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Abstract

We derive from first principles a one-way radiative transfer equation for the wave intensity
resolved over directions (Wigner transform of the wave field) in random media. It is an initial
value problem with excitation from a source which emits waves in a preferred, forward direction.
The equation is derived in a regime with small random fluctuations of the wave speed but long
distances of propagation with respect to the wavelength, so that cumulative scattering is significant.
The correlation length of the medium and the scale of the support of the source are slightly larger
than the wavelength, and the waves propagate in a wide cone with opening angle less than 180, so
that the backward and evanescent waves are negligible. The scattering regime is a bridge between
that of radiative transfer, where the waves propagate in all directions and the paraxial regime,
where the waves propagate in a narrow angular cone. We connect the one-way radiative transport

equation with the equations satisfied by the Wigner transform of the wave field in these regimes.
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I. INTRODUCTION

Light propagation in scattering media can be modeled by a boundary value problem
for the radiative transfer equation [1-3]. The light intensity resolved over directions, also
known as the Wigner transform of the wave field, satisfies this equation with incoming
boundary conditions on the illuminated part of the boundary, and outgoing conditions on
the remainder of the boundary. The problem is of interest in applications such as optical
tomography, where structural variations in tissue are to be determined from measurements

of scattered light [4].

The derivation of the radiative transfer equation from the wave equation is a fundamental
challenge. Existing heuristic derivations from the wave equation in random media, obtained
when the wavelength, the correlation length of the medium and the scale of variation of the
source are of the same order, and much smaller than the propagation distance, use either
multiscale asymptotic analysis [2] or diagrammatic perturbation theory [5, 6]. However, as
discussed by Mandel and Wolf in their monography [7], or more recently in the tutorial [8],
there is no satisfactory or rigorous derivation of the macroscopic theory of radiative transfer
from the microscopic theory of wave propagation in random media, except in some special
cases. Therefore, the rigorous derivation of a radiative transfer-like equation from the wave
equation, beyond the special cases mentioned in these references, would be of interest for

the radiative transfer community.

The radiative transfer equation poses formidable computational challenges in optical
tomography, where repeated solutions of the equation are needed to solve the inverse problem
with optimization [3, 4]. This is why a simplified diffusion model is often used [4], where the
medium is assumed optically thick, so that light is diffusive due to very strong scattering.
This leads to considerable simplification, but may produce anomalies in the reconstructed
images [9]. A recent study [10] shows that in mesoscopic scattering regimes, where light
penetrates to about one centimeter depth in tissue [11], scattering is forward-peaked and
a simpler one-way radiative transport model can be used, where the intensity satisfies an
initial value problem. The one-way radiative transfer equation is obtained in [10] from
the standard radiative transfer equation by simply ignoring the intensity in the backward

directions.

Our first goal in this paper is to derive rigorously the one-way radiative transfer equation,



from first principles, starting from the wave equation in random media. The second goal is
to bridge between the mesoscopic scattering regime, the standard radiative transfer regime
on one side, and the paraxial approximation regime on the other side. We also connect to
the diffusion approximation.

To derive the one-way transfer equation we consider waves in media with small random
fluctuations of the wave speed, at long propagation distances with respect to the wavelength,
where cumulative scattering effects are significant. The typical size of the inhomogeneities,
measured by the correlation length, and the scale of variation of the source are slightly
larger than the wavelength, so that the waves propagate in an angular cone with axis along
a preferred forward direction called range. We analyze the propagation in this regime using
a plane wave decomposition of the field, with amplitudes that are range dependent random
fields. They satisfy a system of coupled stochastic differential equations driven by the
random fluctuations of the wave speed, and can be analyzed in detail with probabilistic
limit theorems. Consequently, we can quantify the loss of coherence of the wave field i.e., its
randomization due to scattering, and derive the radiative transfer equation satisfied by the
Wigner transform of the wave amplitudes. The result extends the model proposed in [10],
and defines the differential scattering cross-section and the total scattering cross-section in
terms of the autocovariance of the fluctuations of the wave speed.

Once we derive the one-way transfer equation we show that it is equivalent to the standard
radiative transfer equation [2] in regimes with negligible backscattering. We also connect to
the diffusion approximation theory, by considering the high-frequency limit of the equation.
Transport in the paraxial approximation, which applies to waves propagating in a narrow
angle cone along the range axis, is analyzed in [12], using the [t6-Schrodinger model of wave
propagation. Here we rediscover the results starting from the one-way radiative transfer
equation, in the high-frequency limit and for a large support of the source.

The paper is organized as follows: We begin in section II with the model of the random
medium and the formulation of the problem. The main results are stated in section III.
We describe the mean wave field and the randomization of the components of the wave
quantified by the scattering mean free paths. We also state the one-way radiative transfer
equation. The connection to the equation in [10] is in subsection IIT A, and to the standard
radiative transfer theory in subsection III B. The connection to the paraxial approximation

is in subsection IIIC. The derivation of the results is in section IV. We begin with the



scaling regime in subsection IV A, and then give the wave decomposition in subsection
IVB. The probabilistic limit of the wave amplitudes is studied in subsection IV C and
appendix A. We use it to describe the evolution of the mean field in subsection IV D and to
derive the one-way radiative transfer equation for the Wigner transform in subsection IV E.
The high-frequency limit which leads to either the diffusion approximation or the paraxial

approximation is studied in section V. We end with a summary in section VI.

II. FORMULATION OF THE PROBLEM

The time-harmonic field u (&) satisfies the wave equation:
2

%u(zz) + Agu(E) = —F(%)é(z), (1)
for 8 = (x,2) € R and frequency w € R. Here Az is the Laplacian operator in R4+!
and since the frequency is constant, we suppress w from the arguments of v and F. The
excitation is due to a localized source F' which emits waves in the direction z, called range.
The function F' depends on the dimensionless vector » € R?, and its magnitude is negligible
for |r| > O(1), so that X scales the spatial support of the source.

The waves propagate in a linear medium with speed of propagation c¢(&) satisfying

02(15) = 0—1(2) [1 + 1(0,0)(2) al/<§>]. (2)

It is a random perturbation of the constant speed c,, modeled by the random process v. The

perturbation extends over the range interval z € (0, L), as given by the indicator function
L(o,)(2). We assume that v(7) is a dimensionless stationary random process of dimensionless

argument 7 € R™™, with zero mean E[v(7)] = 0 and autocovariance
E[v(F)v(r)] = R(F —7), V7,7 € RTL

Moreover, v is bounded and R is integrable, with Fourier transform, the power spectral

density
R(q) = / dF R(F)e 07, (3)
Rd+1

that is either compactly supported in a ball of radius O(1) in R+ or is negligible outside

this ball. The autocovariance is normalized by
/ drR(7) = O(1), R(0) = O(1).
Rd+1
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Then, the length scale ¢ is the correlation length and the positive and small dimensionless
parameter o quantifies the typical amplitude (standard deviation) of the fluctuations.

The problem is to characterize the wave field u(Z) in the scaling regime
A<lnX <L a~(MD)?P<1. (4)

Here A = 2mc,/w is the wavelength and the reference length scale is L, which is of the
order of the distance of propagation. We are particularly interested in the coherent (mean)
field E[u(2€)] and the intensity resolved over directions of propagation, the mean Wigner
transform of u(&). Its evolution in z is governed by the one-way radiative transfer equation

that we derive.

III. MAIN RESULTS

Because the interaction of the waves with the random medium depends on the direction of
propagation, we decompose u(&) over plane waves, using the Fourier transform with respect

to the transverse coordinates & € R? of & = (x, 2),

(K, 2) = /Rd da u(x, 2)e ™. (5)

Here k € R? is the normalized transverse wave vector, and we suppressed the wavenumber
k = w/c, in the argument of u. We show in section IV that in the scaling regime (4), the
field u(k, z) consists of forward propagating waves with longitudinal wavenumber kS(k),

where
B(k)=V1-|kP, [|k[<L (6)

The amplitudes of these waves (modes) are denoted by a(k, z). They are complex-valued
z-dependent random fields which model wave scattering in the random medium.
The wave field u(&) is given by the Fourier synthesis of the modes, the plane waves with

wave vector kk = k(k, B(K)),

-\ dU“‘") a(""vz)eikﬁvﬁ = (x. 2
u(a:)—/ll.€<1 ; (z, 2), (7)

where have used the notation d(kk) = k?dk for the infinitesimal volume in R?. The mode
amplitudes are normalized by the factors 3 3 (k) in order to simplify the formulae that follow

[13]. In the scaling regime (4) the mode amplitudes form a Markov process whose statistical

bt



moments can be characterized explicitly, as explained in subsection IV C. Here we describe
the expectation of a(k, z), which defines the coherent field, and its second moments, which
define the mean Wigner transform of u(&).

The mean mode amplitudes are

Ela(k, 2)] = ao(r) exp[Q(k)2],

where a,(k) are the amplitudes in the homogeneous medium, defined in Eq. (36) by the

source excitation. The effect of the random medium is in the complex exponent

k22 ¢ttt d(kk') 1
4 /,4|<1 (2m)? B(r)B(K)

0 R4

Q) = -

Since R is even, the real part of Q(k) is determined by the power spectral density R defined
in (3), which is non-negative by Bochner’s theorem [14] [15]. Thus Re[Q(k)] < 0, and the

mean amplitudes decay exponentially in z, with the decay rate

ﬁ — “Re[Q(w)]. (9)
The length S(k) is the scattering mean free path. By choosing the magnitude a of the
fluctuations as in (4), we have L ~ S(k), so the decay with z is significant in our scaling
regime. It is the manifestation of the randomization of the wave, due to scattering in the
medium.

The strength of the random fluctuations of the mode amplitudes is described by the

energy density (Wigner transform)

W(k,x,z) = / C(léljr()lg exp [ik‘q- (VB(K)z + ar:)]

<E {a(n—i—%,z)a(n—g,z)], (10)
where the bar denotes complex conjugate and the integral is over all ¢ € R? such that
|k £ ¢q/2| < 1. The Wigner transform satisfies the transport equation

OW(Kk,x,2) —VB(K) -V W(K, 2, 2) =

d(kr') , , Wik s
L Tt QKDY ) = Wi 2.2 (1)




for z > 0, with differential scattering cross section

]f20é2£d+1

Q. ) = sy X (R (s = K1) KU(3() = B(R))). (12)
The total scattering cross section is
d(kr'
Y(k) = /W<1 ((Qﬁ)d) Q(k, k') = —2Re[Q(k)] = % (13)

Equation (11) looks like the radiative transfer equation, except that it is an initial value
problem in z, with W(k, x, z = 0) given by the Wigner transform of mode amplitudes a,(&)
in the homogeneous medium. As we show in subsection III A it is in fact a general form of
the one-way radiative transfer equation introduced recently in the biomedical imaging liter-
ature [10]. We also establish in subsection III B the connection between equation (11) and
the standard radiative transfer theory: We show that Eq. (11) can be obtained heuristically
from the standard radiative transfer equation by applying a forward scattering approxima-
tion. Such a calculation is heuristic, because the standard radiative transfer equation has
no rigorous derivation [8], whereas Eq. (11) is derived here from first principles. — The
connection to the It6-Schrédinger model is in subsection III C: We show that Eq. (11) can
be reduced to the transport equation in the paraxial geometry by taking the limit of very
small angles. Therefore Eq. (11) can be seen as a bridge between the radiative transfer and

paraxial approximation regimes.

A. Connection with the one-way radiative transfer equation

The one-way radiative transfer equation was proposed recently in [10] for the application
of diffusion optical tomography in forward-peaked scattering media. The equation is stated

in [10] in two dimensions (d 4+ 1 = 2),
§in 00,1 + cos 00,1 — 1, / p(6— &) [1(0) — 1(9)] 0, (14)
0

for I(0, z, z) the light intensity at position (x, z) in the direction (cos @, sin @), with 6 € [0, 7].
The coefficient p4 is the total scattering cross section and the scattering phase function
p(0 — @) is chosen of the Henyey-Greenstein form [10, 16],

1 1—g°
C2m 1+ g2 —2gcos(d — 0’

p(6 —0) (15)



satisfying fozw p(6)df = 1. Parameter g € (0, 1) is the anisotropy factor and it is argued that
the one-way radiative transfer equation is valid when g ~ 1, so scattering is forward-peaked.

The light intensity [ is in fact the Wigner transform W introduced in (10), with kK =
cosf € (—1,1). Indeed, in statistically isotropic media, i.e., R(Z) = Ris(|€]), we obtain
from (11) (multiplied by sin @), using that f(k) = sinf and Vf(k) = — cot 0,

k3022
4

X / "o s“ziso(ke\/2(1 ~cos(0 — 9/)) W) — W(o)], (16)

sin 00, WV + cos 00, W =

with

v

Rio(q) = /0 " ds 5Rueo(5)o(q5). (17)

This is exactly (14) with the identification:

k3202 .

Rico (kﬁ\/2(1 ~cos(0 — 9/)). (18)

psp(0 —0') =

The scattering phase function (15) is a particular case of (18), corresponding to a Lorentzian
for Sv%iso, that is

v

y R,

Riso(q) = 1 (19)

This corresponds (through (17) and [17, formula 6.521.2]) to an autocovariance function of
the form Rig,(s) = SVQOKO(S), where K is the Bessel function of the second kind of order zero.
This is the zeroth von Kérman correlation function [18]. It has a logarithmic divergence at
s = 0, which can be regularized by introducing an ultraviolet cutoff in (19). By substituting

(15) and (19) into (18) we obtain the anisotropy parameter and total scattering cross section

P SR B _<1—g)7rk3£2a29“z0
I= 2T om0~ K Ao T 14y 2

The validity condition g ~ 1 in [10] is equivalent to A < ¢. This completes the proof that

(14) is a special case of our Eq. (11). It justifies the model (14), as our results in this paper
show that it can be rigorously derived from the wave equation in random media, in the

scaling regime (4).



B. Connection to the radiative transfer theory

To connect our transport equation (11) to the standard radiative transfer theory in ran-
dom media [2, 19, 20], we let d + 1 = 3 and adhere to the notation in [2]. Following [2,
Eq. (3.42)], we define

where we use a different constant of proportionality than in [2], to simplify the relation in

(24). The Wigner transform W (K, &) introduced in [2, Eq. (3.41)] is

WK, Z) = /R 3 (55)3 f(ffc, @ — g) f(ffc, @+ g)e“?f (20)

and satisfies the transport equation [2, Eq. (4.38)]

V() - VoW (K, &) — / AR o (R, K

R3

—S(K)W (K, T), (21)

with dispersion relation w(K) = ¢,|K|, and integral kernel, the differential scattering cross-

section,

)] 8[w(K) — w(K)]. (22)

Substituting (7) into (20), we obtain after some algebraic manipulations that

W(K,Z) = 5[5{}_( g]zﬁ/gc/ l W(K/k, x, 2), (24)

with W the Wigner transform (10). The Dirac factor in Eq. (24) expresses the fact that

in our scaling regime, in which the wave field has the form (7), the forward scattering
approximation is valid and the intensity resolved over directions of propagation is supported
on the wave vectors K with positive K,. Next we rewrite the three terms of (21) to show

that the equation is equivalent to (11).



1) Since (24) gives that W (K, &) is supported at vectors K of the form K = ki, with

K = (K, f(K)), the operator on the left hand side of (21) is

=

Viw(K) - Vi = (k) [0. — VB(K) - Vs,
and we obtain that

Vi (K) - VW (K, &) = ¢,0[K. — kB(IK/k)]
x [0, — VB(K/k) - Vi | WKk, z, 2).

(25)

2) The integral kernel in (21) is supported at K = k&', with &' = (k/, B(K)), by (24),

so the Dirac distribution in (22) is

5[ — kB(K/K)]

S[w(K) — w(kr)] = I

Thus, we have

Y c k2030’

/ AK o (%, K YW (K, 7) = 5[IC. — kB(K/E)]

« / d(kr’) RO — k'), KL(BK/K) — B(K))]
i<t (27)2 BK/R)B(K')

where |k’| < 1 because we have only propagating waves.
3) From (23) we find that

Ak a? Y ~

4(27)? /RB dXK 6 [w(IC) — w(I) | R(L(K - X)),

W(K' x, 2),

B(K) =

so for K = k(k,B(K)),

- o CokPa? B d(kk')
B (R, ) = £, = 49(50H) L Gy
RIS = k). B/ = BN o

BX/E)B(K)

(27)

Finally, substituting (25), (26), and (27) into the transport equation (21) satisfied by

W, we obtain that the Wigner transform W satisfies the transport equation (11). This

completes the proof that Eq. (11) can be obtained from the standard radiative transfer

equation (21) by applying a forward scattering approximation. However, as stated before,

there is no rigorous derivation of the standard radiative transfer equation from the wave

equation in random media. In this paper we obtain a rigorous derivation of Eq. (11) from

the wave equation in random media, in the scaling regime (4).
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C. Connection to the paraxial theory

It is shown in [12] that if A < ¢ < L so that the medium Fresnel number ¢%/(A\L) ~ 1,
and if the standard deviation « of the fluctuations is small so that a® ~ A\?/({L), then the

inverse Fourier transform of the mode amplitudes, denoted by apa (K, 2),

- d(k}K’,) kK-
Upal, 2) = — Upa K, 2)E ;
wiw )= [ G ome)

satisfies the random paraxial wave equation (or It6-Schrodinger model) [12]

déipa (2, 2) = iAwdpa(a:, 2)dz + %apa(:p, 2) o dB(, 2). (28)

Here B is the Brownian field i.e., a Gaussian process with mean zero and covariance

22E). e - [ acnio),

—00

E[B(x, 2)B(x', 2')] = a*¢ min(z, z’)@(

The symbol o stands for the Stratonovich integral. This integral is the suitable form of
stochastic integral for the It6-Schrodinger model as shown in [12], and as could be predicted
by the general Wong-Zakai theorem [21]. Alternatively, we can characterize ap,(kK, ) as the

solution of

. .k kz 2
dapa(z, 2) = QLAmdpa(:v, z)dz + Z—dpa(zc, 2)dB(x, z) — Mapa(m, z)dz,

k 2 8

where the stochastic integral is now understood in the usual It6’s form.

The derivation of (28) from the wave equation in random media, given in [12], involves
two main steps: first show that the forward scattering approximation is valid; second show
that the effect of the fluctuations of the random medium on the wave field can be captured
in distribution by a white noise (in z) model.

Using the It6-Schrodinger model (28) we find by It6’s formula that the mean field

Aoz, 2) = Elapa(x, 2)] satisfies

- 2/ 2
0. Apa(, 2) = ;—kAm/lpa(w, z) — M

5 Apa(z, 2).
It decays with z on the scale

8 8
k2002€(0) k2o [*_dCR(0,¢)

Spa =

11



which corresponds to the scattering mean free path S(k) defined by (8-9), for A < ¢ and

k| = O(A/0).

The Wigner transform is
WPa(gc? Z, Z) = / dy eixvyE [dpa (w - y )m]
Rd 2’ 2

which corresponds to (10) for K = kk and |k| = O(N/{). Using It6’s formula it is shown in

[12] to satisfy the transport equation

1

0 Woa+ 2K - Vg Wy =

K202 Ak
1 /R (2m)1

ﬁé(e(gc - gcl)v O) [Wpa(gcl) - Wpa(gcﬂv (29>

with differential scattering cross section
E2d+152 -
Qpa (K, K') = ———R(UX - X),0)
corresponding to (12) for K = kr, K' = kx’, and |k|, |k'| = O(\/0).
This establishes the connection between Eq. (11) and the transport equation (29) derived
n [12]. Together with the result in section IIIB it completes the proof that Eq. (11) is a
bridge between the radiative transfer and paraxial approximation regimes.

We end the section with the note that, as shown for instance in [1, Chapter 13|, the radia-
tive transfer equation in the white-noise paraxial regime (29) can also be derived heuristically
from the standard radiative transfer equation in the “approximation of large particles”, or
equivalently in the “small angle approximation”, which corresponds to a random medium

with large correlation radius.

IV. DERIVATION OF RESULTS

To derive the transport equation (11) from the wave equation, we use multiscale analysis
and probabilistic limit theorems. The asymptotic regime of separation of scales (4) is defined

in terms of three small dimensionless parameters

A
_Z> ’7_?’ 77_}’ (30)

12



ordered as

I<ekgy~n<l,

and the standard deviation « of the fluctuations of the random medium is of order £2. We
begin with the wave decomposition, and obtain a stochastic system of differential equations
satisfied by the mode amplitudes. We consider both forward and backward going waves, but
then show that we can neglect the backward waves in the limit ¢ — 0 (subsection IV C).
The ¢ — 0 limit of the mode amplitudes defines the Markov process whose expectation and

Wigner transform are described in section III.

A. Scaled equation

We let L be the reference length scale, which is similar to the distance of propagation, and
introduce the scaled length variables @’ = x/(¢L), 2’ = z/L, L' = L/L =1, ={(/L =¢/~
and X' = X/L = ¢/n. The scaled standard deviation is o/ = a/'/2. The scaled wavenumber
is k' = kLe = 2m.

Let us denote the wave field by u®. Substituting in (1) and dropping all the primes, as
all the variables are scaled henceforth, we obtain

2 z

{03 + €1_2A:1: + b [1 + S%ow(va:, %)}}ua(w, z) = —%F(nw)é(z), (31)

El
for 0 < z < L. At ranges z < 0 and z > L the equations are simpler, as the term involving

the process v vanishes. Since the wave field depends linearly on the source, we scaled I’ by

1/e to obtain an order one result in the limit ¢ — 0.

B. Wave decomposition

We decompose the field u®(x, z) in plane waves using the Fourier transform with respect

to x € R asin (5):
u(k,2) = / dax u®(z, z)e ke, (32)
Rd

The transformed field u°(k, z) is a superposition of forward and backward going waves
(modes) along z, as explained next. To ease the explanation we begin with the reference

case in the homogeneous medium, and then consider the random medium.

13



1. Homogeneous media

The transformed field in homogeneous media u:(k, z) satisfies the ordinary differential

equation
2~ k? 2~
02y, 2) + S A(R) i (1, 2) = —— (= ) (). (33)
with 3(k) defined in (6) and F the Fourier transform of F,
Flq) = / Fr)eamdr. (34)
Rd

The solution is outgoing and bounded away from the source, and it is given explicitly, for

z # 0, by

Ao\ K ik B(k)z bo K —EB(r)z
( )656( ) Li0.00)(2) + ( )e 2 B(x) L(—00,0)(2)- (35)

Thus, the wave field

€ d(k‘ik"’)’\s ikk-x
UNT, 2) = Uu,\K,z)e
@)= [ et

is a synthesis of plane waves with wave vectors k:(n, +5 (n)) The plus sign corresponds to
forward going waves, and the negative sign to backward going waves. The amplitudes are

determined by the jump conditions at the source

ﬁi(n, O_l—) - ﬁi(n, O_) = 07

. . 1 srkk
azuo(l@,o—‘—) — azuo(li,()—) = _5—/)7dF<7>’
which gives
1 ~ kK
ao(K) =by(k) = ———F | — ). 36
() = bulw) = s P () (36)

The radius of the support of F (q) is one, so the scaling parameter 1 controls the support
in k of the wave modes generated by the source i.e., the opening angle of the initial wave

beam. Consistent with (4) and (30), we assume henceforth that

n
- <1 37
X (37

so that in (36) we have |k| < n/k < 1. Then (k) defined by (6) is real valued, and there

are no evanescent waves in the decomposition (35).
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2. Random media

The field u*(k, z) in the random medium satisfies the equation
k2 1 ~/kk
2~ 2~ PO
osut + ?ﬁ(h‘,) U + Lo, (2) MU = —g—ndF<7)5(z), (38)
derived from (31), with radiation conditions at z < 0 and z > L, and source conditions at
z = 0. The leading O(1/?) term in the right hand side is the same as in the homogeneous
medium, so we can use a similar wave decomposition to that in section IV B 1. The random

perturbation is in the operator M¢ defined by

ika [ d(ke') ﬁ(k(";”')%)
M0 =5 | T Gt

where 7 is the Fourier transform of v with respect to the first argument in R¢ as in (34).

The wave decomposition is

1 ( 1 3 . ik
a*(k,z) = =(B(K)2U° (K, 2) + ——— 0. u (K, 2 )6_65(")2,
()2()()%6(%)% (K, 2)
bk, ) = 1(ﬁ(&)%ﬂ€(n D) -0 (R, 2) ) HO
) 2 ) Zkﬁ(,q,)% 4 ) Y
so that we can write as in the homogeneous medium
1 i ik
Wk, ) =—— <a€(n, 2)e A= | (i, z)e_?kﬁ(”)z), (39)
B(k)z
0.u* (K, 2) :@ (ae(n, z)e?kﬁ(”)z — b (K, z)e‘?kﬁ("‘)z). (40)

The forward and backward going wave amplitudes a®(k, z) and b°(k, z) are no longer con-
stant, but random fields due to scattering in the range interval z € (0, L). The medium is

homogeneous outside this interval and we have the radiation conditions
a*(k,z) =0if 2 <0 and b (k,2)=0if z> L. (41)

Moreover, a®(k, z) = a®(k, L) for z > L, and 0°(k, z) = 0°(k,0—) for z < 0.

The jump conditions at the source are as in section IV B 1, and give
a‘(k,04) = a,(k) and b°(k,0—) = b,(k) + b° (K, 0+). (42)

As expected, the forward going waves leaving the source are the same as in the homogeneous

medium, because the scattering effects in the random medium manifest only at long distances
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of propagation. The waves at z < 0 are given by the superposition of those emitted by the
source, modeled by b,(k), and the waves backscattered by the random medium, modeled by
b (K, 0+).

To determine the amplitudes in the random medium, we substitute equations (39)-(40)

into (38). We obtain that

. a(k,z)|  ika /d((Qler;;)ﬁ(k(m—m’) K)

: (43)

in z € (0,L), with boundary conditions (41)-(42). We are interested in the propagating
waves, corresponding to |k| < 1 in (43), and we explain in section IV C that in our regime
the evanescent waves may be neglected. The 2 x 2 complex matrices

e K, K',,, Fab K, Fi/,

s T R (a4

Fba(m’ Hl? C) be(’{’ H,’ C)
couple the mode amplitudes. The superscripts on their entries indicate which types of waves
they couple. We have

B —B()]C ik IB(=))+B(RC

ree 9 /a =1, 1, . Fab ) ,a = 1 1 )
R e A Y PG
Ik, k', ¢) =Tk, Kk, (), T"(k,k, () =-T%k~K,C(), (45)

where the bar denotes complex conjugate, and substituting in (43) we obtain the energy

conservation identity

/RI<1 0(1;/:;3 [|a€(""72)‘2 — |b°(x, z)|2] = constant in z.

C. The Markov limit

Here we describe the ¢ — 0 limit of the solution of (43) with boundary conditions (41)-
(42). We begin in section IV C1 by writing the solution in terms of propagator matrices,
and show in section IV C2 that we can neglect the backward and evanescent waves. The

limit of the forward going amplitudes is in section IV C 3.
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1. Propagator matrices

The 2 x 2 propagator matrices P¢(k, z; k,) are solutions of
k d(kr') _/k(k — K/
oz = I [ ()
27dez Jiwi<1 (2) Y €
XI‘(K,, K/, E)Ps(h‘,/, 2 Ko), (46)
€

for z > 0, with initial condition P¢(k, z = 0; k,) = 6(k — K,)I, where I is the 2 x 2 identity
matrix. They allow us to write the solution of (43) as
a(K,)

- / dk, P (K, 2; K,) ; (47)
ol <1 b* (Ko, 0)

at (K, 2)

b* (K, 2)

for all z > 0. In particular, when z = L, the backward going amplitude b°(k, L) in the left
hand side vanishes by (41).

2. The forward scattering approximation

Equation (47) shows that the interaction of the forward and backward going wave ampli-
tudes a® and b° depends on the coupling of the entries of the propagator. The ¢ — 0 limit
of the propagator

Pe (K, z: k,) P%%(K, 2 K,
P (s 2 ) — ( ) ( )
PYe(k, 2 Kk,) P (K, 2 K,)
can be obtained and identified as a Markov process that satisfies a system of stochastic
differential equations. We refer to [22, 23| and appendix A for details. Here we state the
results.
The stochastic differential equations for the limit entries of P%¢(k, z; k,) and P**¢(k, z; K,)

are coupled to the limit entries of P%%¢(k’, z; k,) and P"¢(k’, z; k,) through the coefficients

§<uﬁ—év>:§<un—W>umm+gmm>7

¥ vy v

where R is the power spectral density (3) and & = (k, 8(k)) and B~ = (k, —f(k)) are

the wave vectors of the forward and backward going waves. The second argument in these
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coefficients comes from the phase factors +k(S(k) + B(k'))¢ in the matrices T'® and T'®?.
The coupling between P*¢(k, z; k,) and P**(K/, z; K,) is through the coefficients

% (M) 5 (kz(n — &) k(B(k) - 5(&'») |

¥ vy o ¥

because the phase factors in matrices I are k(S8(k) — 3(k’))¢. The matrices I'® have the
same factors so the same coefficients couple the entries P"=.

We conclude that the coupling of the entries of the propagator and therefore the inter-
action of the waves depends on the decay of the power spectral density R. We now explain
that when the mode amplitudes are supported initially at |k| < n/k < 1, and + is as in (30),
we can neglect the backward going waves over distances of propagation of order L.

The power spectral density R(q) is negligible when |q] > 1, so R(kR&/7) is negligible
when |K| > v/k. From (4) and (30), it is possible to choose some «,, € (n/k, 1) such that ~

satisfies
k )
Blrar) 4. (48)
~
Then, for all k' satisfying |k/| < k,,, the coupling coefficients between P4 and P vanish
because ,
= 2 / )
HR—R| KB+ () KGe) |
Y Y Y

and i(k‘(l_{ — r?;/_) / 7) is negligible. This implies the asymptotic decoupling of a® and 6%, and
due to the homogeneous boundary condition b°(k, L) = 0, we conclude that we can neglect
the backward going waves in the limit ¢ — 0.

The forward going amplitudes interact with each other, because the coupling coefficients
of the entries P*** of the propagator are large for at least a subset of transverse wave vectors

satisfying |k|, || < k,, and

|k — K|, [B(r) = B(r)] <

|2

Due to this coupling there is diffusion of energy from the waves emitted by the source with
|k| < n/k, to waves at larger values of |k|. This is why we take x,, > n/k in (48). By
assuming that a°(k, z) are supported at |k| < k,, < 1 we essentially restrict z by Zy,
so that the energy does not diffuse to waves with |k| > k,, for 2 < Z,,. Physically, the
wave vectors (k, f(k)) of the forward going waves remain within a cone with opening angle

smaller than 180 degrees.
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We will see that the evolution of the k-distribution of the wave energy is described by
a radiative transfer equation, which means that the wave energy undergoes a random walk
(or diffusion). We can estimate from Eq. (59) that the diffusion coefficient is of the order
a?v, so the k-distribution of the wave energy reaches k,, after a propagation distance of the
order of Z,,

L/l = (a®L/N)(\/f) < 1 by (4), it is possible to choose Z,, ~ L and a suitable ,, < 1.

such that a*7Z,, = k2 . In dimensional units, this means o*Z,, /¢ = x? . Since

The evanescent waves can only couple with the propagating waves with wave vectors of
magnitude close to 1. Thus, as long as the energy of the wave is supported at |k| < k,,,

assumption (48) implies that the evanescent waves do not get excited.

3. Markov limit of the forward going mo