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Abstract

I derive analytically the temporal dependence of the perpendicular transport coefficient of a

charged particle in the three-dimensional anisotropic turbulence conjectured by Goldreich-Sridhar

by implementing multi-spacecraft constraints on the turbulence power spectrum. The particle

motion away from the turbulent local field line is assessed as gradient-curvature drift of the guiding-

center and compared with the magnetic field line random walk. At inertial scales much smaller

than the turbulence outer scale, particles decorrelate from field lines in a free-streaming motion,

with no diffusion. In the solar wind at 1 AU, for energy sufficiently small (< 1 keV protons),

the perpendicular average displacement due to field line tangling generally dominates over two

decades of turbulent scales. However, for higher energies (' 25 MeV protons) within the range of

multi-spacecraft measurements, the longitudinal spread originating from transport due to gradient-

curvature drift reaches up to ' 10◦ − 20◦. This result highlights the role of the perpendicular

transport in the interpretation of interplanetary and interstellar data.
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I. INTRODUCTION

The diffusion of charged particles in a turbulent magnetic field plays a pivotal role in the

understanding of the origin of cosmic rays, more than a century since their discovery, over

a broad range of particle energy, from the interplanetary solar energetic particles [1] to the

PeV cosmic rays likely produced at individual supernova remnant shocks [2]. In a volume

of space (for instance interplanetary region close to the Sun, or interstellar medium stirred

by supernova explosion) threaded by a strong statistically uniform average magnetic field

B0 with a small fluctuation δB, the particle diffusion parallel to the average field has been

originally modeled in [3, 4]. The discrepancy later found [5] between the mean-free path

of some solar energetic particle events and the prediction of the quasi-linear theory spurred

intense theoretical work. Dröge et al. [6] has shown that including the measured, despite

noisy, steepening of the power spectrum at high wavenumber for selected events approaches

the predicted mean free path to the measurements. Bieber et al. [7] concluded that the

geometry of the magnetic fluctuations in the solar wind must be different from the simple

picture of the quasi-linear theory.

Perpendicular diffusion is usually regarded as negligible compared to the parallel diffusion.

Nevertheless, the interpretation of a number of heliospheric measurements and numerical

simulations of energetic particles suggests a significant contribution arising from perpendic-

ular transport. Time-intensity profiles of energetic protons at spacecraft separated by more

than 180◦ in longitude at 1 AU provide evidence of a significant motion across the Parker

spiral magnetic field lines [8]. Whether the motion across the spiral is due to a pure field

line meandering or, in addition to that, to the departure of protons from the actual local

field lines, called here cross-field diffusion, is among the purposes of this investigation. From

the X-ray variability in the solar flares observed by RHESSI [9] it has been argued that

perpendicular chaotic motion of a few tens of keV electrons in flaring loops was observed

in a non-diffusive phase. Test-particle simulations [10] show that even in a weak three-

dimensional isotropic turbulence charged particles decorrelate from magnetic field lines on

a time scale comparable to the gyroperiod. These results pinpoint to a propagation regime

wherein early-time perpendicular transport cannot be neglected.

It is well known that the transport of charged particles in turbulence depends on the

anisotropy of the power spectrum [11, chap. 13]. Anisotropic turbulence in the solar wind
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was first found by Belcher & Davis [12] as elongation of turbulence fluctuations along the

magnetic field, and confirmed by several studies later on [13, e.g.]. High-heliolatitude Ulysses

measurements [14] provided a new insight: the power spectrum of the local magnetic field

in the solar wind is consistent with the anisotropic incompressible MHD-scale turbulence

conjectured by Goldreich & Sridhar [15]. Such an interpretation was confirmed over a fre-

quency interval comparable with the presumably “entire” inertial range of the fast solar

wind turbulence [16]. A scrutiny of the power spectrum dependence on the angle of the

flow to the magnetic field and on the wave-vector anisotropy [17] confirmed an approximate

consistency with the model of Goldreich & Sridhar [15]. Forman et al. [17] argue that the

disagreement in the outer length-scale predicted by [15], inferred to be 20 times larger than

measured, might be explained with unbalance between Alfvén modes propagating in oppo-

site directions, in contrast with the balance assumed in [15]. However, the model

[15] does not account for the difference in power-law exponents of the power

spectrum of velocity and magnetic fluctuations in the inertial range measured,

e.g., by Wind throughout the solar cycle 23 [18]. Numerical simulations of MHD tur-

bulence have pointed out that the anisotropy increases at small scales [19] and the turbulent

eddies become more elongated along the direction of the local magnetic field [20–22].

In this paper I investigate the time-dependent perpendicular transport within the MHD-

scale turbulence conjectured by Goldreich & Sridhar [15]. Chandran [23] pioneered the

study of pitch-angle scattering in such a turbulence within the quasi-linear theory limit

[3], finding a scattering frequency more than ten orders of magnitude smaller than the

isotropic turbulence over 4 decades of particle kinetic energy. Extension to a regime immune

to the quasi-linear theory divergence at small pitch-angle [24] confirmed such a scattering

inefficiency [25]. Since in the anisotropic turbulence [15] the wave-vectors of the MHD-scale

fluctuations are predominantly perpendicular to the local average field, one could expect a

small ratio of the perpendicular to the parallel average displacement as compared to the 3D

isotropic case. Note that test-particle simulations by Laitinen et al. [26] found that the ratio

of perpendicular to parallel diffusion coefficient in a synthesised scale-dependent anisotropic

turbulence devised to reproduce [15] is a few percent, comparable to the isotropic turbulence.

Diffusion perpendicular to the mean magnetic field has been long known to be dominated

by the meandering of the magnetic field lines [3]. The rate of separation of turbulent field

lines along the direction of the mean field was found in Jokipii [27], by solving a Fokker-
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Planck equation, to be very fast in the 3D isotropic power-spectrum turbulence, resulting in

a significant perpendicular transport solely due to field-line meandering. Rechester & Rosen-

bluth [28], arguing that field lines diverge exponentially along the mean field direction, found

that even if the particle does not undergo significant pitch-angle scattering (“collisionless”

case), the jump from a field line to another warrants a strong perpendicular diffusion due

to the exponential divergence. Chandran & Cowley [29] showed that an exponential diver-

gence of field-lines reduces the electron thermal conductivity in the galaxy clusters medium.

Chandran & Maron [30] used a variety of methods, including Fokker-Planck equation for

a static Goldreich & Sridhar [15] MHD turbulence and a numerical Monte-Carlo model,

and found a field-line separation growing as a power-law. Such theoretical analyses omitted

gradient-curvature drift motion of the guiding-center; this assumption is justified for the

thermal electrons in the galaxy clusters medium. The present paper investigates the limits

of neglecting the gradient-curvature drift in the solar wind turbulent plasma.

In this paper I use the decomposition of the instantaneous perpendicular average square

displacement of a charged particle in a magnetic turbulence in two distinct contributions:

meandering of magnetic field lines and gradient-curvature drift of the particle guiding-center

from the local field line. Those have been analytically calculated for the slab- and the 3D

isotropic turbulence in Fraschetti & Jokipii [31] and the latter numerically confirmed for the

3D isotropic turbulence [10]. The gradient-curvature drift is usually neglected in theoretical

analysis or interpretation of numerical simulations as the cross-field motion is assumed to

be dominated by jumps between field lines once the particle has travelled a certain distance

away from the original field line. In this paper I calculate gradient-curvature drift and field

line contributions to the perpendicular transport for the Goldreich & Sridhar [15] anisotropic

turbulence and investigate the departure of particles from the field lines as a function of time.

Benchmark parameters are tailored to solar wind energetic particles events.

This paper is organized as follows: in Sect. II the power spectra of Alfvén polarisation

modes relevant to perpendicular transport in the turbulence [15] are described; in Sect. III

the calculation of the instantaneous transport coefficients, due to gradient-curvature drift

and to magnetic field line random walk, is outlined (details are in the appendices) and

compared with the previous finding of an exponential divergence of field lines; in Sect. IV

the two contributions to the perpendicular transport are compared and the role of gradient-

curvature drift average displacement in the solar energetic particles longitudinal spread is
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estimated; Sect. V contains the conclusions.

II. ANISOTROPIC POWER SPECTRUM

Critical balance condition along with the assumption that the energy cascade rate is scale-

independent [15] yields the scaling k‖ ∼ k
2/3
⊥ /L1/3, where k‖, k⊥ are the components of the

wavenumber k parallel and perpendicular to the local average magnetic field, respectively,

and L is some outer scale which might coincide with the injection scale of the turbulence.

Such a scaling holds for a large-scale field Alfvénic Mach number MA ' 1, as originally

assumed in [15]; a more general scaling reads k‖ ∼ k
2/3
⊥ /L1/3M

4/3
A [32]. The previous scaling

implies that the anisotropy increases at the smaller scales. The power at wave-vectors not

satisfying the critical balance is exponentially suppressed. However, as well known, the

functional form of the power spectrum is not predicted by the conjecture [15] and various

possibilities have been explored [23, e.g.].

In the anisotropy [15] the scales of the turbulent eddies parallel and perpendicular are

measured only with respect to the direction of the local magnetic field [32] that varies ac-

cording to the location and the scale, whereas in slab or 3D isotropic weak turbulence

the direction of the global average statistically uniform field is independent on

the scale. Numerical simulations confirm the ratio of parallel and perpendicular scales of

the eddies, as well as the relation between k‖ and k⊥, implied by the Goldreich & Sridhar

[15] power spectrum [20, 22].

A spatially homogeneous, fluctuating, time-independent global magnetic field B0 is con-

sidered. The total field is decomposed as B(x) = B0 + δB(x), with an average component

B0 = B0ez and a fluctuation 〈δB(x)〉 = 0. The unit vector ez gives the direction of the

global average field component. Such a time-independent decomposition of B applies to

the solar wind, where the propagation of the magnetic fluctuation is much smaller than the

velocity of the bulk ionized fluid.

In this paper, we assume that the inertial range extends from the outer scale L down to

some scale wherein injected energy ultimately must dissipate. We introduce a scale L′ � L,

much larger than the gyroradius rg of the particles considered here (Fig. 1). The fluctuations

δB(x) are large compared to the total magnetic field at scale ∼ L; however, at scales < L′ the

magnetic fluctuations are small compared to the local average field, and the first-order orbit
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theory applies to eddies of scale < L′. By using such assumptions, Chandran [23] applied

the quasi-linear theory to determine the scattering frequency in the turbulence [15]. The

resulting parallel transport depends only on the large scale L and not on the intermediate

scale L′.

The most general form of the power spectrum tensor for MHD fluctuations was derived

in Oughton et al. [33], in their Eq. (20), and in the assumption of axisymmetric turbulence

(neglecting cross-helicity) it reduces to

Pij(k) =

(
δij −

kikj
k2

)
E(k) +

[
(eikj + ejki)(e · k)− eiejk2 −

kikj
k2

(e · k)2
]
F (k) (1)

where e i is the unit vector in cartesian coordinates and k the wave-number (i, j = 1, 2, 3),

where k3 ≡ k‖ (k⊥ = (k1, k2)) is the component of the wavenumber vector parallel (per-

pendicular) to the local average field (the unit vector e3 is not parallel to the z-axis, see

Fig. 1). The scalar functions E(k), F (k) are interpreted in terms of different linear MHD

polarisation modes for an oblique orientation between k and the local average magnetic

field. In particular, E(k) is related to the power in the shear-Alfvén modes Σ(k), i.e.,

Σ(k) = E(k), and F (k) to the difference between shear- and pseudo-Alfvén modes power

Π(k), i.e., F (k) = (Σ(k)− Π(k))/k2⊥.

The power spectrum given by Eq. 1 includes the shear- and pseudo-Alfvén mode only,

and assumes vanishing cross-helicity, i.e., the modes C(k) and H(k) in Eq.(20) in Oughton

et al. [33]. Fast solar wind measurements [34] are compatible with vanishing mode C; here

the mode H is neglected, as expected to be comparably small.

A series of incompressible MHD numerical simulations [35] implemented the axisymmetric

power spectrum tensor given by Eq.1 to empirically determine the functional form of E and

F and best-fit the shear-modes power Σ(k) by using

Σ(k‖, k⊥) =
NB2

0

L1/3
k
−10/3
⊥ exp

(
−
L1/3k‖

k
2/3
⊥

)
(2)

where N is a normalisation constant to be determined, 2π/L′ < k⊥ < kM⊥ , where kM⊥

is the power spectrum cut-off where dissipative effects start to be important and MHD

approximation breaks down, and MA ' 1. According to the conjecture [15], the pseudo-

Alfvén modes are carried passively by the shear-Alfvén modes (this property is an exact

result for weak MHD turbulence [36]) with no contribution to the turbulence cascade

to small scales which is seeded by collisions of shear modes only. Thus, it is reasonable to
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assume that Πij(k) has the same functional form as Σij(k), allowing for a relative amplitude

ε (0 < ε < 1) and a different outer scale ` (` 6= L) both so far inaccessible to either solar

wind observations or models. Likewise, the power spectrum of the pseudo-modes is cast in

the form

Π(k‖, k⊥) =
εNB2

0

`1/3
k
−10/3
⊥ exp

(
−
`1/3k‖

k
2/3
⊥

)
. (3)

The constant N is fixed by normalisation of both polarisation modes that can be extended

to scales between L′ and L, as the contribution from scales between L′ and L is exponentially

suppressed. Within the range k0‖,⊥ � k‖,⊥ � kM‖,⊥, if the largest scales 1/k0‖, 1/k
0
⊥ are related

to the outer scale by k0‖ ' (k0⊥)2/3/L1/3, the normalisation reads: δB2 =
∫
d3k Trace(Pij) =∫

d3k(Σ(k) + Π(k)) which gives N ' 1
3π

(δB/B0)
2(1 + ε(L/`))−1, where k0‖L ' 1 was used.

We note that N does not depend on the scale L′ neither on kM‖ , that is irrelevant as the

cascade along the local average field is suppressed.

Recent analysis of fast solar wind data from Ulysses [34] provides us with an estimate

of ε by confirming an ordering in diagonal components of the power tensor that has long

been found [12]: if e3 is the unit vector in the direction of the local average magnetic field,

the measurements give a power along e3 smaller, but not negligible (ε 6� 1), than in the

plane orthogonal to e3. As shown in Sect. III, such a power ordering results in a small

but not negligible effect on the perpendicular transport of the pseudo modes with respect

to the shear modes. The forms given by Eq.s 2, 3 are used in Sect. III to calculate the

time-dependent perpendicular transport.

Chandran [23] used a power spectrum with steep cutoff beyond the critical balance scaling

k‖ ∼ k
2/3
⊥ to determine the scattering frequency within the quasi-linear theory approxima-

tion. In this paper I calculate the time-dependent perpendicular transport coefficient by

expanding in Taylor series the exponentials exp(−L1/3k‖/k
2/3
⊥ ), exp(−`1/3k‖/k2/3⊥ ) in the

power spectra in Eqs. 2, 3; such an expansion is valid as the power spectrum is

a convergent quantity. Only the terms growing fastest in time are retained. We note

that no assumption is necessary on the explicit spatial dependence of δB(x), that has three

non-vanishing space components, as only the Fourier transform δB(k) is used.
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III. EARLY-TIME PERPENDICULAR TRANSPORT COEFFICIENT

The magnetostatic approximation has been widely used for decades [3] to investigate the

transport of charged particles in magnetic turbulence, as the speed of the particles considered

is typically much greater than the average-field Alfvén speed. Solar wind flows outward from

the Sun at a speed of several hundreds of km/s (300-400 at low heliolatitudes and 700 at high

heliolatitudes), much faster than the local Alfvén speed (tens of km/s) and the spacecraft

speed (a few km/s). Thus, the magnetic fluctuations can be assumed to be frozen with the

plasma. In this paper I investigate the perpendicular transport at time-scales shorter than

the correlation time of the perpendicular fluctuations of the local magnetic field, as seen

by the particle. The transport perpendicular to the average magnetic field is dominated by

guiding-center motion which includes the meandering of the magnetic field lines (MFL) and

the gradient-curvature drift from the first-order orbit theory [31, 37], in the approximation

that the particle gyroradius is much smaller than the scale of magnetic field variations. The

existence of a diffusion regime for the perpendicular transport is not assumed.

A. Gradient-Curvature Drift Transport

In this section, the derivation of the gradient-curvature drift transport coefficient in

Fraschetti & Jokipii [31] is outlined and the result in the case of the turbulence [15] is

presented (details in Appendix A). The first-order orbit theory [37] is used, assuming that

rg is much smaller than the length-scale of any magnetic field variation: rg � min
i,j=1,3

|Bi/∂jBi|

or, in other terms, the magnetic field varies slightly at the gyroscale so that the particle orbit

can be approximated within a gyroperiod by the helicoidal trajectory with local curvature

radius given by rg; for wave-numbers k⊥ within the inertial range, the smallness of rg reads

k⊥rg � 1; in other terms we assume that the perturbation in the turbulent cascade at the

gyroscale rg does not affect significantly the particle trajectory.

At scales < L′, we calculate the gradient-curvature drift from the local average field at

those scales. We make use of the gyroperiod averaged guiding-center velocity transverse to

the local field B(x), i.e., VG
⊥(t), to the first order in the fluctuation, given for a particle of

speed v, momentum p and charge Ze by [37]

VG
⊥(t) =

vpc

ZeB3

[
1 + µ2

2
B×∇B + µ2B(∇×B)⊥

]
, (4)
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where µ is the cosine of the pitch-angle with respect to the local average field. The average

square transverse displacement of the particle from the direction of local field due to drift,

dD(t), at time t is written as

dD(t) =

∫ t

0

dξ〈VG
⊥,i(t

′)VG
⊥,i(t

′ + ξ)〉. (5)

The drift transport coefficient would be defined here as the limit κD = lim
t→∞

dD(t). We as-

sume that Pij(k) is uncorrelated at different wave-number vectors, i.e. 〈δBr(k)δB∗q (k
′)〉 =

δ(k−k′)Prq(k) for the Fourier components δBr(k); we note that the validity of the

critical balance condition scale-by-scale used here has been recently questioned

in a phenomenological analysis [38] that reports inconsistencies with ion kinetic

scales for parameters in the solar wind regime. The generic non-vanishing term of

Eq.5 (regardless of the power spectrum assumed) is given by (see [31]):(
vpc

ZeB2
0

)2

F (µ2)

∫ ∞
−∞

d3kPrq(k)klkp
sin[k‖v‖t]

k‖v‖
, (6)

with indexes (r, q, l, p) = (3, 3, 2, 2), (3, 2, 2, 3), (2, 3, 3, 2), (2, 2, 3, 3) for dDXX
and (r, q, l, p) =

(3, 3, 1, 1), (3, 1, 1, 3), (1, 3, 3, 1), (1, 1, 3, 3) for dDY Y
. In the factor (vpc/ZeB2

0)2 in Eq. 6

we assumed that the magnitude of the local average field can be approximated by B0 at

those scales. Here F (µ2) represents various factors depending on the particle pitch-angle

µ resulting from the expansion of Eq.5 [31]. Such a calculation is detailed in Appendix A.

From a comparison of the terms in Eqs. A6 , A9, A12 and A13, only the term fastest growing

in time (Eq.A6) is retained: the drift transport coefficient is dominated by the power of the

pseudo-Alfvén modes along the local average field P33(k) (term 3322 in Appendix A). Thus,

by using Eq.6, the instantaneous drift transport coefficient can be cast as

dD(t) ' 1

60

(
δB

B0

)2
ε

1 + εL/`

(
L

`

)1/3 (rg
L

)2
rgvΩt

[
(k⊥L)8/32F1

(
1,

4

3
;
7

3
;−(k⊥L)2/3

)]∣∣∣∣
kM⊥

(7)

where Ω = ZeB0/mc is the particle gyro-frequency, rg ' pc/ZeB0. The quantities Ω, rg

depend on the magnitude of the global average field B0. The corrective factor in Eq. 7 is

only the ratio of the power of the global to the local average fields (O(1)). We emphasise

that Eq. 7 is valid only as long as particle transport is confined within the scale L′. In Fig.

2, panels (b,d) depict the time-evolution of dD(t) as given by Eq. 7 for energetic
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protons in the solar wind for different values of ε (1, 0.5, 0.1) and L/` = 1 in (b)

and L/` = 10 in (d). Higher power in the pseudo-Alfvén modes relative to the shear-

(i.e., higher ε) results in an enhancement of dD(t) (see Appendix A). In analogy with the

3D isotropic turbulence case [31], dD(t) in the anisotropic turbulence [15] grows linearly

with (δB/B0)
2. As compared with the Bohm diffusion coefficient κB = vrg/3 = 1.3 × 1016

cm2/s for Ek = 10 keV, Fig. 2 (b) shows that dD(t) ' κB within a very short time (Ωt ' 50,

L/` = 1 and ε = 1). We emphasise that the average square displacement due to drift (Eq.

7) does not depend only on large-scale properties of the turbulence (L), but also depends

non trivially on the smallest scales (kM⊥ ). The result is independent on the scale L′ [23] as

the large scales are exponentially suppressed.

We can also conclude that the guiding-center is confined only for short-time to move along

the field line. We compare the average square displacement from the local field-line reached

by the guiding-center via gradient-curvature drift, i.e., 〈∆x2D〉 ∼ 2dD(t)∆t (see Fig. 1) with

the squared gyroscale (r2g). For a proton with Ek = 1. keV in the solar wind at 1 AU (see

Fig. 2 (b)), we find that 〈∆x2D〉 at Ωt = 100 (ε = 0.1) is comparable with r2g = 8.3 × 1015

cm2. Thus, after a few gyroperiods the actual particle has an average distance from the

local field greater than 2rg.

We remind that the gradient-curvature drift transport is calculated here up to scales L′,

with a given direction (e3) of the local average field at that scale different from the global

average field direction (z-axis). Our finding does not rule out that at scales close to the outer

scale L the perpendicular transport can turn into diffusive regime. However, accounting for

those larger scales requires a spatial dependence of the local turbulence wave-number vectors;

this is deferred to a separate work.

B. Magnetic field line

In this section the method to compute the time-dependent particle transverse transport

due to MFL meandering [31] is outlined and the result for the Goldreich & Sridhar [15]

turbulence is presented. Previous theoretical derivations of MFL meandering in the isotropic

[27] and anisotropic [15] turbulence [30, 39] focused on the relative divergence between

two initially static nearby (down to thermal electron gyroradius scale) field lines along the

direction of the average magnetic field. In contrast with this result, magnetic turbulence
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has been found [32, 40] to exhibit a field line separation in agreement with the long argued

Richardson scaling t3/2 for a pair of particles in purely hydrodynamical turbulent media.

Numerical simulations of MHD turbulence in a partially ionised plasma [41] show that

the neutral drag has the effect of recovering the exponential field line separation argued in

Rechester & Rosenbluth [28]. In analogy with [31], we focus on the divergence of a single field

line from the direction of the local average field. The method of two field lines separation

applies to the case of zero average field; on the other hand, being based on the solution

of the Fokker-Planck equation, it requires several independent small displacements ∆xMFL

(central limit theorem), thus it requires diffusive regime to be reached, whereas the method

[31] applies more generally, i.e., prior to the diffusive regime.

We assume that the correlation function of the magnetic fluctuation is homogeneous in

space, i.e., the correlation depends only on distances along the particle orbit: 〈δBx[x(x03 +

x3)]δBx[x(x03)]〉 = 〈δBx[x(x3)]δBx[x(0)]〉. The mean square displacement of the MFL or-

thogonal to the e3 vector can be defined as

dMFL(x3) =
1

2

d〈∆x2(x3)〉
dx3

=
1

B2
0

∫ x3

0

dx3〈δBx[x(x3)]δBx[x(0)]〉. (8)

We compute the magnetic turbulence along the unperturbed trajectory of a pseudo-particle

travelling with zero pitch-angle and no scattering [31]. The mean-square transverse displace-

ment of a MFL corresponding to a distance x3 = v‖t along the local uniform field travelled

by a such a pseudo-particle can be written as

dMFL(t) =
1

B2
0

∫ ∞
−∞

d3kPij(k)
sin[k‖v‖t]

k‖
. (9)

where Pij(k) is the magnetic turbulence power spectrum in the inertial range (Eq. 1). The

MFL diffusion coefficient is the limit κMFL = lim
t→∞

dMFL(t)v‖. As in the previous section, in

Eq. 9 we assumed that the magnitude of the local average field can be approximated by B0.

The detailed calculation for the anisotropic [15] power spectrum (Eq.s 1, 2, 3) can be found

in Appendix B.

From Eq.B3, the instantaneous transport coefficient due to MFL meandering is dominated

by shear-modes and given by

dMFL(t)v‖ '
1

2

(
δB

B0

)2
1

1 + εL/`
rgvΩt. (10)

Figure 2, (a,c), depicts the time-evolution of dMFL(t)v‖ as given by Eq. 10 for protons

at various energies in the solar wind and for different value of ε (1, 0.5, 0.1) and L/` = 1
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(L/` = 10) in the left (right). In analogy to the MFL random walk in isotropic turbulence

[31] and the well-known quasi-linear theory result, dMFL(t) for anisotropic turbulence [15]

grows linearly with (δB/B0)
2. Alike the drift, the independence on L′ arises from the fact

that scales between L′ and L are exponentially suppressed.

We find that even at the small time-scales considered here, different magnetic turbulences

exhibit different scalings. In the case of anisotropy [15] the linear growth in time of the MFL

average square displacement dMFL(t) is fast as compared to the 3D-isotropic turbulence,

wherein a logarithmic growth at large scales and diffusion at small scales are found (see Eq.

[49] in [31]).

With the substitution x3 = v‖t, Eq. 10 gives dMFL(x3) ' (1/2)(δB/B0)
2x3/(1 + εL/`).

We note that a linear dependence of dMFL(x3) on x3 could also be derived empirically from

the argument ∆x1/∆x3 ∼ δB1/B0. By using a direct calculation we determine here the

dependence of the proportionality coefficient on the turbulence parameters, otherwise to be

determined empirically, for instance, through numerical simulations.

IV. DISCUSSION

A. Role of the gradient-curvature drift

We discuss the relative contribution of magnetic field line meandering and gradient-

curvature drift to the perpendicular transport in the anisotropy [15] for times shorter than

the correlation time of the perpendicular fluctuations of the local magnetic field, as seen by

the particle. In the guiding-center approximation used here, the ratio dMFL(t)v‖/dD(t) (see

Eqs. 7 and 10) is time-independent. Such a ratio can be cast as a function of kM⊥ L in the

form

dMFLv‖
dD

(kM⊥ L) ' 30

(
L

rg

)2(
`

L

)1/3
1

ε

[
(kM⊥ L)8/32F1

(
1,

4

3
;
7

3
;−(kM⊥ L)2/3

)]−1
. (11)

Figure 3 illustrates dMFLv‖/dD in Eq. 11 for different values of L/rg. We emphasise that the

ratio dMFLv‖/dD, large in the solar wind, is expected to be upper bounded: dD grows with

the turbulence power along the local average field P33, that is small, although not negligible,

compared to the other diagonal terms of the power spectrum tensor (P11, P22).

Figure 3 shows that dD becomes relevant at small scales, i.e., at large wave-numbers kM⊥ .

If dMFL(t)v‖/dD(t) ∼ 10, the average perpendicular displacements due to tangled field lines
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and to the gradient-curvature drift become comparable:
√
dMFL(t)v‖/dD(t) ∼ 3. From Fig.

3, we conclude that for a sufficiently small energy (< 1 keV) proton at 1 AU in the solar wind

turbulence, using an inertial range extended down to a scale ∼ 10−5 AU (kM⊥ L ' 102 − 103

for L = 0.01 AU), the average perpendicular displacement due to field line meandering

is generally dominant (dMFL(t)v‖/dD(t) ' 105 or greater). However, for higher energies

(∼ 10 keV) protons (L/rg ' 500), the ratio of the two average square displacements is

smaller and within a smaller inertial range (kM⊥ L ' 102) reaches values down to ∼ 10. The

region dMFLv‖/dD < 10 is inaccessible to our model that applies only to turbulent scale

wave-numbers kM⊥ such that 1 � kM⊥ rg = (kM⊥ L)(rg/L). For a given scale kM⊥ , the ratio

dMFL(t)v‖/dD(t) decreases as the particle energy increases, i.e., for small L/rg, as expected.

This result constrains the customary assumption that charged particles follow turbulent field

lines. We note also that the result is independent of the parallel mean-free path. This is

in contrast with the model in [42]; however, we remind that the model presented here does

not account for parallel transport, that has already been determined to be irrelevant due to

very small scattering frequency in [15] within the quasi-linear theory limits [23], and is valid

only for times t < 1/k‖v‖.

We find that at small scales the perpendicular transport in the turbulence [15] is a free-

streaming motion (d(t) ∼ ∆x2/2∆t ∼ t), in contrast with a diffusive regime (d(t) ' const).

Theoretical evidence of perpendicular super-diffusion of the magnetic field lines alone in

anisotropic turbulence [15] (∆xMFL ∼ ∆ta, with 1/2 < a < 1) is discussed also in [43],

that focusses on the field line divergence (see references therein), assuming no departure

of the particle from the local field line. The fourth-power dependence in δB/B0 of the

MFL meandering found in [43], in contrast with the second-power found here, is likely

to originate from assumptions therein on the turbulence generation and reconnection, i.e.,

normalisation factor. In addition, we find that the motion of the guiding-center away from

the field line might reach, and eventually exceed, the gyroradius scale within a few hundreds

Ωt (as shown in Sect. III A) for times smaller than the correlation time of the perpendicular

fluctuations of the local magnetic field, as seen by the particle. We note that the departure

from field line found here does not violate the reduced dimensionality theorem [44] as no

constraint is placed on the ignorable coordinates of δB.

From Eq. 7, it is readily found (see also Fig.3) that the drift perpendicular transport

coefficient scales with the largest perpendicular wave-number kM⊥ , i.e., with the smallest
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perpendicular inertial scales, as dD ' (kM⊥ )2.2. In the turbulence [15] the anisotropy is

known to increase at smaller scales favouring energy cascade in the perpendicular direction.

Thus, it is clear that the smaller the scale (namely the larger kM⊥ ), the larger the anisotropy

in the power of the turbulence, the more significant the departure from the field lines. This

is in agreement with the limit case of the slab-turbulence, i.e., anisotropy wherein the power

along the the mean field direction is completely suppressed: the gradient-curvature drift

average square displacement dD(t) is dominated by small scales [31], whereas the larger

scales govern the MFL meandering.

B. Reconstruction of longitudinal spread in solar energetic particle events

In this subsection we provide a crude estimate of the role of the perpendicular transport

in the reconstruction of the propagation of solar energetic particles from the flaring re-

gion out to the multi-spacecraft location at 1 AU. Strong perpendicular transport has often

been invoked to explain the longitudinal spread in multi-spacecraft measurements of solar

energetic particle events (see Dröge et al. [8] and references therein). According to an alter-

native plausible mechanism, the longitudinal spread might originate from wide longitudinal

extension or motion of CME-driven shocks in the interplanetary medium.

We assume the large-scale ordered field B0 to be approximately uniform over a dis-

tance much smaller than the putative correlation length scale of the solar wind turbulence

(0.01 AU). Therefore, we can constrain the average distance ∆xD associated with gradient-

curvature drift that the particles are transported in the direction perpendicular to the local

field at various distances from the Sun; we emphasise that such a drift originates from the

inhomogeneity of the magnetic fluctuation and not of the spiralling magnetic field itself.

The effect of field line meandering is switched off in this paragraph. The field B0 is assumed

to be piecewise uniform; the resulting cumulative effect might contribute to the longitudinal

spread at 1 AU.

In the solar energetic particles event of January 17th 2010, energetic protons have been

measured by the two STEREOs (LET and HET) and SOHO/EPHIN to spread almost over

360◦ at 1 AU [45]. LET and HET instruments measure energetic protons in the range from

4 to 60 MeV and SOHO/EPHIN from 4 to 25 MeV. A possible scenario comprises protons

with kinetic energy Ek equal or greater than 4 MeV that, while travelling along a turbulent

14



field line of the Parker spiral in the ecliptic plane and drifting by some amount away from

that line, undergo scattering and back-trace a field line adjacent to the original one. The

iteration of such a process over a time interval ∆t (see table I) might spread energetic

protons over wide longitudinal angle over a few hours. In this crude estimate, we assume

this scattering to be frequent enough that the magnitude B0 can be taken as uniform. The

solar wind advection, customarily taken purely radial, is neglected here; we expect it to

ultimately only enhance ∆xD. In table I we consider two distances: 1 AU (B0 = 5 nT)

and 10 solar radii (B0 ' 0.025 Gauss). The Sun’s spin (14◦/day) is here neglected. The

longitudinal spread ∆α is calculated in table I as ∆xD in units of the distance from the

Sun, where the average displacement from the field line due to gradient-curvature drift is

given by ∆xD '
√

2dD(∆t)∆t and dD(∆t) is defined in Eq. 7. In table I we used L = 0.01

AU, L/` = 1 and, from Eq. 7,
[
(k⊥L)8/32F1

(
1, 4

3
; 7
3
;−(k⊥L)2/3

)]
|kM⊥ L=10 = 149.8. Table I

shows that the time elapsed since the particle injection in the turbulent region where B0 can

be taken as uniform is a major contributor to the spread ∆α, being the transport ballistic. In

particular Ek = 25 MeV protons at ∼ 1 AU after 1 hour cover a non-negligible longitudinal

angle (of order of 10◦). Our estimate is limited by small range of fluctuations interacting

with the particles: 25 MeV protons (rg/L = 0.098 at 1 AU) is allowed to interact only with

one decade of turbulent scales, satisfying the condition 1� kM⊥ rg = (kM⊥ L)(rg/L). One can

also roughly predict ∆xD to be measured by Solar Probe Plus mission in its approach to

the Sun at a distance of 10 solar radii: for ∆t = 30 min, we find ∆α ' 0.0323◦ for a Ek = 4

MeV proton.

We emphasise that the gradient-curvature drift velocity Vg scales with the particle speed

v as Vg/v ∼ (rg/L
′)(δB/B0). In the unperturbed Parker spiral at a distance 1 AU, if one

uses a characteristic scale of spatial variation of L′′ ∼ 1 AU, by assuming that the gradient-

curvature drift originates from the inhomogeneity of the Parker spiral itself, and not from the

intermediate scale L′ (L′ ∼ 0.001 AU), ∆xD would be suppressed by a factor L′/L′′ ' 0.001.

An extension to a turbulent Parker spiral magnetic field is underway and will be presented

elsewhere.
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TABLE I. Estimate of the longitudinal spread of energetic protons due to gradient-curvature drift

average displacement.

Ek (MeV) σ2 B0 (Gauss) ε ∆t (hour) ∆xD (AU) ∆α (◦)

4 0.1 5.× 10−5 1 1 0.0128 0.73

4 0.1 5.× 10−5 1 4 0.0511 2.92

4 0.1 5.× 10−5 1 12 0.153 8.77

10 0.1 5.× 10−5 1 1 0.0319 1.83

10 0.1 5.× 10−5 1 12 0.383 21.9

25 0.5 5.× 10−5 1 1 0.179 10.2

4 0.5 5.× 10−5 1 1 0.0286 1.64

4 0.1 5.× 10−5 0.1 1 0.00545 0.312

4 0.5 0.025 1 0.5 2.86× 10−5 0.0323

25 0.5 0.025 1 0.5 1.78× 10−4 0.204

V. CONCLUSION

I have derived analytically the time-evolution of the average transverse displacement of

a charged particle in a magnetostatic turbulence based on the critical balance conjecture by

Goldreich & Sridhar [15]. The particle motion is assumed to be well-approximated by the

guiding-center motion. With no assumption of diffusion, I have calculated the perpendicular

transport due to the single field line meandering, customarily regarded as dominant, and the

gradient-curvature drift from the local perturbed field line. The former is dominated by the

shear-Alfvén modes, the latter by the pseudo-Alfvén modes. Both contributions are found

to be in free-streaming, not diffusive, regime. In particular, the departure of the guiding-

center from the field line grows rapidly in time, invalidating the customary assumption that

particles follow the field lines. If [15] is the dominant MHD-scale turbulence in the solar

wind, a crude estimate shows that the longitudinal spread of energetic protons measured

at 1 AU might be contributed to a non-negligible extent by cross-field transport due to

gradient-curvature drift in the inhomogeneous turbulence, instead of the inhomogeneity of

the unperturbed Parker spiral itself. The measured much larger (nearly 360◦) longitudinal

spread certainly includes additional factors not considered here such as: angular extension
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and motion of the CME-driven shock producing the solar energetic particles and Sun’s spin

dragging the Parker spiral across the heliosphere.

The perpendicular transport in turbulence presented here might imply for particle ac-

celeration at quasi-perpendicular shocks an enhancement of the permanence time, hence of

the maximal momentum, of energetic particles in the vicinity of the shock. Such a higher

energy attainable combines with the small acceleration time at perpendicular shocks, as

described in [46]. Turbulent field enhancements, generated downstream by inhomogeneities

of the unshocked medium [47, 48], can also increase the permanence time of particles at

shocks. This result has relevant implications for particle acceleration at shocks, deferred to

a separate work.

Finally, it is relevant to note that in this paper a particular model for the anisotropic

power spectrum (Eq. 1) is assumed, that relies on the interpretation of solar wind mea-

surements and numerical simulations. However, the dominant process in the generation of

anisotropy in MHD incompressible turbulence and the resulting turbulence power spectrum

are currently topic of debate (see, e.g., Grappin & Müller [49]). Moreover, a recent analysis

of the magnetic field and plasma data from Wind spacecraft [50] shows that the claimed

spectral anisotropy in the solar wind inertial range can be explained by localised turbulent

intermittency structures with no critical balance conjecture needed. Further experimental

investigation is necessary to unveil the nature of the solar wind turbulence.
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Appendix A: Guiding-center drift

In this section, I illustrate the details of the calculation of the non-vanishing terms for

dD(t) in Sect. III A, which depends on the following components of Pij(k):

P11(k) =
k22
k2⊥

Σ(k) +

(
k1k3
k⊥k

)2

Π(k), P22(k) =
k21
k2⊥

Σ(k) +

(
k2k3
k⊥k

)2

Π(k)

P23(k) = −k2k3
k2

Π(k), P33(k) =
k2⊥
k2

Π(k), (A1)
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where k2⊥ = k21 + k22 and k‖ = k3. Analysis of Ulysses measurements [34] shows that only

the tensor elements in Eq. A1 contribute to the solar wind turbulence. We note that P23

and P33 contain only the power in the pseudo-Alfvén modes, whereas P11 and P22 are a

combination of shear- and pseudo-Alfvén modes.

Term 3322 - Using the last relation in Eq.A1 and Eq.3, in cylindrical coordinates (d3k =

k⊥dk⊥dk‖dψ) with k1 = k⊥cosψ, k2 = k⊥sinψ, k3 = k‖, it is readily found∫ ∞
−∞

d3kP33(k)k22
sin[k‖v‖t]

k‖v‖
=
εNπB2

0

v‖`1/3

∫ kM‖

k0‖

dk‖
sin[k‖v‖t]

k‖
I5/3(k‖, k

0
⊥, k

M
⊥ ) (A2)

where k0⊥, k
M
⊥ are the outer and the dissipation perpendicular wave-numbers respec-

tively; the boundaries k0‖, k
M
‖ are related to k0⊥, k

M
⊥ through critical balance scaling: k0‖ '

(k0⊥)2/3/L1/3, kM‖ ' (kM⊥ )2/3/L1/3 for MA = 1. We consider here [31] perpendicular transport

on time-scale shorter than 1/k‖v‖t. In Eq. A2 the auxiliary function

Iα(k‖, k
0
⊥, k

M
⊥ ) =

∫ kM⊥

k0⊥

dk⊥
kα⊥

k2⊥ + k2‖
exp

(
−`1/3k‖
k
2/3
⊥

)
(A3)

was defined. The expansion in series of the exponential factor in I5/3(k‖, k
0
⊥, k

M
⊥ ) by using

e−x =
∑∞

n=0(−x)n/n! yields

I5/3(k‖, k
0
⊥, k

M
⊥ ) '

3∑
n=0

(−`)n/3

n!

3kn−2‖ k
2 4−n

3
⊥

2(4− n)
× 2F1

(
1,

4− n
3

;
7− n

3
;−k

2
⊥
k2‖

)∣∣∣∣∣
kM⊥

k0⊥

(A4)

where 2F1(a, b; c; z) is the ordinary hypergeometric function. In Eq. A4 the sum is truncated

at n = 3 (Gradshteyn & Ryzhik [51], Eq. 3.194.5, applies in Eq. A4 only for n < 4); in

what follows it is shown that it suffices to consider the term n = 0.

The right hand side of Eq. A2 can then be approximated by using the expansion in Eq.A4

as

εNπB2
0

v‖`1/3L2/3

3∑
n=0

3(−`/L)n/3

n!2(4− n)

(
v‖t

L

)2−n

×

[
(k⊥L)2

4−n
3 × 2F1

(
1,

4− n
3

;
7− n

3
;−(k⊥L)2/3

)]∣∣∣∣kM⊥
k0⊥

Sn(x0, xM) (A5)

where x = k‖v‖t and Sn(x0, xM) =
∫ xM
x0

dx xn−3sinx. In Eq.A5 the critical balance con-

dition (k‖ ∼ k
2/3
⊥ /L1/3) is used; thus, the independent variable of 2F1(·) in Eq.A4 can be

approximated as −(k⊥/k‖)
2 ∼ (k⊥L)2/3 and likewise for the boundaries of x-integration, i.e.,

x0 = k0‖v‖t ∼ (k0⊥)2/3v‖t/L
1/3 and xM ∼ (kM⊥ )2/3v‖t/L

1/3.
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The argument for the truncation at n = 3 in Eq. A4 goes as follows. The integrals

Sn(x0, xM) are extended over a time shorter than 1/k‖v‖t, i.e., xM < 1, and in the interval

(x0, xM) I have S0 '
[
Si(x)
2

+ sin(x)
2x2

+ cos(x)
2x

]
|x0 , S1 '

[
sin(x)
x
− Ci(x)

]
|x0 , S2 ' Si(xM) ' π/2

and S3 = cos(x0) ' 1, where Si(x) and Ci(x) are respectively Sine and Cosine integrals. It is

easily shown that it holds |Sn(x0, xM)/S0(x
0, xM)| � 1 (for n > 1). Moreover, it is possible

to show for the coefficients An(k⊥L) = (k⊥L)2
4−n
3 × 2F1

(
1, 4−n

3
; 7−n

3
;−(k⊥L)2/3

)
in Eq.A5

that A1/A0, A2/A0 and A3/A0 are rapidly decreasing functions of k⊥L over at least three

decades in k⊥L. Finally, the n−th term in Eq. A5 evolves in time as t2−n. This justifies

retaining only the term n = 0 in Eq. A5:

3

8

εNπB2
0

v‖`1/3L2/3

(v‖t)
2

L2

[
Si(x)

2
+

sin(x)

2x2
+

cos(x)

2x

]∣∣∣∣
x0

[
(k⊥L)8/32F1

(
1,

4

3
;
7

3
;−(k⊥L)2/3

)]∣∣∣∣
kM⊥

.

By using the fact that
[
Si(x)
2

+ sin(x)
2x2

+ cos(x)
2x

]
|x0 ∼ 1/x0 for x0 � 1, the right hand side of

Eq. A2 can then be approximated as

3εNπB2
0t

8k0‖`
1/3L8/3

[
(k⊥L)8/32F1

(
1,

4

3
;
7

3
;−(k⊥L)2/3

)]∣∣∣∣
kM⊥

(A6)

The previous calculation shows that the term in Eq. A2 grows linearly in time. The

corresponding pitch-angle factor F (µ2) = ((1 − µ2)/2)2, averaged over an isotropic pitch-

angle distribution, gives a factor 2/15.

Term 2323 - Using the expression for P23 in Eq.A1 and Eq.3, in cylindrical coordinates,

it is found∫ ∞
−∞

d3kP23(k)k2k‖
sin[k‖v‖t]

k‖v‖
= −εNπB

2
0

v‖`1/3

∫ kM‖

k0‖

dk‖k‖sin[k‖v‖t]I−1/3(k‖, k
0
⊥, k

M
⊥ ), (A7)

where Iα is defined in Eq. A3. Expanding in series I−1/3(k‖, k
0
⊥, k

M
⊥ ) I find that the right

hand side of Eq.A7 can be cast as

− εNπB2
0

v‖`1/3

∞∑
n=0

(−L)n/3

n!

1

(v‖t)n

[∫ xM

x0
dx xn−1sinx

]∫ kM⊥

k0⊥

dk⊥
k
− 2n+1

3
⊥

k2⊥ + k2‖
. (A8)

In Eq. A8 the nth term decreases as (v‖t)
−n; moreover, the integrals

∫ xM
x0

dx xn−1sinx for

xM < 1 and the integrals in k⊥ are decreasing functions of n. Therefore the series in

Eq. A8 can be approximated to the lowest order, n = 0 (Gradshteyn & Ryzhik [51], Eq.

3.194.5, valid for n < 1). Using again the critical balance condition (k‖ ∼ k
2/3
⊥ /L1/3) leads
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to approximate the right hand side of Eq.A7 as:

− 3εNπB2
0

2v‖`1/3L2/3
[Si(x)]|x0

3

2
(kM⊥ L)2/32F1

(
1,

1

3
;
4

3
;−(k⊥L)2/3

)∣∣∣∣
kM⊥

(A9)

The only time-dependence of Eq. A9 is the slow variation in the factor Si(x)]|x0 . The 2F1

coefficient in Eq. A9 is much smaller than in Eq. A6. Thus, the term (2323) in the drift

transport coefficient is neglected.

Term 2233 - The last non-vanishing term for the instantaneous drift transport coefficient

includes contribution from both shear- and pseudo-Alfvén modes. From the expression of

P22 in Eq.A1 I find∫ ∞
−∞

d3kP22(k)k2‖
sin[k‖v‖t]

k‖v‖
=
NπB2

0

v‖

∫ kM‖

k0‖

dk‖k‖sin[k‖v‖t]× 1

L1/3
J(k‖, k

0
⊥, k

M
⊥ )︸ ︷︷ ︸

shear

− ε

`1/3
I−7/3(k‖, k

0
⊥, k

M
⊥ )︸ ︷︷ ︸

pseudo

 (A10)

where the J-term accounts for shear-modes and I−7/3 for the pseudo-. The auxiliary function

J is given by

J(k‖, k
0
⊥, k

M
⊥ ) =

∫ kM⊥

k0⊥

dk⊥k
−7/3
⊥ exp

(
−L1/3k‖

k
2/3
⊥

)

' 3

2k‖L1/3

(
1

k‖L1/3
+

1

kM⊥
2/3

)
exp

(
−L1/3k‖

kM⊥
2/3

)
(A11)

where in the second equivalence the contribution from k0⊥ is neglected. Expanding again in

series the exponential in the last member of Eq. A11, I find that the shear term in Eq. A10

can be cast as

3NπB2
0

v‖L2/3

∞∑
n=0

(
−L1/3

kM⊥
2/3

)n
1

n!

1

(v‖t)n+1

[∫ xM

x0
dx xnsinx

](
v‖t

xL1/3
+

1

kM⊥
2/3

)
(A12)

where the nth term decreases as t−n. Thus, to the lowest order, n = 0, Eq.A12 is approxi-

mated by 3Nπ2B2
0/(2v‖L) (by using Si(xM) ' π/2), independent on time, so negligible with

respect to the term (3322) for the reason explained in this Appendix. As for the pseudo

modes, the I−7/3-term in Eq.A10 can be approximated, using again the series expansion of

the exponential, by

εNπB2
0

v‖`1/3

∞∑
n=0

(−`)n/3

n!
(v‖t)

−n+2
3

∫ xM

x0
dx sinx x

n−1
3

∫ yM

y0

dy
y−

7+2n
3

1 + y2
(A13)
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where y = k⊥/k‖ ' (k⊥L)1/3. The integrals in y for n = 0, 1, 2 over three decades (y0 > 1)

are of order O(1). The dominant term (n = 0) falls in time as t−2/3. We conclude that this

term is negligible compared to the term (3322).

Appendix B: Magnetic field line random walk

In this section, I illustrate the details of the calculation of dMFL(t). By using the definition

of P11 in the first relation of Eq.A1 (the result is unchanged if P22 given by the second relation

in Eq.A1 is used) and Eq.9 it is found in cylindrical coordinates (d3k = k⊥dk⊥dk‖dψ) with

k1 = k⊥cosψ, k2 = k⊥sinψ, k3 = k‖

1

B2
0

∫ ∞
−∞

d3kP11(k)
sin[k‖v‖t]

k‖
= Nπ

∫ kM‖

k0‖

dk‖sin[k‖v‖t]× 1

k‖L1/3
J(k‖, k

0
⊥, k

M
⊥ )︸ ︷︷ ︸

shear

+
εk‖
`1/3

I−7/3(k‖, k
0
⊥, k

M
⊥ )︸ ︷︷ ︸

pseudo

 (B1)

where J and Iα are defined respectively in Eq.s A11 and A3. The J-term, from the second

relation in Eq. A11, is given by

3πN
2L2/3

∫ kM‖

k0‖

dk‖
sin[k‖v‖t]

k2‖

(
1

k‖L1/3
+

1

kM⊥
2/3

)
exp

(
−L1/3k‖

kM⊥
2/3

)
. (B2)

By using the series expansion of the exponential and the same approximation as in Eq.

A12, the shear-modes contribution to MFL transport coefficient can be approximated to the

lowest order by

(shear) ' 3πN
2

v‖t

k0‖L
(B3)

where the approximation
[
Si(x)
2

+ sin(x)
2x2

+ cos(x)
2x

]
|x0 ∼ 1/x0 for x0 � 1 was used. Thus,

the shear term grows linearly in time. The pseudo-modes term in Eq. B1 is equal to the

pseudo-modes term in Eq. A10, modulo a constant factor −B2
0/v‖; due to its decay in time

for every n, it is neglected here with respect to the shear-modes term.
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FIG. 1. Direction of the local average magnetic field, given by the unit-vector e3 at scale L′. “GC”

labels here the trajectory (dotted) of the guiding center drifting away from the local field line due

to gradient-curvature drift by the average displacement ∆xD =
√
〈∆x2D〉 within an elapsed time

∆t (see Sect. III A).
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FIG. 2. Magnetic field line (a,c) and gradient-curvature drift (b,d) instantaneous per-

pendicular average square displacement as a function of time for protons with kinetic

energy Ek = 1 keV and Ek = 10 keV in the solar wind at 1 AU with L/` = 1 (a,b) or

L/` = 10 (c,d); the solid (dashed, dotted) line corresponds to ε = 1 (ε = 0.5, ε = 0.1);

also B0 = 5 nT, (δB/B0)
2 = 0.1, L = 0.01 AU (rg/L = 6.1 × 10−4, 1.9 × 10−3 respectively)

and kM⊥ L = 103. The horizontal lines in (b) correspond to the Bohm diffusion at the

particle energy considered.
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FIG. 3. Ratio of the MFL perpendicular transport coefficient dMFL(t)v‖ to the gradient-curvature

drift transport coefficient dD(t), for L/rg = 102, 103, 104, corresponding to proton kinetic energy

at 1AU given by Ek = 250, 2.5, 0.025 keV respectively, as a function of kM⊥ L as determined in Eq.

11 (here we used L/` = 1 and ε = 1).
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