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Abstract
The formation of a stable protein aggregate is regarded as the rate limiting step in the establish-

ment of prion diseases. In these systems, once aggregates reach a critical size the growth process

accelerates and thus the waiting time until the appearance of the first critically-sized aggregate

is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation

is a central step of many physical, chemical and biological process. Previous studies have exam-

ined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the

assumption that at time t = 0 the system was in the all-monomer state. However, in order to

compare to in vivo biological experiments where protein constituents inherited by a newly born

cell likely contain intermediate aggregates, other possibilities must be considered. We consider one

such possibility by conditioning the unique ergodic size distribution on sub-critical aggregate sizes

– this “least-informed” distribution is then used as an initial condition. We make the claim that

this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield

significantly different, averaged waiting times relative to the all-monomer condition under various

models of assembly.
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I. INTRODUCTION

The self-assembly of particles into aggregates is fundamental to many physical, chem-

ical, and biological processes [1–3]. In particular, protein aggregation is critical for prion

diseases which encompass a number of fatal neurodegenerative diseases in mammals such

as Creutzfeldt-Jacob and Kuru in humans, bovine spongiform encephalopathies (BSE) in

cows, scrapie in sheep, and chronic wasting in elk [4, 5]. In these diseases a misfolded form

of the protein appears and forms aggregates. These small aggregates of misfolded protein

are thought to reproduce slowly until reaching a critical size (nucleation), at which point

the aggregates are able more efficiently amplify [6–9]. As such, a key limiting step in the

onset of prion diseases is the waiting time until the formation of this nucleus, which we will

also call the assembly time. Beyond mammalian diseases, prions have been associated with

a number of harmless heritable phenotypes in yeast [10, 11]. Both the harmless nature of

the prions and the experimental tractability of yeast have made it an ideal model system to

study the appearance of prion disease in vivo, and whose considerations will in turn affect

our choice of in silico models.

Most prior models for computing the waiting times until nucleus formation have assumed

that the initial condition of the stochastic process is the all monomer state. That is, no

aggregates of any kind exist at time t = 0. However, for an in vivo assembly process, the

system under study has presumably existed for some amount of time prior to the start of

the experiment – time during which the assembly process has been active. In particular,

since newly born yeast daughter cells inherit protein constituents from their mothers, it is

probable that both monomers and small aggregates are transmitted. Therefore, there should

be some uncertainty in the specific configuration of polymer sizes at time t = 0.

In this manuscript, we take a step towards more accurate modeling of nucleation in

prion diseases by considering protein aggregation under more realistic initial conditions that

incorporate this uncertainty in a “least-informed” manner. We first give an overview of

common models used to study molecular assembly and then establish the least-informed

distribution and its relationship to these models’ ergodic distributions. We claim that this

initial condition imposes fewer assumptions on the physical system, roughly agreeing with

the all-monomer condition when assembly is rare but subsequently favoring larger polymer

sizes as assembly becomes increasingly favored over disassembly. We demonstrate that the
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mean assembly time is particularly sensitive to the initial condition for this latter case.

II. MODELING MOLECULAR ASSEMBLY

Mathematical models of assembly have been studied for a century, and in particular

two systems have received considerable attention: the Smoluchowski coagulation system

[12] and the Becker-Döring equations [13]. The former system (with its generalization in

[14]) models the coagulation (or coalescence) and fragmentation of polymers consisting of

monomeric units, represented by the chemical equations

Xj +Xi−j︸ ︷︷ ︸
j=1,2,...,i−1

k+j,i−j−−−→ Xi

k−k,i−k−−−→ Xk +Xi−k︸ ︷︷ ︸
k=1,2,...,i−1

, (1)

where Xi denotes a polymer (or aggregate or cluster) of size i. We refer to this model

more generally as the discrete coagulation-fragmentation model. The Becker-Döring model

restricts the reactions to just monomer polymerization and depolymerization, represented

by the chemical equations

X1 +Xi

k+i−−⇀↽−−
k−i+1

Xi+1. (2)

Both models are depicted graphically in Figures 1 and 2. From these chemical equations,

mathematical equations may be derived with additional assumptions. For example, use of

the Law of Mass Action and the corresponding rate equations have been thoroughly studied

for these models [13–17]. However, this approximation requires a large number of particles

to be valid and fails to capture mesoscopic effects [18]. When these effects are non-negligible,

one must instead assume a Markov property and obtain a continuous-time Markov chain.

We may then study the first-passage time for the subset of states containing a nucleus (a

polymer of size at least c, for some c). In particular, we will compute the mean first-passage

(assembly) time denoted µ.

For any differential or stochastic system an initial condition (IC) must be specified. We

note that in all of the cited works, the IC has exclusively been the all-monomer state, which

contains only X1 particles. Though convenient, it is not realistic for in vivo processes.

Indeed, with our yeast prion model, cells transfer material from mother to daughter during

budding, including partially formed aggregates [19, 20]. Furthermore, within a single cell,

these processes of protein assembly and disassembly are always occurring, even before the
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FIG. 1. A graphical depiction of Coagulation-Fragmentation type assembly. Under this assembly

model polymers of any size may join and fragmentation may occur between any two adjacent,

constituent monomers.

+

+

FIG. 2. A graphical depiction of Becker-Döring type assembly. Under this assembly model only

monomer polymerization and depolymerization may occur.

“experimental clock” begins. Thus, in many experimental settings we believe it more accurate

to think of the IC as being sampled from some distribution of states which reflects our

uncertainty regarding the precise configuration of the polymers.

III. LEAST-INFORMED DISTRIBUTION FOR STOCHASTIC ASSEMBLY

Let us define the set of all mass-preserving polymer configurations Ωm = {n :
∑

i>0 ini =

m}, where each n ∈ Ωm defines a system state with total mass m. A particular model of

assembly will induce a directed graph on this set of states with edges weighted by the rates

of transition between states. Thus, while the numbers and sizes of polymers may change

over time, they do so in a way that preserves the total mass m of the system.

We will require that this directed graph be strongly connected and aperiodic, implying

the corresponding Markov chain will asymptotically reach a unique ergodic distribution over

Ωm [21]. It is this ergodic distribution that we claim is a more natural IC, provided that

for some positive integer c of interest, we condition it on there being no polymers of size at

least c. We have assumed that once a polymer with size at least c (nucleus) is formed, other

more rapid processes act upon it [6–9] – thus our nucleation models are only valid when

no such particles exist. To accommodate this, we simply zero the respective probabilities

from the ergodic distribution and renormalize, reflecting our certainty that no nuclei are
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present, but otherwise providing a prior of sorts on the distribution of the possible polymer

configurations. We refer to this conditional distribution as “least informed” for this reason –

we assume only that the system has existed long enough to deviate substantially from any

particular initial state, but it has yet to assemble a particle of size at least c.

We evaluate the impact of the IC by studying the mean assembly time of the stochastic

process µ and its dependency on the initial polymer configuration. We next provide novel,

closed-form results on the ergodic distributions of constant-rate Coagulation-Fragmentation

and Becker-Döring assembly models, use these results to derive the corresponding least-

informed distributions, and then verify that significant differences in µ between the least-

informed and all-monomer IC arise in particular parameter regimes.

A. Notation

We use standard notation for the ith canonical basis vector ei and the Kronecker delta

function δij. We further denote the total mass of the system by m, the set of all mass-

preserving configurations by Ωm, the critical nucleus size by c, and we let P : [0,∞) × Ωm

denote the solution to an appropriately-defined master equation, where P(t,n) = Pr[N1(t) =

n1, N2(t) = n2, . . . ] (such that n ∈ Ωm and the random variable Ni(t) is understood to

represent the number of Xi particles at time t). The use of the master equation is convenient

since the initial condition is itself a distribution – the all-monomer IC corresponds to a point-

mass, or degenerate distribution centered about a single state, while our least-informed

distribution will be more generally some non-negative vector with entries summing to 1.

The mean assembly time of our stochastic process can be estimated using kinetic Monte

Carlo simulations, but it is also computable via the solution of a high-dimensional, linear

relationship stemming directly from the master equation (refer to Yvinec et al. [22] for

details). This latter technique, which we employ for our figures, yields a vector of mean

assembly times with entries corresponding to each discrete polymer configuration; the inner

product of this vector with an initial condition will then yield the overall mean assembly

time via the law of total expectation.
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B. Coagulation-Fragmentation Model

A coagulation-fragmentation model allows polymers of any size to freely coagulate (or

coalesce) as well as fragment into any size. When these rates are assumed to be constant

(size-independent) the reactions are succinctly represented:

Xj +Xi−j︸ ︷︷ ︸
j=1,2,...,i−1

β−→ Xi
γ−→ Xk +Xi−k︸ ︷︷ ︸

k=1,2,...,i−1

. (3)

We assume polymers may coagulate on either end; however, we have double-counted

pairs (Xj, Xi−j) and (Xi−j, Xj). Thus, the unordered pair (Xj, Xi−j) coagulates at rate 2β

to form Xi. We define the operators W±
i,j such that W±

i,jP(t,n) = P(t,n± (ei + ej − ei+j))

and write the master equation:

dP
dt

= −β
∞∑
i=1

∞∑
j=1

ni(nj − δij)P − γ
∞∑
i=1

(i− 1)niP

+ β
∞∑
i=1

∞∑
j=1

(ni + 1 + δij)(nj + 1)W+
i,jP

+ γ
∞∑
i=1

∞∑
j=1

(ni+j + 1)W−
i,jP .

(4)

It may be verified by inspection that P(n) ∝ 1/
∏

(β/γ)nini! is a steady-state solution to

(4). Since the ergodic distribution is unique, we conclude that Equation (4) asymptotically

converges to this solution. This gives us the least-informed distribution:

Pr
[
N = n

∣∣Ni = 0,∀ i ≥ c
]

=
1∏

i<c(β/γ)nini!

/∑
n′

1∏
i<c(β/γ)n

′
in′i!

. (5)

Note that by restricting our least-informed distribution to cases where Ni = 0 for all

i ≥ c we have ensured that our distribution only includes states where all particles are

smaller than the critical size c. We use this distribution as the IC for the master equation

corresponding to the assembly process and compute the mean assembly time (µ) to any

state containing a nucleus of size at least c. The non-dimensionalized mean assembly time

βµ is shown for various parameter configurations in Figures 3 and 4. We note that when β/γ

is small, fragmentation is favored relative to aggregation, and the mean assembly time for

the all monomer IC and the least-informed IC agree. As β/γ increases, the mean assembly

times separate.
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FIG. 3. Non-dimensionalized mean assembly times (βµ) for Coagulation-Fragmentation with c = 5

and m = 50.
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FIG. 4. Non-dimensionalized mean assembly times (βµ) for Coagulation-Fragmentation with c = 7

and m = 30.

C. Becker-Döring Model

The Becker-Döring model with constant rate coefficients is described by the chemical

equations

X1 +Xi

2β−⇀↽−
2γ
Xi+1. (6)

They describe an assembly mechanism where monomers attach (polymerize) to a polymer-

end with rate β and detach (depolymerize) with rate γ.

Defining the operators W±
i P(t,n) = P(t,n± (e1 +ei−ei+1)), the corresponding master
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equation is

dP
dt

= −βn1(n1 − 1)P − 2βn1

∞∑
i=2

niP − 2γ
∞∑
i=2

niP

+ β(n1 + 2)(n1 + 1)W+
1 P + 2β(n1 + 1)

∞∑
i=2

(ni + 1)W+
i P + 2γ

∞∑
i=1

(ni+1 + 1)W−
i P .

(7)

One may verify that P(n) ∝ 2n1/
∏

(2β/γ)nini! is a steady-state solution to (7). Then,

as before, we obtain the least-informed distribution

Pr
[
N = n

∣∣Ni = 0,∀ i ≥ c
]

=
2n1∏

i<c(2β/γ)nini!

/∑
n′

2n
′
1∏

i<c(2β/γ)n
′
in′i!

. (8)

We plot comparisons of the mean first-passage time for this distribution with the all-

monomer IC across various parameters in Figures 5 and 6. As with the Coagulation-

Fragmentation model, we observe that when β/γ is small, the mean assembly time for

the all monomer IC and the least-informed IC agree. As β/γ increases, the mean assembly

times separate; however, unlike the Coagulation-Fragmentation model, in the Becker-Döring

assembly model the IC with the fastest mean assembly depends on the critical size c and

mass of the system m.
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FIG. 5. Non-dimensionalized mean assembly times (βµ) for Becker-Döring with c = 5 and m = 50.
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FIG. 6. Non-dimensionalized mean assembly times (βµ) for Becker-Döring with c = 7 and m = 30.

IV. DISCUSSION

We see in Figures 3-6 that when γ is large relative to β, there is virtually no difference

between the standard all-monomer IC and our least-informed distribution. This is because

for both models we studied, as β/γ approaches 0, the all-monomer state becomes increasingly

probable: our IC is effectively no different than the all-monomer IC. However, as β/γ →∞,

the least-informed distributions begin favoring configurations that minimize the total number

of polymers, assigning higher probability mass to configurations with larger polymers. This

in turn has a potentially substantial effect on the mean assembly time, which is demonstrated

in Figures 7 and 8.

This dependence of the initial condition on the dynamics of the specific assembly process

is a powerful feature of our least-informed framework. Unilaterally applying an all-monomer

IC for in vivo processes requires the a priori assumption that assembly is slow. Our initial

condition replicates that assumption when it is indeed rare, but also provides a physically

meaningful result when it is not.

In particular, for models where assembly is restricted to particular sizes (e.g. the Becker-

Döring where aggregation proceeds only through monomer addition), this can have a dra-

matic effect on the overall time to nucleation. When assembly is favored, the monomer

population may deplete before a critically-sized polymer has formed, leading to a “trap” of

sorts where no further assembly is possible until some fragmentation has occurred [22]. This
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FIG. 7. (1−µLI/µAM)×100%, the relative difference of mean assembly times under the different IC

(least-informed, LI, and all-monomer, AM). Computed with c = 5 and m = 100 with Coagulation-

Fragmentation assembly.
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FIG. 8. Same as Figure 7, but with Becker-Döring assembly.

counter-intuitive behavior is well-modeled by our least-informed IC, leading to a substan-

tially longer mean first-passage time since the all-monomer IC allows for rapidly-nucleating

trajectories (see Figures 6 and 8).

We argue that for in vivo experiments, sampling from the least-informed distribution is

more in line with our physical knowledge and allows one to make fewer a priori assumptions

about the parameter regime a system may be in. Conversely, for in vitro experiments (where,

for example, protein is heated and denatured in a controlled fashion), the all-monomer IC

may still be most appropriate.
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We lastly note that our least-informed distribution is but one of many plausible distribu-

tions to sample the IC from. In the case of our yeast system, for example, one might consider

sampling polymer configurations from some appropriately defined branching process [23, 24]

to model the mother-daughter budding dynamics. The point remains, however, that only in

very special circumstances should the IC be treated without uncertainty – doing so glosses

over important biological or physical details of the system under study.
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