagation model is for a large diameter X of the support of

the source with respect to the wavelength, so that η → 0. The result depends on the order

in which we take the limits η → 0 and γ → 0, as we now explain.

In regimes with λ ≪ ℓ = X , where η = γ, the rescaled intensity

Ires(κ, z) = γ2dI
(
γκ, γz

)

satisfies in the limit γ → 0 the equation

∂zIres =
k2α2

4

∫

Rd

d(kκ′)

(2π)d
R̃
(
k(κ− κ′), 0

)[
Ires(κ

′)− Ires(κ)
]
, (61)
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with initial condition Ires(κ, 0) =
∣∣F̂ (kκ)

∣∣2/[4k2β(κ)]. This is the transport equation for

the random paraxial wave equation, as explained in subsection IIIC.

In regimes with λ ≪ ℓ ≪ X , analyzed with the sequence of limits γ → 0, followed by

η → 0, the rescaled intensity

Ires(κ, z) = η2dI
(
ηκ,

η2

γ
z
)

satisfies the diffusion equation

∂zIres =

d∑

j,l=1

Dres,jl∂
2
κjκl

Ires, (62)

with initial condition Ires(κ, 0) =
∣∣F̂ (kκ)

∣∣2/[4k2β(κ)] and diffusion tensor Dres,jl given by

Dres,jl = −α2

8

∫ ∞

−∞

dζ ∂2
rjrl

R(0, ζ) = lim
|κ|→0

Ajl(κ),

for j, l = 1, . . . , d. This result was derived in [12, 26–28] starting from the paraxial wave

equation. We recovered it here because in the regime with λ ≪ ℓ ≪ X we have a narrow

cone beam propagating through a random medium.

Note that equation (62) can also be derived formally from the radiative transfer equa-

tion (21). First, one considers that scattering is sharply peaked in the forward scattering

direction, so that it is possible to take the Fokker-Planck approximation, that is to say, the

right-hand side of (21) can be approximated by a diffusion operator in ~K [29, 30]. Second,

one considers that the source emission is sharply peaked and that the propagation distance

is short enough so that the wave remains in the form of a narrow cone beam.

VI. SUMMARY

The one-way radiative transfer equation describes the evolution of the intensity of the

waves resolved over directions, the Wigner transform, in forward-peaked scattering regimes.

We derived it using multiscale analysis and probabilistic limits, starting from the wave

equation in random media. The scattering regime with small random fluctuations of the

wave speed and long distances of propagation over which cumulative scattering becomes

significant leads to waves propagating forward in a wide angular cone. It bridges between

two known regimes: The first is the radiative transfer regime where waves propagate in

24



all directions and the Wigner transform satisfies a boundary value problem. The second is

the paraxial regime, where waves propagate in a narrow angle cone. We established this

bridge by connecting the one-way radiative transfer equation to the equations for the Wigner

transform in these two regimes.
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Appendix A: The Markov limit

Let O be an open set in R
d and D(O,R2) the space of infinitely differentiable functions

with compact support. We consider the process Xε in the space C([0, L],D′(O,R2)) of

continuous functions of z. It is the solution of

dXε

dz
=

1√
ε
F
(z
ε
,
z

ε

)
Xε, (A1)

where F(ζ, ζ ′) is a random linear operator from D′ to D′. Here D′ denotes the space of

distributions, dual to D(O,R2). We assume that the mapping ζ → F(ζ, ζ ′) is stationary

and possesses strong ergodic properties, and that F(ζ, ζ ′) has mean zero. Moreover, the

mapping ζ ′ → F(ζ, ζ ′) is periodic.

We are interested in particular in equation (49), that can be put into the form (A1) if we

define the process Xε as (51) and the operator F(ζ, ζ ′) as

〈F(ζ, ζ ′)X,φ〉 =
2∑

j=1

∫

O

d(kκ)

(2π)d
[F(ζ, ζ ′)X]j(κ)φj(κ)

=

∫

O

d(kκ)

(2π)d
φ(κ) ·

∫

O

d(kκ′)

(2π)d
F(κ,κ′, ζ, ζ ′)X(κ′), (A2)

for φ ∈ D(O,R2) with components φj and X ∈ D′(O,R2) with components Xj . The kernel

matrix F(κ,κ′, ζ, ζ ′) is given by

F =


Fr −Fi

Fi Fr


 , (A3)
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in terms of

F
r(κ,κ′, ζ, ζ ′) = Re

[ikα
2γd

ν̂
(k(κ− κ′)

γ
, γζ
)
Γaa
(
κ,κ′, ζ ′

)]
, (A4)

F
i(κ,κ′, ζ, ζ ′) = Im

[ikα
2γd

ν̂
(k(κ− κ′)

γ
, γζ
)
Γaa
(
κ,κ′, ζ ′

)]
, (A5)

where we recall from (45) the expression of Γaa(κ,κ′, ζ ′). The adjoint operator F∗(ζ, ζ ′) is

defined by

〈F(ζ, ζ ′)X,φ〉 = 〈X,F∗(ζ, ζ ′)φ〉

forφ ∈ D(O,R2) andX ∈ D′(O,R2), and has matrix kernelF∗(κ,κ′, ζ, ζ ′) = F(κ′,κ, ζ, ζ ′)T ,

where the superscript T stands for transpose.

To obtain the Markov limit we use the results in [23] (the interested reader may first

read [31, Chap. 6] for a self-contained introduction to such limit theorems). They give that

Xε(z) converges weakly in C([0, L],D′) to X(z), the solution of a martingale problem with

generator L defined by

Lf(〈X,φ〉) =
∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dhE
[
〈X,F∗(0, h)φ〉 〈X,F∗(ζ, ζ + h)φ〉

]

× f ′′(〈X,φ〉)

+

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dhE
[
〈X,F∗(0, h)F∗(ζ, ζ + h)φ〉

]

× f ′(〈X,φ〉), (A6)

for any X ∈ D′(O,R2), φ ∈ D(O,R2), and smooth f : R → R. This means that, for any

φ ∈ D(O,R2) and smooth function f : R → R, the real-valued process

f
(
〈X(z),φ〉

)
−
∫ z

0

dz′ Lf
(
〈X(z′),φ〉

)

is a martingale. More generally, if n ∈ N, φ(1), . . . ,φ(n) ∈ D(O,R2), and f : Rn → R is a

smooth function, then

f
( 〈

X(z),φ(1)
〉
, . . . ,

〈
X(z),φ(n)

〉 )

−
∫ z

0

dz′ L(n)f
( 〈

X(z′),φ(1)
〉
, . . . ,

〈
X(z′),φ(n)

〉 )
(A7)
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is a martingale, where

L(n)f
( 〈

X,φ(1)
〉
, . . . ,

〈
X,φ(n)

〉 )
=

n∑

j,l=1

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dhE
[ 〈

X,F∗(0, h)φ(j)
〉

×
〈
X,F∗(ζ, ζ + h)φ(l)

〉 ]
∂2
jlf(
〈
X,φ(1)

〉
, . . . ,

〈
X,φ(n)

〉 )

+
n∑

j=1

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dhE
[ 〈

X,F∗(0, h)F∗(ζ, ζ + h)φ(j)
〉 ]

× ∂jf(
〈
X,φ(1)

〉
, . . . ,

〈
X,φ(n)

〉 )
. (A8)

To calculate the first moment of the limit process X(z), let n = 1 and f(y) = y in

(A7)-(A8). We find that

dE
[
〈X(z),φ〉

]

dz
= E

[
〈X(z),H∗φ〉

]
,

where

H∗ =

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dhE
[
F∗(0, h)F∗(ζ, ζ + h)

]
.

This shows that

X (z) = E
[
X(z)

]

satisfies a closed system of ordinary differential equations

d 〈X (z),φ〉
dz

= 〈X (z),H∗φ〉 ,

or, equivalently in D′,
dX (z)

dz
= HX (z), (A9)

where H is the adjoint of H∗. The kernel matrix of H is H(κ′,κ) = H∗(κ,κ′)T . Recalling

from (A2)-(A5) the expression of the kernel F(κ′,κ, ζ, ζ ′)T of F∗(ζ, ζ ′), we obtain that the

matrix kernel H∗(κ′,κ) of H∗ is

H∗
jl(κ,κ

′) =
2∑

q=1

∫

O

d(kκ′′)

(2π)d

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dh

×E
[
Flq(κ

′,κ′′, ζ, ζ + h)Fqj(κ
′′,κ, 0, h)

]
,
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for j, l = 1, 2. For instance,

H∗
11(κ,κ

′) =

∫

O

d(kκ′′)

(2π)d

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dh

× E
[
F

r(κ′,κ′′, ζ, ζ + h)Fr(κ′′,κ, 0, h)
]

−
∫

O

d(kκ′′)

(2π)d

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dh

× E
[
F

i(κ′,κ′′, ζ, ζ + h)Fi(κ′′,κ, 0, h)
]
,

and using (A4)-(A5), we get

H∗
11(κ,κ

′) =Re
{(ikα

2γd

)2 ∫

O

d(kκ′′)

(2π)d

∫ ∞

0

dζ lim
Z→∞

1

Z

∫ Z

0

dh

× E

[
ν̂
(k(κ′ − κ′′)

γ
, γζ
)
ν̂
(k(κ′′ − κ)

γ
, 0
)]

×
[
Γaa(κ′,κ′′, ζ + h)Γaa(κ′′,κ, h)

]}
.

Moreover, using the identity

E

[
ν̂
(k(κ′ − κ′′)

γ
, γζ
)
ν̂
(k(κ′′ − κ)

γ
, 0
)]

=

(
2πγ

)d
δ
(
k(κ− κ′)

)
R̂

(k(κ− κ′′)

γ
, γζ
)
,

with

R̂(q, ζ) =

∫

Rd

R(r, ζ)e−iq·rdr,

derived from the definition of the autocovariance function with straightforward algebraic

manipulations, and obtaining from (45) that

Γaa(κ,κ′′, ζ + h)Γaa(κ′′,κ, h) =
1

β(κ)β(κ′′)
eik(β(κ

′′)−β(κ))ζ ,

we get

H∗
11(κ,κ

′) = −k2α2

4γd
Re
{∫

O

d(kκ′′)

(2π)d

∫ ∞

0

dζ R̂
(k(κ− κ′′)

γ
, γζ
)

×eik(β(κ
′′)−β(κ))ζ (2π)d

β(κ)β(κ′′)
δ
(
k(κ− κ′)

)}
.

The expressions of the other components of H∗
jl(κ,κ

′) are of the same type. Substituting

into (A9) we obtain the explicit expression of the differential equations satisfied by the mean

wave amplitudes. This is equation (52), written in complex form.

28



The calculation of the second moments is similar, by letting n = 1 and f(y) = y2 in (A8),

and carrying the lengthy calculations.
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[6] D. Vollhardt and P. Wölfle, Physical Review B 22, 4666 (1980).

[7] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press,

Cambridge, 1995).
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