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Abstract

It has been established that there is an inherent limit to the accuracy of the reaction-diffusion

master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which

the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard

reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in

contrast to the traditional approach in which molecules react only when occupying the same voxel.

We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal

match to the more fine-grained Smoluchowski model, and show in two numerical examples that

the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems

that are intractable with the standard reaction-diffusion master equation. In addition, we show

that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized

algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm

which, in both two dimensions and three dimensions, is on the order of the reaction radius of a

reacting pair of molecules.
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I. INTRODUCTION

Stochastic modeling has become a ubiquitous tool in the study of biochemical reaction

networks [1–5], as the traditional approach of deterministic modeling has been shown to be

unsuitable for some systems where species are present in low copy numbers, or systems with

spatial inhomogeneities [3, 6]. Instead stochastic, spatially homogenous or inhomogeneous,

models are employed.

Stochastic modeling can be carried out on multiple different scales. For processes occur-

ring on the time scales typical of living cells we consider three different modeling scales: the

spatially homogeneous well-mixed scale, the mesoscopic spatially heterogeneous scale, and

the microscopic particle-tracking scale. In this paper the focus is on spatially heterogeneous

modeling.

A prevalent model on the mesoscopic scale is the standard reaction-diffusion master equa-

tion, in which diffusion of individual molecules is modeled by discrete jumps between voxels,

while reactions occur with a given intensity once molecules occupy the same voxel. The next

subvolume method (NSM) [7] is an efficient algorithm for generating single trajectories of the

system. The NSM has been implemented in several software packages, including URDME

[8], PyURDME (www.pyurdme.org), STEPS [9], and MesoRD [10]. It is also available as a

part of larger simulation frameworks such as StochSS (www.stochss.org) and E-Cell [11].

On the microscopic scale we model the molecules as hard spheres moving by normal

diffusion. We track the continuous position of individual molecules, and molecules react

with a probability upon collision. This model is commonly referred to as the Smoluchowski

model [12], with the addition of a Robin boundary condition at the reaction radius of a pair

of molecules. Algorithms aimed at accurately and efficiently simulating the Smoluchowski

model for general systems have been implemented in E-Cell [11], Smoldyn [13], and MCell

[14].

It has previously been shown that there is an inherent bound of several reaction radii on

the spatial accuracy of the standard RDME compared to the Smoluchowski model [15, 16].

It was shown in [16] that by choosing correct mesoscopic reaction rates, the standard RDME

could be made accurate all the way down to this lower bound. However, for mesh resolutions

below this lower bound, the accuracy deteriorates.

In this paper we generalize the standard RDME by allowing molecules occupying neigh-
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boring voxels to react. Henceforth we refer to this generalization as the generalized RDME.

The acronym RDME usually refers to the standard RDME, but to minimize the possibility

of confusion as to which of the algorithms we are referring to, we will adopt the acronym

sRDME for the standard RDME and gRDME for the generalized RDME. Similar general-

izations have been considered previously in [17, 18]. In [17], Isaacson discretizes the Doi

model [19] to obtain a convergent RDME. In [18], reaction rates are derived for a spherical

model and applied to the RDME on a Cartesian mesh. In this paper we take a funda-

mentally different approach. By deriving reaction rates to match certain statistics of the

Smoluchowski model, we arrive at analytical expressions for the reaction rates, and show

that this approach yields accurate results down to a fundamental lower limit on the mesh

size. This mesh size will be on the order of the reaction radius of two molecules.

Importantly, we derive reaction rates under specific assumptions on the dynamics of

dissociating molecules, and we show with a simple example that not doing so may lead to

reaction rates that are inaccurate for certain systems. We thus argue that it is crucial to

take dissociations into account in the derivation of reaction rates for the gRDME.

The outline of the paper is as follows. In Section II we review the Smoluchowski model

and the sRDME, and how they are connected through the mesoscopic reaction rates. In

Section III we describe the generalized algorithm, and derive accurate mesoscopic reaction

rates as well as the lower limit on the mesh size. Finally, in Section IV, we study two

numerical examples, demonstrating the accuracy of the gRDME and how it can be used to

simulate systems that are intractable with the sRDME.

II. BACKGROUND

A. Microscopic level

At this level of modeling we track the continuous position of individual molecules, modeled

by hard spheres and moving by normal diffusion. Each species Si has a diffusion constant

Di and a radius of σi, called the reaction radius. Consider two molecules, one of species

S1 and one of species S2, with positions x1n and x2n at time tn. The molecules can react

according to S1+S2

ka

⇄
kd

S3, where S3 is some product. The probability distribution function

(PDF) p(x1,x2, t|x1n,x2n, tn) represents the probability that the positions of the molecules
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are given by x1 and x2 at time t; p then satisfies the Smoluchowski equation

∂tp = D1∆x1
p+D2∆x2

p, (1)

with a reactive Robin boundary condition

K
∂px2−x1

∂n

∣

∣

∣

∣

‖x2−x1‖=σ

= kap(‖x2 − x1‖ = σ, t), (2)

where D = D1 + D2, σ = σ1 + σ2 is the sum of the reaction radii, ka is the microscopic

reaction rate, and

K =











2πσD, (2D)

4πσ2D, (3D).
(3)

The initial condition is given by

p(x2 − x1, tn) = δ
(

(x2 − x1)− (x2n − x1n)
)

(4)

and, since we assume that there is no outer boundary, we enforce p(‖x2 − x1‖ → ∞, t) = 0.

It can be shown that with the change of variables

Y =

√

D2

D1
x1 +

√

D1

D2
x2 (5)

y = x2 − x1, (6)

we obtain two independent equations, where the equation for Y describes free diffusion,

while the equation for y becomes

∂tp(y, t) = D∆yp(y, t), (7)

with the boundary condition

K
∂py
∂n

∣

∣

∣

∣

‖y‖=σ

= kapy(‖y‖ = σ, t). (8)
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The initial condition becomes py(y, tn) = δ(y−yn), and the outer boundary condition is now

py(‖y‖ → ∞, t) = 0. This equation can be solved analytically in 3D [20], but the solution

is difficult and expensive to evaluate numerically. Applying an operator split method to

(7)-(8) can significantly simplify the process of sampling new positions from the PDF [21].

An S3 molecule is assumed to dissociate according to an exponential distribution with

mean kd. Following a dissociation, the two products S1 and S2 are placed in contact a

distance of σ apart.

A system of more than two molecules is not amenable to the direct approach of solving

for the full PDF, due to the high dimensionality of the problem. A common approach is

instead to approximate the full problem as a set of one- and two-body problems, by dividing

the system into subsets of single and pairs of molecules according to the distances between

them. We can obtain a good approximation of the full problem by updating each subset

independently during short time steps ∆t. This algorithm is commonly referred to as Green’s

function reaction dynamics (GFRD) [22, 23]. All microscale computations in this paper are

carried out using a variant of the GFRD algorithm described in [21].

B. Standard reaction-diffusion master equation

At the mesoscopic scale the simulation domain is discretized by N non-overlapping voxels,

and diffusion is modeled as discrete jumps between the nodes of the voxels. The mesh may

be either a Cartesian mesh, or an unstructured, tetrahedral (3D) or triangular (2D) mesh. A

Cartesian mesh is suitable if the domain is simple, for instance a square or a cube, while an

unstructured mesh has advantages for complicated domains. The jump coefficients between

voxels are given by 2D/h2 in the case of a Cartesian mesh, where h is the width of a voxel

and D the diffusion rate of the molecule. For an unstructured mesh, the jump coefficients

can be obtained from a finite element discretization of the diffusion equation [24]. Reactions

occur with some intensity when molecules occupy the same voxel.

Let p(x, t|xn, tn) be the probability that the system is found in state x at time t, given

that it was in state xn at time tn. For brevity of notation, let p(x, t) = p(x, t|xn, tn). Let xi·

and x·j denote the i-th row and the j-th column of the N × S state matrix x, respectively,
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where S is the number of species of the system. The sRDME is given by

d

dt
p(x, t) =

N
∑

i=1

M
∑

r=1

air(xi· − µir)p(x1·, . . . ,xi· − µir, . . . ,xN ·, t)−
N
∑

i=1

M
∑

r=1

air(xi·)p(x, t)

+
S
∑

j=1

N
∑

i=1

N
∑

k=1

djik(x·j − νijk)p(x·1, . . . ,x·j − ν ijk, . . . ,x·S, t)

−
S
∑

j=1

N
∑

i=1

N
∑

k=1

dijk(x·j)p(x, t),

(9)

where the propensity functions of the M chemical reactions are denoted by air(xi), µir are

the stoichiometry vectors associated with the reactions, dijk are the jump coefficients, and

νijk are stoichiometry vectors for diffusion events.

The sRDME is in general too high-dimensional to be solved by direct approaches. An

alternative approach is to generate individual trajectories of the system with stochastic

simulations. The NSM [7] is an efficient algorithm frequently used for that purpose.

C. Reaction rates for the standard reaction-diffusion master equation

Consider a system of two molecules, one of species S1 and one of species S2, that react

according to S1 + S2

ka

⇄
kd

S3, where ka and kd are the microscopic reaction rates. Assume

that the molecules diffuse in a square (2D) or cube (3D) with periodic boundary conditions.

Without loss of generality, assume that the S1 molecule is fixed at the origin, and that the

S2 molecule diffuses freely with a diffusion rate D. The S2 molecule is initialized according

to a uniform distribution.

Let τmeso(k
meso
a , h) be the mean association time of the two molecules on the mesoscopic

scale, and let τmicro(ka) be the mean association time on the microscopic scale. Under the

assumption that τmeso(k
meso
a , h) = τmicro(ka) holds, it is shown in [15, 16] that the mesoscopic

association rate is given by

kmeso
a = ρ(d)(ka, h) =

ka
hd

[

1 +
ka
D
G(d)(h, σ)

]−1

, (10)
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where d is the dimension,

G(d)(h, σ) =











1
2π

ln
(

π− 1

2
h
σ

)

− 1
4

(

3
2π

+ C2

)

(2D)

1
4πσ

− C3

6h
(3D),

(11)

and

Cd ≈











0.1951, d = 2

1.5164, d = 3.
(12)

The microscopic parameters are σ, the sum of the reaction radii of the molecules, D, the sum

of the diffusion constants, and ka, the microscopic reaction rate. To simplify the notation

somewhat, we let τρmeso(ka, h) := τmeso(ρ
(d)(ka, h), h). For a reversible reaction we match the

mean binding time for h > h∗
∞, where

h∗
∞ ≈











√
π exp

(

3+2πC2

4

)

σ ≈ 5.1σ, (2D)

2
3
πC3σ ≈ 3.2σ, (3D).

(13)

Let τ rebindmeso (kmeso
a , h) and τ rebindmicro (ka) denote the average rebinding times—that is, the aver-

age time until two molecules react, given that they have just dissociated—on the mesoscopic

and microscopic scale, respectively. Again, to simplify notation, we let τ rebind,ρmeso (ka, h) :=

τ rebindmeso (ρ(d)(ka, h), h). The rebinding times can be written in terms of the average binding

times

τ rebind,ρmeso (ka, h) = τρmeso(ka, h)− τρmeso(∞, h) (14)

τ rebindmicro (ka) = τmicro(ka)− τmicro(∞), (15)

where, for simplicty of notation, τρmeso(ka → ∞, h) and τmicro(ka → ∞) are denoted by

τρmeso(∞, h) and τmicro(∞), respectively. That (14) and (15) hold can be realized by consid-

ering the following argument. Given a uniform initial distribution, τmeso(∞) is the time until

the molecules are in the same voxel for the first time. By subtracting that time from the total

binding time, we obtain the rebinding time. A similar argument holds for the microscopic

case. We immediately see that because τρmeso(ka, h) = τmicro(ka) holds, the rebinding times
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will match if and only if τρmeso(∞, h) = τmicro(∞). This holds for h = h∗
∞, and consequently

τ rebind,ρmeso (ka, h) > τ rebindmicro (ka) for h > h∗
∞ (16)

τ rebind,ρmeso (ka, h) = τ rebindmicro (ka) for h = h∗
∞ (17)

τ rebind,ρmeso (ka, h) < τ rebindmicro (ka) for h < h∗
∞. (18)

As a mesoscopic dissociation event is a combination of microscopic dissociation and the

diffusion required to get well-mixed in a voxel, we require that τ rebindmeso ≥ τ rebindmicro should hold.

For h < h∗
∞ we cannot match the mean binding time while satisfying τ rebindmeso ≥ τ rebindmicro , and

the accuracy of the sRDME consequently deteriorates with decreasing h. Thus, h∗
∞ is the

finest spatial resolution attainable with the sRDME.

For a given h > h∗
∞, we can compute the error in rebinding time as

∣

∣τ rebind,ρmeso (ka, h)− τ rebindmicro (ka)
∣

∣ = |τmeso(∞, h)− τmicro(∞)| , (19)

where the right-hand side thus is a measure of how well-resolved a system is. Details of the

above theory can be found in [16].

III. THE GENERALIZED REACTION-DIFFUSION MASTER EQUATION

In the sRDME, molecules react only when they occupy the same voxel. In this section

we extend this approach by allowing molecules occupying neighboring voxels to react. To

connect the sRDME to the microscopic Smoluchowski model we determined the rate with

which molecules react when occupying the same voxel. For the gRDME we need to obtain

the rates for molecules occupying the same voxel, but also the rates for molecules occupying

neighboring voxels. In [15, 16] we derive rates for the sRDME by matching the mean

association times on the two scales. To uniquely determine both of the rates for the gRDME

we need an additional constraint.

In Sec. IIIA we outline the algorithm, and in Sec. III B we derive mesoscopic param-

eters by trying to match certain statistics of the microscopic model to the corresponding

statistics on the mesoscopic scale. In Sec. IIIC we determine the dissociation rate of a

reversibly reacting pair of molecules, and in Sec. IIID we collect the results and summarize
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the algorithm.

A. Generalized reactions

Consider a domain Ω discretized by a Cartesian mesh, and a single reversible reaction

S1 + S2

ka

⇄
kd

S3. In the gRDME we allow reactions between molecules occupying neighboring

voxels. Thus, if a molecule of species S1 occupies the same voxel as a molecule of species S2,

they react with an intensity given by k0. If the molecules instead occupy neighboring voxels

they react with an intensity of k1, where two voxels are neighbors if they share one side.

We can choose k0 and k1 freely, with the restriction that the total intensity should be

constant. Call the total intensity kmeso
a . Let d be the dimension. Then, since each voxel has

2d neighbors, k0 and k1 must satisfy

k0 + 2dk1 = kmeso
a . (20)

Thus we can write

k0 = (1− 2dr)kmeso
a (21)

k1 = rkmeso
a , (22)

where 0 ≤ r ≤ 1/(2d).

Now assume that a molecule of species S3 dissociates. We must determine where to place

the two products S1 and S2. It may seem natural to place them in the same voxel with

probability 1 − 2dr, and in neighboring voxels with probability 2dr. While this arguably

would yield the most accurate results compared to microscopic simulations for a single

reversible reaction, we show below that this approach is unsuitable in general.

First consider the single irreversible dissociation given by

P
kdeg−−→ S1 + S2. (23)

In this case the microscopic and mesoscopic rates will be the same; thus kmeso
d = kdeg, and

the products are placed in the same voxel. Now consider that in addition to (23) we have
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the following reactions:

S1
k∗→S∗

1 (24)

S∗
1 + S2

ka

⇄
kd

S3. (25)

Again, (24) is an irreversible unimolecular reaction and thus the mesoscopic and microscopic

rates are the same. Now, if k∗ is large, the system (23)-(25) will be well approximated by

P
kdeg−−→ S∗

1 + S2

ka

⇄
kd

S3. (26)

Had we derived rates for reaction (25) assuming that dissociating molecules are placed

in neighboring voxels with some probability, we can see that the sequence (26) will be

incorrectly simulated, as S1 and S2 are placed in the same voxel with probability 1 when

P dissociates. Specifically, the rebinding dynamics of S∗
1 and S2 will be incorrect, as the

rebinding time will depend on whether they were produced from a dissociating S3 or a

dissociating P .

To summarize:

• Reactive molecules occupying the same voxel react with intensity (1− 2dr)kmeso
a .

• Reactive molecules in neighboring voxels react with intensity rkmeso
a .

• When a molecule dissociates, the products are placed in the same voxel with proba-

bility 1.

The parameters r and kmeso
a now have to be determined from the microscopic parameters

ka, σ and D.

B. Reaction rates

Consider the reversible reaction S1 + S2

ka

⇄
kd

S3. Assume that the initial state of the

system is given by one molecule of species S1 and one molecule of species S2 in a square

(2D) or a cubic (3D) domain Ω of width L with periodic boundary conditions. For simplicity,

and without loss of generality, assume that the S1 molecule is fixed at the origin while the

S2 molecule has a uniform initial distribution and a diffusion rate D = D1 + D2. On the
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microscopic scale the S2 molecule moves by continuous Brownian motion. On the mesoscopic

scale, Ω is subdivided into non-overlapping squares or cubes of width h. The S2 molecule

thus jumps between voxels with a total intensity of kj = 2dD/h2 in dimension d. Let

τmeso,r(k
meso
a , h) denote the average time until the molecules react on the mesoscopic scale in

the gRDME.

For the sRDME, it was shown in [15, 16] that by enforcing the constraint τmeso = τmicro

we obtain mesoscopic reaction rates as given by (10). In addition, it was shown that τ rebindmeso

approaches τ rebindmicro from above as h → h∗
∞. Therefore it seems reasonable to require that

with the gRDME we obtain an approximation of τ rebindmicro that is equal to or better than the

approximation we obtain with the sRDME. The first constraint is therefore that the mean

binding time agrees between the mesoscopic and the microscopic scales

τmeso,r(k
meso
a , h) = τmicro(ka), (27)

and the second constraint will be that, given (27), kmeso
a and r minimize the difference

between the rebinding times at the mesoscopic and microscopic scales; that is, we want to

minimize

∣

∣τ rebindmeso,r(k
meso
a , h)− τ rebindmicro (ka)

∣

∣ , (28)

under the assumption that (27) holds, where τmeso,r is the average binding time (dependent

on r and kmeso
a ), and where τ rebindmeso,r is the average rebinding time in the gRDME. Note

that with (27) satisfied we have τmeso,0(k
meso
a , h) = τmeso(k

meso
a , h) and τ rebindmeso,0(k

meso
a , h) =

τ rebindmeso (kmeso
a , h).

1. Mean mesoscopic binding time

Again, assume that we have species S1 and S2, with one molecule of each, and that the

S1 molecule is fixed. The S2 molecule is initialized according to a uniform distribution, and

diffuses with diffusion rate D.

We start by deriving the mesoscopic mean binding time. To this end, let M i
s denote the

average number of diffusive jumps required for the S2 molecule to reach a voxel at distance

i from the S1 molecule, where the distance between two voxels is defined to be the smallest
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number of discrete jumps required to move from one voxel to the other. Let the set of all

voxels at a distance i from the S1 molecule be denoted by di (note that d0 will then be a

set of only one voxel; specifically the voxel occupied by the S1 molecule), let tj denote the

average time for a diffusive jump, and let τi denote the average time for the S2 and the S1

molecule to react, given that the S2 molecule is occupying a voxel at distance i from the S1

molecule. Thus, tj = h2/(2dD), and

τmeso,r(k
meso
a , h) = M1

s tj + τ1. (29)

The first term, M1
s tj , represents the average time required for the S2 molecule to reach d1.

The second term, τ1, represents the remaining time until the molecules react, given that the

S2 molecule occupies a voxel in d1.

a. Derivation of M1
s In this section we show that

M1
s =











π−1N lnN + (C2 − 1)N +O(1) (2D)

(C3 − 1)N +O(
√
N) (3D),

(30)

where C2 and C3 are defined in (12). Let M j
i denote the average number of steps required

to diffuse from di to dj. We also show that

M1
2 =

N − 2

2d− 1
. (31)

To obtain (30) we first note that

M1
s = M0

s −M0
1 . (32)

In [26] it is shown that

M0
s =











π−1N lnN + C2N +O(1) (2D)

C3N +O(
√
N) (3D).

(33)

Let M0
0 be the average number of steps required to return to d0, given that we start in d0.

The first jump of a molecule starting in d0 always transfers the molecule to d1, so we find
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that

M0
1 = M0

0 − 1. (34)

We know that M0
0 = N , shown in [25]. By combining (32), (33), and (34), we obtain (30).

To obtain (31) we note that we can write M0
0 as

M0
0 = 1 +

1

2d
+

2d− 1

2d

(

M1
2 +M0

1

)

. (35)

To see that the above equality holds, start by considering a molecule in d0. The first jump

transfers the molecule to d1; the second jump transfers it back to the origin with a probability

of 1/(2d), or to d2 with a probability of (2d−1)/(2d). The average number of steps required

to reach d0 from d2, is given by the average number of steps to reach d1 plus the average

number of steps to reach d0, given that the molecule starts in d1. Now, solving (35) for M1
2

yields (31).

b. Derivation of τ1 To obtain τmeso,r for ka < ∞, it remains to determine τ1. To that

end, assume that the S2 molecule occupies a voxel in d1, and that the intensity with which

the molecules react in d1 is given by 1/(rkmeso
a ). Then, to maintain a total intensity of

1/kmeso
a , the molecules must react with an intensity of 1/ [(1− 2dr)kmeso

a ] in d0. We require

that r ≥ 0, and that 0 ≤ 1−2dr ≤ 1. To simplify the notation we let 1/(rkmeso
a ) be denoted

by p1, and 1/ [(1− 2dr)kmeso
a ] by p0.

Let t0e and t1e denote the average time until the next event fires, given that the S2 molecule

occupies a voxel in d0 or d1, respectively. Then t0e = 1/(p−1
0 + t−1

j ) and t1e = 1/(p−1
1 + t−1

j ).

By assumption, the S2 molecule initially occupies a voxel in d1. The next event can

either be: (1) a diffusive jump, with probability p1/(p1 + tj), or (2) a reaction event with

probability tj/(p1 + tj).

Now assume that the next event is a diffusion event. Then: (1.1) the molecule jumps to

d2 with probability (2d− 1)/2d, or (1.2) the molecule jumps to d0 with probability 1/(2d).

Assume that the molecule jumps to d0. Then the next event is: (1.2.1) a reaction with

probability tj/(p0 + tj), or (1.2.2) diffusion to d1 with probability p0/(p0 + tj). Thus, if the
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molecule is in the state (1.2), the time until the molecules react is given by

τ0 =
tj

p0 + tj
t0e +

p0
p0 + tj

(t0e + τ1) = t0e +
p0

p0 + tj
τ1. (36)

Now instead assume that the molecule is in the state (1.1). The molecules cannot react until

the S2 molecule reaches d1, and thus the average time until the molecules react is given by

τ2 = M1
2 tj + τ1 =

N − 2

2d− 1
tj + τ1, (37)

where M1
2 is given by (31). To summarize:

The S2 molecule initially occupies a voxel in d1, and the S1 molecule is fixed in d0.

(1) The S2 molecule diffuses with probability p1/(p1 + tj).

(1.1) The S2 molecule jumps to d2 with probability (2d−1)/(2d). The average remain-

ing time until the S1 and S2 molecules react is given by τ2.

(1.2) The S2 molecule jumps to d0 with probability 1/(2d).

(1.2.1) The S1 and S2 molecules react with probability tj/(p0 + tj).

(1.2.2) The S2 molecule diffuses to d1 with probability p0/(p0 + tj). The average

remaining time until the S1 and S2 molecules react is given by τ1.

(2) The S1 and S2 molecules react with probability tj/(p1 + tj).

Putting it all together, we obtain

τ1 =
tj

p1 + tj
t1e +

p1
p1 + tj

(

t1e +
1

2d
τ0 +

2d− 1

2d
τ2

)

. (38)

By inserting (36) and (37) into (38) and solving for τ1 we obtain

τ1 =
(N + 2d− 1)p0 + (N + 2d− 2)tj

2d(p0 + tj) + p1
p1 (39)

≈ p0 + tj
p0 + 2drtj

N

kmeso
a

, (40)

after some cumbersome but straightforward algebra, where (40) follows by assuming N ≫ 1.

14



c. Analytical expression for τmeso,r Now, using (29), (30), and (40) we find that

τmeso,r(k
meso
a , h) ≈











[π−1N lnN + (C2 − 1)N ] tj +
p0+tj

p0+4rtj
N

kmeso
a

(2D)

(C3 − 1)Ntj +
p0+tj

p0+6rtj

N
kmeso
a

(3D).
(41)

d. Lower limit on the voxel size It is of interest to know the smallest voxel size h for

which we can match the mesoscopic mean binding time, τmeso,r, with the microscopic mean

binding time, τmicro. In [15, 16] this problem was solved in the case of the sRDME for a

general reversible reaction S1 + S2

ka−⇀↽−
kd

S3. Similar results in the case of the gRDME can

be obtained for the case of an irreversible reaction with ka → ∞. As we will see in Eqs.

(74)-(75), the lower bound for ka → ∞ is in fact a fundamental lower bound for the gRDME.

We now let h∗
ka,g

be the smallest voxel size for which we can choose reaction rates such

that τmeso,r(k
meso
a , h) = τmicro(ka). It is easy to see that h∗

ka,g
exists; the average time until

two molecules on the mesoscopic scale occupy the same or neighboring voxels diverges in 2D

and 3D, thus there must exist a smallest mesh size for which the mesoscopic mean binding

time can match the mean microscopic binding time. We do not have analytical results for

τmicro on a square or a cube, but given that L ≫ σ is satisfied, an excellent approximation

is provided by

τmicro(ka) =











1+αF (λ)
ka

L2 (2D)

L3

kCK
(3D),

(42)

where

λ = π
1

2

σ

L

α =
ka
2πD

F (λ) =
ln(1/λ)

(1− λ2)2
− 3− λ2

4(1− λ2)
,

(43)

and where kCK = 4πσDka/(4πσD + ka) is the classical mesoscopic reaction rate, valid for

large volumes, derived by Collins and Kimball in [27]. The expression in 2D was derived in

[28], following the approach devised in [29].

Since molecules are allowed to react with molecules occupying neighboring voxels, we

15



obtain

τ1 → 0 for ka → ∞, r > 0 (44)

and thus

τmeso,r → M1
s tj for ka → ∞, r > 0. (45)

We know M1
s from (30), and we have tj = h2/(2dD) by definition. We now obtain h∗

ka,g
by

solving

M1
s tj = τmicro(∞) (46)

for h.

In 3D, (46) becomes

(C3 − 1)L3

6Dh
=

L3

4πσD
, (47)

since M1
s ∼ (C3 − 1)N for N ≫ 1, and kCK → 4πσD as ka → ∞. Solving (47) for h yields

h =
2

3
(C3 − 1)πσ ≈ 1.0815σ. (48)

In 2D, (46) becomes

h2

4D

[

π−1L
2

h2
ln

(

L2

h2

)

+ (C2 − 1)
L2

h2

]

=
L2

ka
+

F (λ)

2πD
L2, (49)

and for ka → ∞, we have

L2

ka
+

F (λ)

2πD
L2 →

ln
(

π− 1

2
L
σ

)

− 3
4

2πD
L2. (50)

In (50) we used that λ ≈ 0 for L ≫ σ. Now (49) reduces to

π−1 ln

(

L

h

)

+
C2 − 1

2
= π−1 ln

(

π− 1

2

L

σ

)

− 3

4π
. (51)
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We can rewrite the equation above to get

π−1 ln
(

π
1

2

σ

h

)

=
1− C2

2
− 3

4π
. (52)

Solving for h yields

h =
√
π exp

(

3 + 2π(C2 − 1)

4

)

σ ≈ 1.0599σ (53)

To summarize, we find that

h∗
∞,g =











√
π exp

(

3+2π(C2−1)
4

)

σ ≈ 1.0599σ (2D)

2
3
(C3 − 1)πσ ≈ 1.0815σ (3D).

(54)

2. Mean mesoscopic rebinding time

To satisfy the second constraint (28) we need both the microscopic and the mesoscopic

mean rebinding times. The microscopic rebinding time is derived in [16], as

τ rebindmicro =
Ld

ka
. (55)

The mesoscopic rebinding time is simply given by

τ rebindmeso = τ0, (56)

as τ0 by definition is the time until an S1 and an S1 molecule react, given that they start in

the same voxel. We have already derived τ0 in terms of τ1 in (36), and we thus obtain

τ rebindmeso,r ≈ t0e +
p0

p0 + 2drtj

N

kmeso
a

. (57)

immediately from (39)-(40).
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3. Solving for r and kmeso
a

We now want r and kmeso
a to satisfy the constraints (27) and (28). It will prove useful to

divide the problem into two cases:

Case 1: h ≥ h∗
∞ (58)

Case 2: h∗
∞ > h ≥ h∗

∞,g. (59)

It turns out that in case 1 we get r = 0, effectively reducing the generalized algorithm to

the standard algorithm.

a. Case 1 We assume that r and kmeso
a have been chosen to satisfy the first constraint

(27) and then show that for h ≥ h∗
∞ we have

τ rebindmeso,r (k
meso
a , h) ' τ rebind,ρmeso (ka, h) (60)

Since τ rebind,ρmeso (ka, h) ≥ τ rebindmicro (ka), it immediately follows that for h ≥ h∗
∞, the gRDME and

the sRDME agree.

We first note that we already know that

τmeso = M0
s tj + τ0 (61)

τmeso,r = M1
s tj + τ g1 (62)

where τi, as previously defined, is the average time until the molecules react, given that the

S2 molecule is in di. The superscript g indicates that it is the average time in the case of the

gRDME, and omission of the superscript indicates that it is the average time in the case of

the sRDME.

We have assumed that (27) is satisfied and consequently

0 = τmeso − τmeso,r = (M0
s −M1

s )tj + (τ0 − τ g1 ) = Ntj + (τ0 − τ g1 ), (63)

where the second equality follows from (30) and (33). We know that τ rebindmeso = τ0, so we get

τ rebindmeso = τ g1 −Ntj . (64)

18



Thus

τ rebindmeso,r ≥ τ rebindmeso (65)

⇐⇒ τ g0 ≥ τ g1 −Ntj (66)

⇐⇒ τ g1 − τ g0 ≤ Ntj . (67)

We have already shown that

τ g0 = t0e +
p0

p0 + tj
τ g1 >

p0
p0 + tj

τ g1 (68)

τ g1 ≈ p0 + tj
p0 + 2drtj

N

kmeso
a

. (69)

Now (67) becomes

p0 + tj
p0 + 2drtj

N

kmeso
a

− p0
p0 + tj

p0 + tj
p0 + 2drtj

N

kmeso
a

≤ Ntj (70)

⇐⇒ 1

p0 + 2drtj

1

kmeso
a

≤ 1. (71)

By definition, p0 = 1/(1− 2dr)kmeso
a , so (71) becomes

1
1

(1−2dr)kmeso
a

+ 2drtj

1

kmeso
a

≤ 1 (72)

⇐⇒ 1 ≤ (1− 2dr)−1 + 2drtjk
meso
a . (73)

Since 1− 2dr ≤ 1, we have (1− 2dr)−1 ≥ 1, and 2drtjk
meso
a ≥ 0 so (73) is satisfied for all r

and kmeso
a . Thus (65) holds for all r and kmeso

a .

What remains is to determine r and kmeso
a for h < h∗

∞.

b. Case 2 We will proceed in two steps. First we show that for h = h∗
∞,g with τ1 ≫ t0e

we have

τmeso,r(k
meso
a , h) ≈ τmicro(ka) (74)

τ rebindmeso,r (k
meso
a , h) ≈ τ rebindmicro (ka), (75)
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for kmeso
a = ka/h

d and 1− 2dr = 0, and for h < h∗
∞,g

τ rebindmeso,r (k
meso
a , h) / τ rebindmicro (ka). (76)

Note that we have already shown that we can satisfy (27) at least down to h = h∗
∞,g.

The assumption τ1 ≫ t0e means, in words, that the average time until two molecules react,

given that they are one voxel apart, is much longer than the average time until the first

event, given that they occupy the same voxel. Unless the microscopic reaction rate is

very high, this should be a reasonable assumption for most systems. The necessity of this

assumption is realized by considering two molecules in the same voxel. Now, if the average

microscopic rebinding time is smaller than the average time until the first diffusion event

on the mesoscopic scale, we could not hope to find mesoscopic rates that will yield a match

between the mesoscopic rebinding time and the microscopic rebinding time.

To show that (74) and (75) hold, we first note that we already know that

τmeso,r(k
meso
a , h) = M1

s tj + τ1, (77)

and from assuming h = h∗
∞,g, it follows that

M1
s tj = τmicro(∞), (78)

and thus

τmeso,r(k
meso
a , h∗

∞,g) = τmicro(∞) + τ1. (79)

Eqs. (39) and (40) yield, for 1− 2dr = 0 and kmeso
a = ka/h

d,

τ1 =
N

kmeso
a

=
Nhd

ka
=

Ld

ka
= τ rebindmicro (ka). (80)

We now have

τmeso,r

(

ka
hd

, h∗
∞,g

)

= τmicro(∞) + τ rebindmicro (ka) = τmicro(ka), (81)
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and thus (74) holds. Since we have assumed τ1 ≫ t0e and 1− 2dr = 0, we get

τ rebindmeso,r

(

ka
hd

, h∗
∞,g

)

= τ0 ≈ τ1 = τ rebindmicro (ka), (82)

and we have shown that (75) holds.

It remains to show (76). To this end, we simply note that

τmicro(ka) = τmeso,r = M1
s tj + τ1 > τmicro(∞) + τ1, (83)

since M1
s tj > τmicro(∞) for h < h∗

∞,g. Thus

τ rebindmicro = τmicro(ka)− τmicro(∞) > τ1 ≈ τ0 = τ rebindmeso,r . (84)

and (76) follows.

The second step is to show that for h∗
∞,g < h < h∗

∞, still assuming τ1 ≫ t0e, we have

τmeso,r(k
meso
a , h) ≈ τmicro(ka) (85)

τ rebindmeso,r (k
meso
a , h) ≈ τ rebindmicro (ka), (86)

for

kmeso
a =

(

tjQ
2 + ka/h

d

tjQ2 +Qka/hd

)

ka
hd

(87)

r =
DQ(Q− 1)

2dDQ2 + ka/hd−2
, (88)

where

Q =
Ntj

τmicro(∞)− τmeso,r(∞)
=











[

2
π
ln
(

h
h∗

∞,g

)]−1

(2D)
[

(C3 − 1)
(

h
h∗

∞,g
− 1
)]−1

(3D).
(89)
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We show this by first noting that we already know that

τmeso,r(k
meso
a , h) = M1

s tj + τ1 (90)

τ rebindmicro (ka) = τmicro(ka)− τmicro(∞) =
Nhd

ka
(91)

τ rebindmeso,r (k
meso
a , h) = τ0 ≈

p0
p0 + 2drtj

N

kmeso
a

. (92)

Consequently we satisfy (85) if

M1
s tj + τ1 = τmicro(ka), (93)

which, by (39) and (40), approximately holds if

p0 + tj
p0 + 2drtj

N

kmeso
a

= τmicro(ka)−M1
s tj . (94)

To satisfy (86), we must, by (91) and (92), satisfy

p0
p0 + 2drtj

N

kmeso
a

= τ rebindmicro (ka). (95)

Subtracting both the right-hand and left-hand side of (95) from (94), we obtain

tj
p0 + 2drtj

N

kmeso
a

= τmicro(ka)−M1
s tj − τ rebindmicro (ka). (96)

By definition, p0 = 1/(1− 2dr)kmeso
a and tj = h2/(2dD), so (96) yields, after some straight-

forward algebra,

kmeso
a =

(

(1− 2dr)Ntj
τmicro(ka)−M1

s tj − τ rebindmicro (ka)
− 1

)

D

rh2(1− 2dr)
. (97)

Since τmeso,r(∞) = M1
s tj and τ rebindmicro (ka) = τmicro(ka)− τmicro(∞), (97) becomes

kmeso
a =

D

rh2

(

Ntj
τmicro(∞)− τmeso,r(∞)

− 1

1− 2dr

)

(98)

=
D

rh2

(

Q− 1

1− 2dr

)

. (99)
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With kmeso
a as in (99), we want to find r such that (95) is satisfied. Since τ rebindmicro = Ld/ka =

Nhd/ka, we obtain

p0
p0 + 2drtj

N

kmeso
a

=
Nhd

ka
(100)

⇐⇒ 1

12drtjp
−1
0

1

kmeso
a

=
hd

ka
(101)

⇐⇒ (1 + 2drtjp
−1
0 )kmeso

a =
ka
hd

. (102)

Since tj = h2/2dD and p0 = 1/(1− 2dr)ka, (102) becomes

rh2

D
(1− 2dr)(kmeso

a )2 + kmeso
a =

ka
hd

. (103)

We expand the first term of the left-hand side to get

rh2

D
(1− 2dr)(kmeso

a )2 =
D

rh2

[

(1− 2dr)Q2 − 2Q+
1

1− 2dr

]

. (104)

Thus

rh2

D
(1− 2dr)(kmeso

a )2 + kmeso
a =

D

rh2

[

(1− 2dr)Q2 −Q
]

, (105)

and (103) becomes

D

rh2

[

(1− 2dr)Q2 −Q
]

=
ka
hd

, (106)

yielding

r =
DQ(Q− 1)

2dDQ2 + ka
hd

. (107)

Inserting r above into (99) yields (87).

It remains to show that kmeso
a > 0 and 0 < r < 1/(2d) hold for kmeso

a and r given by (87)

and (88). We first show that Q > 1, from which r > 0 follows. Thus we should show that

Q =
Ntj

τmicro(∞)− τmeso,r(∞)
> 1 (108)
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holds. We start by showing that (108) holds in 3D. By (30),

τmeso,r(∞, h) ≈ (C3 − 1)Ntj = (C3 − 1)
L3

h3

h2

2dD
, (109)

for N ≫ 1. We have already shown that

τmicro(∞) = τmeso,r(∞, h∗
∞,g) = (C3 − 1)

L3

(h∗
∞,g)

3
tj, (110)

so (108) becomes

Q =
L3

h3

h2

2dD

(C3 − 1) L3

(h∗

∞,g)
3

(h∗

∞,g)
2

2dD
− (C3 − 1)L

3

h3

h2

2dD

=
1
h

(C3 − 1)
(

1
h∗

∞,g
− 1

h

) > 1 (111)

⇐⇒ (C3 − 1)

(

h

h∗
∞,g

− 1

)

< 1. (112)

Since h∗
∞/h∗

∞,g = C3/(C3 − 1), and, by assumption, h < h∗
∞, we obtain

(C3 − 1)

(

h

h∗
∞,g

− 1

)

< (C3 − 1)

(

C3

C3 − 1
− 1

)

= 1. (113)

Thus Q > 1, and, as a consequence, r > 0. In 2D we have

τmeso,r(∞, h) =
[

π−1N lnN + (C2 − 1)N
]

tj (114)

=

[

π−1L
2

h2
ln

L2

h2
+ (C2 − 1)

L2

h2

]

h2

2dD
(115)

= π−1 L2

2dD
ln

L2

h2
+ (C2 − 1)

L2

2dD
. (116)

In 2D, similarly as in the 3D case, we have τmicro(∞) = τmeso,r(∞, h∗
∞,g). Thus

Q =
L2

h2

h2

2dD
[

π−1 L2

2dD
ln L2

(h∗

∞,g)
2 + (C2 − 1) L2

2dD

]

−
[

π−1 L2

2dD
ln L2

h2 + (C2 − 1) L2

2dD

]

(117)

=
1

2π−1
(

ln L
h∗

∞,g
− ln L

h

) =
1

2π−1 ln h
h∗

∞,g

. (118)
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Since, by assumption,

1 <
h

h∗
∞,g

<
h∗
∞

h∗
∞,g

, (119)

and

h∗
∞

h∗
∞,g

= exp

[

3 + 2πC2

4
− 3 + 2π(C2 − 1)

4

]

= exp
(π

2

)

, (120)

we obtain

Q =
1

2π−1 ln h
h∗

∞,g

>
1

2π−1 ln
(

exp π
2

) = 1. (121)

Thus Q > 1 holds in both 2D and 3D, and we have r > 0. Note that with Q > 1, kmeso
a > 0

follows immediately. It remains to show r < 1/(2d). To this end, we simply note that

r =
DQ2 −DQ

2dDQ2 + ka
hd−2

=

(

DQ2 −DQ

DQ2 + ka
2dhd−2

)

1

2d
, (122)

where

DQ2 −DQ

DQ2 + ka
2dhd−2

< 1 (123)

holds, since Q > 1.

Thus 0 < r < 1/(2d) and kmeso
a > 0 for h∗

∞,g < h < h∗
∞.

C. Dissociation rates

Consider the same setup as before, with one S1 molecule and one S2 molecule reacting

reversibly according to S1 + S2

ka

⇄
kd

S3. Above we have determined how to choose the meso-

scopic association rates, so what remains is to determine the dissociation rate. This can be

done completely analogously to the case of the sRDME. We thus follow the approach of [16],
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and conclude that we must have

(kmeso
d )−1

τ rebindmeso,r + (kmeso
d )−1

=
k−1
d

τ rebindmicro + k−1
d

, (124)

to obtain a steady state on the mesoscopic scale that matches the steady state of the micro-

scopic scale. Thus it follows immediately that for h∗
∞,g ≤ h ≤ h∗

∞, we should have

kmeso
d = kd, (125)

because τ rebindmeso,r (k
meso
a , h) = τ rebindmicro (ka) holds.

D. Summary of the algorithm

Assume that we have a cubic (3D) or square (2D) domain of width L, discretized by a

Cartesian mesh with voxels of width h. Consider a reversible reaction S1 + S2

ka

⇄
kd

S3, where

ka and kd are the microscopic reaction rates. Let D = D1 +D2, where D1 and D2 are the

diffusion rates of species S1 and S2, respectively. Let σ = σ1 + σ2 be the reaction radius of

an S1 and an S2 molecule.

The critical mesh sizes are given by

h∗
∞ ≈











5.1σ (2D)

3.2σ (3D),
(126)

for the sRDME, and the critical mesh sizes for the gRDME are given by

h∗
∞,g ≈











1.06σ (2D)

1.08σ (3D),
(127)

We now wish to simulate this system on the mesoscopic scale with the gRDME. The

results of this section can be summarized as follows:

• For h ≥ h∗
∞: The gRDME reduces to the sRDME. Thus r = 0 and kmeso

a = ρ(d)(ka, h).

Molecules react only when occupying the same voxel. The dissociation rate is given

by kmeso
d = hdkdk

meso
a /ka, as shown in [16].
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• For h∗
∞,g < h < h∗

∞: We match both the mean binding time, and the mean rebinding

time, of the S1 and S2 molecules by choosing r and kmeso
a as in (87) and (88). Now

molecules react with an intensity of rkmeso
a when occupying neighboring voxels, and

with an intensity of (1 − 2dr)kmeso
a when occupying the same voxel. The dissociation

rate is simply given by kmeso
d = kd.

• For h < h∗
∞,g we can no longer match the mean rebinding time, and the accuracy

deteriorates with decreasing h.

IV. NUMERICAL RESULTS

A. Rebinding-time distributions

Consider a system of two species S1 and S2, with one molecule of each. The S1 molecule

is fixed at the origin, while the S2 molecule diffuses freely in space. In [16] it was shown that

the sRDME matched the microscopic rebinding-time distribution for a reversibly reacting

pair down to t∗ ∼ (h∗
∞)2/(2D). For t < t∗, the behavior is inevitably going to be different,

as the accuracy of the sRDME is inherently limited by the spatial resolution.

With the gRDME, we can match both the average binding times as well as the average

rebinding times for h∗
∞ ≥ h ≥ h∗

∞,g, and thus we could hope that also the error in distribution

will be small at timescales of (h∗
∞,g)

2/(2D) < t < (h∗
∞)2/(2D).

In Fig. 1 we compare the microscopic rebinding-time distribution (obtained using the

microscopic algorithm described in [21]) to the rebinding-time distribution for the gRDME.

As we can see, there is a good match down to a spatial resolution of approximately σ. For

the finest meshes, the behavior at really short time scales is incorrect due to dissociating

particles starting in the same voxel, but not reacting until they are in neighboring voxels.

This introduces an error on the order of the voxel size, which will be on the order of the size

of the molecules.

B. Convergence of the generalized RDME

The dynamics of some systems is resolved only at a fine spatial resolution. In particular,

it has been shown that fast rebinding events can affect e.g. the response time of a MAPK
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FIG. 1. In (a) and (b) we have plotted the rebinding-time distributions in 3D. For the sRDME

we have a good match between the microscopic and mesoscopic simulations for h ≈ h∗∞, while

the average rebinding time is underestimated for finer meshes. For the gRDME we see that the

microscopic and mesoscopic distributions agree well for h∗∞,g < h < h∗∞ down to spatial resolu-

tion almost on the order of the size of the molecules, or a temporal resolution of approximately

(h∗∞,g)
2/(2D). In (c) and (d) we have plotted the rebinding-time distributions in 2D. The conclu-

sions are the same as for the 3D case. The parameters in (a) and (b) are given by σ = 2× 10−9 m,

D = 2× 10−12 m2 s−1, L = 5.145 × 10−7 m, and ka = 10−18 m3 s−1. The parameters in (c) and (d)

are given by σ = 2× 10−9 m, D = 2× 10−14 m2 s−1, L = 5.2 × 10−7 m, and ka = 10−12 m2 s−1.

pathway [6]. We consider the system











S1
kd→ S11 + S12

ka→ S2

S2
kd→ S21 + S22

ka→ S3,
(128)

which has a behavior similar to the MAPK pathway of [6]. Due to the possibility of fast

rebinding events, the long-term dynamics of the system is affected by spatial correlations
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between newly produced molecules.

We start with an initial population of 100 S1 molecules, with none of the other species

present. The system is simulated for 2s, during which we sample the state of the sys-

tem at 201 evenly distributed points between t = 0 and t = 2. We simulate the sys-

tem with both the sRDME, as well as with the gRDME, for different voxel sizes. Let

S = {S1, S11, S12, S2, S21, S22, S3} . We define the error, E(h), to be

E(h) =
1

201

201
∑

i=1

∑

S∈S

∣

∣[S]meso
h,i − [S]micro

i

∣

∣ , (129)

where [S]micro
i is the average population of S at time ti, obtained with the microscopic algo-

rithm from [21], and where [S]meso
h,i denotes the average population of S at time ti obtained

at the mesoscopic scale with voxel size h.

After a dissociation of either an S1 or S2 molecule from (128), the products can rebind

quickly to produce an S2 or S3 molecule, respectively. On the microscopic scale, the products

are in contact after a dissociation event, and thus the spatial correlation will be significant.

At the mesoscopic scale, the products are placed in the same voxel after a dissociation. If

the voxel size is large compared to the size of the molecules, the spatial correlation will be

less than on the microscale. Thus, to simulate (128) accurately, we would expect a fine mesh

resolution to be required.

Let σi be the reaction radius of molecule Si, and σij the reaction radius of molecule Sij.

The parameters of the model are given by











kd = 10 s−1

ka = 10−19m3 s−1



















































σ1 = 10−9m

σ11 = σ12 = 0.8× 10−9m

σ2 = 2× 10−9m

σ21 = σ22 = 1.8× 10−9m

σ3 = 2.5× 10−9m.

(130)

For simplicity, we let all species have the same diffusion rate, D = 10−12m2 s−1. The S1

molecules are initialized uniformly in a cube of volume 10−18m3.

There is a critical lower bound on the mesh size associated with each of the system’s
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bimolecular reaction events











h1 := h∗
∞(σ11 + σ12) ≈ 5.0815 · 10−9

h2 := h∗
∞(σ21 + σ22) ≈ 1.1433 · 10−8.

(131)

We know that for h > h∗
∞, we are unable to match both the mesoscopic mean association

time and the mesoscopic mean rebinding time to the corresponding microscopic quantities.

Thus, for h > max{h1, h2}, we will overestimate the rebinding time for both reactions, and

consequently underestimate the average S3 concentration.

For h2 > h > h1 the dynamics is less obvious; we are underestimating the average

rebinding time for the first reaction, but overestimating the average rebinding time for the

second. As we can see in Fig. 2 (b), the positive and negative errors partly cancel out in

this regime. At first the error decreases with decreasing h, but as we approach h1, it starts

to increase again. The behavior of the sRDME is hard to predict, and a priori we cannot

be sure that a particular choice of h is suitable.

In contrast, we see that the gRDME has a more predictable behavior, converging with

decreasing h, and yielding an almost perfect match for h < h1. The difference in behavior is

due to the gRDME matching the average rebinding time also for h < h∗
∞, all the way down

to h2,g := h∗
∞,g(σ21 + σ22) ≈ 3.8934 · 10−9.

At the finest mesh sizes a diffusion event will move a particle a distance on the order of the

radius of the molecules. Thus, for a dilute system such as the above, it is worth noting that

an efficient microscopic method taking advantage of the large distances between molecules

will be significantly faster than the gRDME. For the problem above, the algorithm in [21]

is more than an order of magnitude faster than the gRDME at the finest mesh sizes (one

realization on the microscopic scale took around 8s, while a simulation with the gRDME at

the finest mesh size took around 150s; note that both implementations were crude and not

optimized). However, in the case of a less dilute system, we expect the gRDME to be more

competitive. The execution time on the microscopic scale increases almost quadratically

with the number of molecules, but linearly with the number of molecules on the mesoscopic

scale. A possible application of the gRDME is in hybrid methods, where part of the system

can be simulated at the coarser sRDME scale, and only some parts of the system at the

most fine-grained and expensive gRDME scale.
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FIG. 2. In (a) we plot the average number of S3 molecules as a function of time. As we can see,

for a larger value of the voxel size h, we underestimate the number of S3 molecules. For a very fine

mesh, the number of S3 molecules is overestimated with the sRDME. Somewhere in between we

may obtain a good approximation compared to the microscopic results also with the sRDME, but

then the concentration of other species in the system will be incorrect. For simulations with the

generalized algorithm, the average number of S3 molecules is underestimated for coarse meshes,

but as we refine the mesh, the dynamics approach that of the microscopic simulations. In (b) we

see that the total error, as defined in (129), decreases down to a mesh size of h1 for the gRDME,

while the error for the sRDME first decreases slightly but then increases as we refine the mesh

further. We obtain an almost perfect match between the microscopic simulations and the gRDME

as h approaches h1, and all the way down to h2,g. The average on the microscopic scale is based

on 2000 trajectories, giving 95% confidence intervals of width less than 0.2% of the mean for most

time points, and the mesoscopic results are based on approximately 500 trajectories, giving 95%

confidence intervals of width less than 1.0% of the mean for most time points.

V. SUMMARY

For the sRDME there is a lower bound on the mesh size, h∗
∞, below which the accuracy

deteriorates. For h > h∗
∞ we match the mean binding time of two molecules with the

mesoscopic reaction rate given by ρ(d)(ka, h). For h = h∗
∞ we match both the mean binding

time and the mean rebinding time of the two molecules.

Some systems display fine-grained dynamics, requiring a fine spatial resolution to be

simulated at the mesoscopic scale. By generalizing the sRDME to allow reactions between

molecules in neighboring voxels, we obtain a lower bound on the mesh size given by h∗
∞,g,

where h∗
∞,g is on the order of the reaction radius of a pair of molecules. We derived analytical

expressions for the reaction rates, and showed that we match both the mean binding time

and the mean rebinding time for h∗
∞,g ≤ h ≤ h∗

∞. For h > h∗
∞, the gRDME and the sRDME

agree.
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We studied the accuracy of the gRDME in two numerical examples. In the first example

we showed that we not only match the mean rebinding time for h∗
∞,g ≤ h ≤ h∗

∞, but that

we also obtain a good match between the rebinding-time distributions at the two scales.

In the second example we considered a system that cannot be accurately simulated with

the sRDME, as the mesh resolution required is below the fundamental lower limit h∗
∞. We

showed that with the gRDME we are able to simulate the system to high accuracy, and we

showed that we obtain convergence to the microscopic simulations with decreasing mesh size

h.
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