
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Evolution of the single-mode Rayleigh-Taylor instability
under the influence of time-dependent accelerations

P. Ramaprabhu, V. Karkhanis, R. Banerjee, H. Varshochi, M. Khan, and A. G. W. Lawrie
Phys. Rev. E 93, 013118 — Published 15 January 2016

DOI: 10.1103/PhysRevE.93.013118

http://dx.doi.org/10.1103/PhysRevE.93.013118


1  

The Evolution of the single-mode Rayleigh-Taylor instability under the 
influence of time-dependent accelerations 

 
P. Ramaprabhu1, V. Karkhanis1, R. Banerjee2, H. Varshochi1, M. Khan3, and 

A.G.W. Lawrie4 
 

1University of North Carolina at Charlotte, Charlotte, NC 28223 
2St. Paul’s Cathedral Mission College, Kolkata, India 

3Dept. Instrumentation Science, Jadavpur University, Kolkata, India 
4University of Bristol, United Kingdom 

 
From nonlinear models and direct numerical simulations we report on several new findings of 

relevance to the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration 

histories. The incompressible, Direct Numerical Simulations (DNS) were performed in two- and 

three-dimensions, and at a range of density ratios of the fluid combinations (characterized by the 

Atwood number). We investigated several acceleration histories, including acceleration profiles of 

the general form g(t) ~ tn, with n ≥ 0 and acceleration histories reminiscent of the Linear Electric 

Motor experiments. For the 2D flow, results from numerical simulations compare well with a 2D 

potential flow model and solutions to a Drag-Buoyancy model reported as part of this work. When 

the simulations are extended to three dimensions, bubble and spike growth rates are in 

agreement with the so-called level 2 and level 3 models of Mikaelian (PRE 79, 065303, 2009), 

and with corresponding 3D drag buoyancy model solutions derived in this article. Our 

generalization of the RT problem to study variable g(t) affords us the opportunity to investigate 

the appropriate scaling for bubble and spike amplitudes under these conditions. We consider two 

candidates, the displacement Z and width s2, but find the appropriate scaling is dependent on the 

density ratios between the fluids – at low density ratios, bubble and spike amplitudes are 

explained by both s2 and Z, while at large density differences the displacement collapses the 

spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at 

lower Atwood numbers than predicted by all the models.   
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1. INTRODUCTION:  
A material interface demarcating fluids of dissimilar densities is unstable to the Rayleigh1-Taylor2 

instability, when an acceleration is applied from the light fluid to the heavy. The fluid mixing 

resulting from this flow has gained wide attention over the last few decades owing to its role in 

limiting the performance of Inertial Confinement Fusion capsules3. Similarly, RT-driven mixing is 

essential to explaining transport processes in the detonation of type IA supernovae4-6, mantle 

convection7, formation of volcanic islands8-10, and density inversions in the upper atmosphere11. 

In ICF, ablation and blow-off at an outer layer results in the shell interface accelerated radially 

inward with a complex g(t), so that imposed perturbations will grow dominated by a strong RT 

instability3. While the RT-dominated flow in these examples is turbulent and highly nonlinear, a 

detailed understanding of such flows must be built from a description of the corresponding 

elemental, single-scale problem [12-20]. For an initially sinusoidal, interfacial perturbation 

characterized by a perturbation amplitude (h0) and wavenumber k (≡ 2π/λ), linear theory1-2,21 

predicts exponential growth according to: 

     ݄ሺݐሻ ൌ ݄଴ coshሺݐ߁ሻ,    (1) 

where ߁ ൌ ඥ݃݇ܣ, with the Atwood number ܣ ؠ ఘ್ିఘೌఘ್ାఘೌ (ρb > ρa) and a constant g. In reality, the 

acceleration g can result from a multitude of dynamic phenomena, and vary with time, as 

observed in applications. Equation (1) is valid for inviscid flows, and only as long as kh(t) << 1. 

When the perturbation amplitudes evolve to an extent that this condition is violated, the flow may 

be termed nonlinear. During this stage, the flow is characterized by ‘bubbles’ of light fluid, and 

‘spikes’ of heavy fluid, although the distinction is significant only at large A when spikes are longer 

than bubbles. Thus, the nonlinear RT growth is marked by a prolonged phase during which 

bubble- and spike-tips are observed to advance at a constant velocity given by: 

     ௕ܸ/௦ ൌ ට ଶ஺௚ሺଵേ஺ሻ௞  .     (2) 

Note that the above equation implies a constant Froude number for bubble/spike structures given 

by,  

௕/௦ݎܨ      ൌ ௏್/ೞට ಲ೒ഊሺభశಲሻ .    (3) 

Equation (2) may be obtained from a potential flow analysis15,22-27, by choosing appropriate 

velocity potential functions for the light and heavy fluids which are then substituted in the Bernoulli 

equation and solved with appropriate boundary conditions. Instead, these results may also be 

independently obtained from a simple and intuitive accounting of the drag, buoyancy and inertial 

forces in the flow26,28-32, using the so-called drag-buoyancy models (DBM).  

Thus far, a significant portion of the effort to explain RT flows have been devoted to the limiting 

case when g = constant. Unfortunately, the situation encountered in experiments and applications 
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is often more complicated, and may be appropriately described with a time-dependent 

acceleration history. In ICF, for instance, it is well known that the implosion is characterized by 

periods of time-dependent acceleration histories33. Several studies have sought to exploit the 

transient behavior arising from complex accelerations to improve capsule performance by more 

careful profiling of the acceleration pulse. Transients in acceleration histories are also inherent in 

many experiments34-37 either by design or by accident, so that their effect on the underlying flow 

must be quantified to fully understand the flow observed in these experiments. Motivated by these 

considerations, several recent studies have explored the properties of RT mix driven by complex 

g profiles. Experimental efforts to investigate variable-g RT have been diverse, and include the 

rocket rig experiments of [36], the linear electric motor (LEM) experiments34-35, and the drop-tank 

experiments of [37-39]. In their analysis of nonlinear RT, Shvarts et al.28 obtained asymptotic 

velocities and simple scaling relations for single-mode and multimode RT for A = 1, and under 

acceleration histories that can be modeled as ~ tn. For the multimode problem, Ramshaw40 used 

a wavelength renormalization approach to extend a kinetic energy equation derived for the linear 

stage to the nonlinear phase of the variable-g RT flow. Finally, Llor41 compared single-fluid and 

two-fluid models using so-called self-similar variable acceleration RT (SSVART) as a test case.  

We briefly summarize recent models of single-mode RT with g = g(t), before a detailed 

description of our simulation results in § 4. For a generalized acceleration drive g(t), the linear 

perturbation growth still follows  

     ሷ݄ െ ሻ݄݇ݐሺ݃ܣ ൌ 0        (4) 

Mikaelian42-44 provides analytical solutions to eq. (4) for specific functional forms of g(t). For the 

late-time nonlinear growth, [43] proposes four models, which are labeled levels 1 – 4 in the order 

of decreasing complexity (and increasing ease of obtaining analytical solutions). Thus, a level 1 

model includes all physics embedded in the Euler equations, but solutions can only be obtained 

numerically. A level 2 model follows the approach of Layzer22 and others27 in defining carefully 

chosen velocity potential functions for the light and heavy fluids, thus simplifying the governing 

equations to ODEs. The complete set of equations is provided in [27,43] and not reproduced 

here, but we note that despite this simplification, an analytical solution cannot be obtained except 

for special cases. In this paper, we derive our own version of a “level 2 model”, which is valid only 

for 2D and is compared with our numerical simulations in that limit. A level 3 model, following the 

work of Mikaelian [42-44], transforms a set of level 2 ODEs of the linear form of (4) into a 

rescaled variable θL that can be applied to the nonlinear development. A particular value for the 

initial perturbation h0 = 1/(k(1+c)) must be assumed, and this yields:  

ሷ௅ߠ  െ ௅ߠሻݐ௅݇௅݃ሺܣ ൌ 0       (5) 

with  ݇௅ ؠ ௖ሺଵା௖ሻሺଵା஺ሻ௞ଶሺଵା௖ା௖஺ି஺ሻ, 
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௅ܣ      ؠ ଶ஺ଵା௖ା௖஺ି஺, 

௅ߠ  ؠ  ݁ሺ௛ି௛బሻ௞ಽ, 

and c = 1(2) indicating 3D(2D) flows. Since in these level 3 models, both linear (4) and nonlinear 

(5) development have the same form, it is possible to establish closed-form analytic solutions for 

various acceleration profiles [42,43]. While these solutions are strictly valid only for the special 

value of h0 = 1/(k(1+c)), Mikaelian observes that in practice, this model agrees with the more 

sophisticated level 3 model over a wide range of initial amplitudes. From our own numerical 

simulations described in § 4, we agree with this assertion. Finally, [43] also includes a level 4 

model, which is obtained by introducing ݏ ؠ ׬ ඥ݃ሺݐሻ௧଴  so that equation (5) is transformed to a ݐ݀

simpler ODE (for certain g(t)s), with solutions of the form ߠ௅ ൌ  ௅൯, in analogy withܣඥ݇௅ݏ൫݄ݏ݋ܿ

equation (1). We do not include this model in our comparison.  

We also compare our 3D simulation results with a drag buoyancy model (DBM), modified by [45] 

to account for g = g(t). We derive analytic solutions to the DBM in § 2.2, which are compared with 

the results from our 2D and 3D DNS calculations. In [45], Srebo et al. extend the drag-buoyancy 

model28-32 to include time-dependent accelerations, and finite density ratios, resulting in the 

following set of ODEs for bubble and spike velocities: ሺߩ௔ ൅ ௕ሻߩ௔ܥ ௗ௏್ௗ௧ ൌ  ሺߩ௕ െ ሻݐ௔ሻ݃ሺߩ െ ௕ߩௗܥ ௏್మ
λ

  (6) ሺߩ௕ ൅ ௔ሻߩ௔ܥ ௗ௏ೞௗ௧ ൌ  ሺߩ௕ െ ሻݐ௔ሻ݃ሺߩ െ ௔ߩௗܥ ௏ೞమ
λ

.  (7) 

In eqs. (6) - (7), Ca = 2(1) for 2D(3D), while Cd = 6π(2π) for 2D(3D), respectively. Thus, the term 

on the left represents inertia (with the appropriate added mass), while the terms on the right hand 

side of each equation represent buoyancy and drag forces, respectively. Furthermore, note that 

the above equations are valid asymptotically, once artefacts associated with initial conditions 

decay away. For experiments and simulations initialized with finite sized perturbations, the initial 

exponential growth of imposed modes must also be included, so that the DB equations are 

modified as suggested by [45]:  ൫ሺܥ௔ܧሺݐሻ ൅ 1ሻߩ௔ ൅ ሺܥ௔ ൅ ௕൯ߩሻሻݐሺܧ ௗ௏್ௗ௧ ൌ  ሺ1 െ ௕ߩሻሻሺݐሺܧ െ ሻݐ௔ሻ݃ሺߩ െ ௕ߩௗܥ ௏್మ
λ

  (8) ൫ሺܥ௔ܧሺݐሻ ൅ 1ሻߩ௕ ൅ ሺܥ௔ ൅ ௔൯ߩሻሻݐሺܧ ௗ௏ೞௗ௧ ൌ  ሺ1 െ ௕ߩሻሻሺݐሺܧ െ ሻݐ௔ሻ݃ሺߩ െ ௔ߩௗܥ ௏ೞమ
λ

 . (9) 

Thus, the linear RT growth is modeled here through E(t) = e-C
e
kh(t), with Ce = 3(2) for 2D(3D) flows. 

For kh(t) << 1, we recover eq. (4) for time-dependent acceleration histories.  

Our objectives in this article are (1) to develop a potential flow model for variable g RT in 2D 

(§2.1), and to obtain analytical solutions to the DBM for single-mode, RT with g(t) in 2D and 3D 

(§2.2), (2) to perform detailed 2D and 3D DNS to rigorously validate our potential flow model as 

well as the closed form solutions developed for the DBM over a wide range of time-dependent 

profiles, and (3) to use DNS to systematically identify the limits of validity of the potential flow 

model and the DBM for variable g RT. The rest of the article is organized as follows: In § 2.1, we 
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derive a Layzer-type 2D potential flow model valid for variable g RT. This is followed by a 

development of analytical solutions to the DBM in § 2.2, valid for acceleration profiles that satisfy ௚ሶ௚మ ՜ 0 . The details of the numerical method, problem description, and code validation and 

numerical convergence study are provided in § 3. In section 4.1, we compare 2D numerical 

simulations at A = 0.15 and A = 0.9 with the potential flow model described in § 2.1 and the 

solution to the DBM given in § 2.2. The results are extended to 3D flows in § 4.2 – 4.4. In 

particular, § 4.2 describes results from simulations at A = 0.15, while the corresponding spike 

behavior from high Atwood simulations are highlighted in § 4.3. A detailed Atwood variation study 

was conducted, and is summarized in § 4.4.  

 

2. NONLINEAR MODELS 
2.1. POTENTIAL FLOW MODEL 
In this section, we derive a simple potential flow model for variable g RT flows in 2D, and valid for 

low density ratios of the two fluids. The model may be considered a special case of the 

generalized Layzer model of [27] valid for 2D flows, and is included here to guide insights in to 

our simulation results. The derivation of the model follows a Layzer-type framework, later adopted 

by Goncharov25 (for arbitrary density ratios) and Mikaelian42-43 (for variable accelerations in 3D). 

Following [22-27,46], we define in 2D a perturbation function given by ݖ ൌ ηሺݔ, ሻݐ ൌ η଴ሺݐሻ ൅ ηଶሺݐሻݔଶ,    (10) 

where the acceleration g(t) is directed in the negative z-direction, and η0(t) and η2(t) are the time-

dependent amplitude and curvature near the bubble tip. Note that for bubbles, η0 > 0, and η2 < 0, 

while reversing the signs of these quantities produces incorrect results for spikes, as noted by 

[42-43], and will not be attempted here. Thus, the potential flow model derived below is only valid 

for bubbles and spikes in the limit of low Atwood numbers, and for bubbles only in the single-fluid 

limit (A  1). The following velocity potentials are defined for dense and light fluids according to ߮௛ሺݔ, ,ݖ ሻݐ ൌ ܽଵሺݐሻ cosሺ݇ݔሻ ݁ି௞൫௭ିηబሺ௧ሻ൯, z > 0  (11) ߮௟ሺݔ, ,ݖ ሻݐ ൌ ܾ଴ሺݐሻݖ ൅ ܾଵሺݐሻcos ሺ݇ݔሻ݁௞൫௭ିηబሺ௧ሻ൯, z < 0 (12) 

where a1(t), b0(t) and b1(t) are the perturbed velocity amplitudes for the heavy and light fluids 

respectively. To determine the unknown functions {η0(t),η2(t),a1(t),b0(t),b1(t)}, we resort to 

stipulating the following kinematic and dynamic boundary conditions. 

We first turn to the kinematic conditions corresponding to the interfacial surface perturbation 

represented by eq. (10): 

η௫ሺݒ௛ሻ௫ െ η௫ሺݒ௟ሻ௫ ൌ ሺݒ௛ሻ௭ െ ሺݒ௟ሻ௭  (13)       η௧ ൅ η௫ሺݒ௛ሻ௫ ൌ ሺݒ௛ሻ௫.   (14) 
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Substituting eqs. (13) – (14) in (10) and for ൫ݒ௛ሺ௟ሻ൯௫ ൌ െ డఝ೓ሺ೗ሻడ௫  from eq. (11) and (12), and 

expanding in powers of the transverse coordinate x, neglecting terms O(xi) (i ≥ 3), we obtain the 

following relations equivalent to the above kinematic boundary conditions: ௗξభௗ௧ ൌ ξଷ     (15) ௗξమௗ௧ ൌ െ ଵଶ ൫6ξଶ ൅ 1൯ξଷ   (16) ܾ଴ ൌ െ ଺ξమଷξమିభమ ݇ܽଵ    (17) 

ܾଵ ൌ ଷξమାభమଷξమିభమ ܽଵ,    (18) 

where ξ1 = kη0, ξ2 = η2/k, ξଷ ൌ ݇ଶܽଵ ඥ݇݃଴൘ , and we define ߬ ൌ -ඥ݇݃଴. Thus, ξ1 and ξ2 are the nonݐ

dimensional amplitude and curvature, while ξ3/k is the non-dimensional velocity. Finally, the 

Bernoulli equation governing both fluids is given by  െߩ௛ሺ௟ሻ డఝ೓ሺ೗ሻడ௧ ൅ ଵଶ ௛ሺ௟ሻ൯ଶ߮׏௛ሺ௟ሻ൫ߩ ൅ ݖሻݐ௛ሺ௟ሻ݃ሺߩ ൌ െ݌௛ሺ௟ሻ ൅ ௛݂ሺ௟ሻሺݐሻ. (19) 

Substituting the dynamical boundary condition ph = pl at the interface z(x,t) = η(x,t) in eq. (19), we 

arrive at  ߩ௛ ቂെ డఝ೓డ௧ ൅ ଵଶ ሺ߮׏௛ሻଶቃ െ ௟ߩ ቂെ డఝ೗డ௧ ൅ ଵଶ ሺ߮׏௟ሻଶቃ ൅ ݃ሺݐሻሺߩ௛ െ ݖ௟ሻߩ ൌ ௛݂ െ ௟݂  (20) 

Substituting for ϕh, ϕl from eqs. (11 – 12) in eq. (20), and equating coefficients of x2, we obtain 

after some lengthy but straightforward algebraic manipulation, the following evolution equation for 

ξ3: ௗξయௗఛ ൌ െ ே൫ξమ,௥൯஽൫ξమ,௥൯ ξయమ൫଺ξమିଵ൯ ൅ 2ሺݎ െ 1ሻ ξమ൫଺ξమିଵ൯஽൫ξమ,௥൯  ሺτሻ  (21)ܩ

where r = ρh/ρl and G(τ) = g(t)/g0,  ܦ൫ξଶ, ൯ݎ ൌ 12ሺ1 െ ሻξଶଶݎ ൅ 4ሺ1 െ ሻξଶݎ ൅ ሺݎ ൅ 1ሻ 

   ܰ൫ξଶ, ൯ݎ ൌ 36ሺ1 െ ሻξଶଶݎ ൅ 12ሺ4 ൅ ሻξଶݎ ൅ ሺ7 െ  .ሻݎ

The coupled system of equations (15-18, 21) can be numerically integrated with the initial 

conditions ξ1(0) = kη0(0), ξ2(0) = -(ଵଶ)ξ1(0), and ξ3(0) = 0 (starting from rest), to obtain solutions for 

time-evolving bubble amplitude, curvature and velocity for arbitrary g(t). In § 4.1, we compare 

results from our 2D DNS calculations, with the solution to eq. (21) for several acceleration 

functions.  

 

2.2. ANALYTICAL SOLUTION TO DB MODEL 
Here, we derive an analytical solution for the Drag-Buoyancy equation subject to time-dependent 

acceleration drives. We rewrite equation (6) as,  ௗ௏್ௗ௧ ൅ ܽ ௕ܸଶ ൌ ܾ݃ሺݐሻ,    (22) 
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with      ܽ ൌ  ஼೏ఘ್ఒሺఘೌା஼ೌఘ್ሻ, 
and     ܾ ൌ  ሺఘ್ିఘೌሻሺఘೌା஼ೌఘ್ሻ.  

Note that Eq. (22) is a nonlinear Riccati equation [47], and can be solved using the approach 

outlined below. First, the reduction method is used to transform equation (22) to a 2nd order linear 

equation [48], by defining variable ݑ so that: 

௕ܸ ൌ  ௨ᇱ௔௨.     (23) 

Combining equations (22) and (23) results in: ݑ" െ ܾܽ݃ሺݐሻ ൌ 0,    (24) 

with initial conditions: ݑᇱሺ0ሻ ൌ 0 and ݑሺ0ሻ ് 0. Equation (24) is similar to eq. (16) in [42], and 

hence we follow the same approach outlined in that article. Accordingly, equation (24) is 

transformed to the variable s: ௗమ௨ௗ௦మ െ ሻݏሺݑܾܽ ൅ ଵଶ௚మ ௗ௚ௗ௧ ௗ௨ௗ௧ ൌ 0.   (25) 

In the above equation, following [42] the third term may be neglected for acceleration profiles of 

the form g ~ tn, n ≥ 0 so that ௚ሶ௚మ  ~ 0 (and for many other profiles considered here). The solution to 

the simplified equation is then: ݑ ൌ  ܿଵcosh ሺ√ܾܽ ݏሺݐሻሻ,    (26) 

where, ܿଵ is a constant. Now, substituting (26) into equation (24), we can obtain for the time-

dependent, asymptotic bubble velocity ௕ܸ: 

௕ܸ ൌ  ට௕௔  ௗ௦ௗ௧ tanh ሺ√ܾܽ ݏሺݐሻሻ   (27) 

where, ௗ௦ௗ௧ ൌ  ඥ݃ሺݐሻ. Note that the asymptotic expression for the bubble Froude number (for both 

2D and 3D) may be obtained from (27) as, ௏್ට௕௚ሺ௧ሻ ௔ൗ ൌ ௏್ටଶ஺௚ሺ௧ሻλ ஼೏ሺଵା஺ሻ൘ ൌ ௕ݎܨ ൌ  ሻ൯,  (28)ݐሺݏܾܽ√൫݄݊ܽݐ

with Cd = 6π(2π) for 2D(3D) flows. Eqs. (27) and (28) imply bubble amplitudes that asymptotically 

evolve as ln ሺcosh ቀ√ܾܽݏሺݐሻቁ, which is the same form of the amplitude solution obtained by [42-43] 

from his WKB approximation of the potential flow model. This agreement is not surprising, since 

the Layzer-type potential flow models simplify to the DBM equations at late-times (as originally 

remarked by [26]). For ݃ሺݐሻ ൌ  ݃଴ݐ௡, the final equation for ௕ܸ, will be of the form: 

௕ܸ ൌ  ට௚బ௕௔ ௡ݐ  ଶ ൗ tanh ሺඥ݃଴ܾܽ ௧೙ మൗ శభ௡ ଶൗ ାଵሻ.   (29) 

The above procedure is equally valid for spikes, which follow an equation similar to (22), but with  

     ܽ ൌ  ஼೏ఘ್ఒሺఘ್ା஼ೌఘೌሻ, 
and     ܾ ൌ  ሺఘ್ିఘೌሻሺఘ್ା஼ೌఘೌሻ.  
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Thus, the spike solution is also given by eq. (27) – (28), but with appropriate modifications for a 

and b.  

Since our numerical simulations were initialized with a finite amplitude, and evolve through a 

stage of linear growth before culminating in nonlinear saturation, we include a solution to the 

DBM equations that captures these initial transients. In particular, the bubble and spike 

amplitudes are particularly sensitive to these transients associated with the linear growth, and the 

comparison with simulation data will be affected by it. Thus, we integrate the truncated version of 

eq. (25) not from t = 0, but from t = tnl, the transition time from linear to nonlinear RT behavior, 

when the bubble velocity has reached Vb,nl, the velocity at the end of linear growth that satisfies 

the Fermi condition. Upon algebraic simplification, the finite-amplitude counterpart of (27) is 

obtained as  

௕ܸ ൌ ට௕௚ሺ௧ሻ௔ ௖௘మ√ೌ್ೞሺ೟ሻିଵ௖௘మ√ೌ್ೞሺ೟ሻାଵ,    (30) 

where c is obtained from the initial condition Vb(tnl) = Vb,nl as ܿ ൌ ଵା௏್,೙೗ ௙൘௬൬ଵି௏್,೙೗ ௙൘ ൰, 
with ݕ ൌ ݁ଶ√௔௕௦ሺ௧೙೗ሻ, ݂ ൌ ට௕௚ሺ௧೙೗ሻ௔ , and ݏሺݐ௡௟ሻ ൌ ׬  ඥ݃ሺݐሻ௧೙೗଴  ,To compare with our simulation data .ݐ݀

we use linear theory solutions for different g-profiles from [42] – [43], as long as kh(t) < 1 (0  ≤ t < 

tnl). For larger kh(t), we switch to eq. (30) which is integrated in time to obtain the bubble 

amplitudes that are used for comparison with the simulation data.  

 

3. NUMERICAL METHODS AND PROBLEM SETUP 
The DNS calculations described in this article were performed using MOBILE49-50, a parallelized, 

3D variable density, finite volume incompressible flow solver. The advection algorithm is of 3rd 

order accuracy and - where necessary - preserves monotonicity at every time-step using a 

nonlinear, upwind-biased numerical scheme. When viscous terms are adequately resolved, there 

are no regions of the flow where velocity gradients are large relative to the mesh resolution, and 

thus the nonlinearity of the advection scheme is negligible everywhere and the simulation is truly 

DNS. The simulations in this article are initialized with a sharp density interface, and in this 

spatially local and temporally brief instance nonlinearity ensures that the algorithm remains 

stable. A fractional step approach is employed to incorporate source terms, viscous terms and the 

pressure correction/velocity projection. Note that the use of multigrid acceleration allows for an 

efficient solve of the pressure Poisson equation that arises from the projection. Parallelization is 

implemented through the MPI protocol, while post-processing of flow fields, calculating derived 

quantities, and reducing them to concise statistics is performed using a macro-language 

interpreter with a syntax that is transparent to the parallelization. Further details of the advection 

algorithm available in MOBILE can be found in [49-51].  
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The single-mode simulations were initialized with sinusoidal perturbations of the interface 

separating light and heavy fluids, of the form ݄ሺݔ, ሻݕ ൌ ݄଴ሺcosሺ݇ݔሻ ൅ cos ሺ݇ݕሻሻ,   (31) 

where h0 is the initial perturbation amplitude and k ≡ 2π/λ is the perturbation wavenumber. For all 

the simulations described below, we set h0 as 1% of the perturbation wavelength λ so that the 

initial stages of flow development are completely described using the linear theory framework. 

The dimensions of the computational domain were chosen to be λ x λ x φλ in the (x,y,z) 

directions, where λ = 1 cm, and the aspect ratio φ = 4(8) for low(high) Atwood calculations. 

Furthermore, for high Atwood number simulations, the initial interface was positioned 

asymmetrically at z = 2λ to allow for the accelerated growth of spikes expected at such large 

density differences. For the simulations with different time-dependent g-profiles, we maintain a 

constant value of the scaled kinematic viscosity ߴௌ஼௅ ൌ ሻݐሺߴ ට݃ܣሺݐሻλଷ൙ ൌ 10ିଷ, thus ensuring the 

simulations are evolving under the same Reynolds number history regardless of the driving 

acceleration functions. Since, several of our g-profiles are ~ tn with n > 0, a constant viscosity 

(independent of g) would modify growth in the early stages for different g-profiles, thus 

complicating the comparison of the nonlinear stages which is our main interest in this work. 

Furthermore, by requiring ߴ~ඥ݃ܣሺݐሻ, we ensure that the Reynolds number associated with the 

secondary Kelvin-Helmholtz instabilities that appear in the nonlinear stage of RT development is 

the same for all accelerations considered here. Finally, periodic boundary conditions were 

enforced in the homogeneous directions (x,y), while outflow conditions were imposed on the 

boundaries along z (direction of gravity).  

A detailed grid convergence study was performed with an acceleration profile specified according 

to g(t) = g0(1+ γt2), suggested by [42]. Mikaelian42 derived solutions to the above ‘harmonic 

oscillator’ profile, obtained in terms of Hermite polynomials. However, for the special case of 

 ඥ݃଴݇ߛ/ܣ ൌ 1, the solution for the linear stage reduces to42,52  ݄ሺݐሻ ൌ ݄଴݁ം೟మమ       (32) 

In figure 1(a), we compare the time evolution of the perturbation amplitude from simulations with 

mesh zoning varied from 8 zones/λ to 256 zones/λ with eq. (32). We find that for kh(t) < 1 (linear 

stage RT), simulations with numerical resolution greater than 32 zones/λ are in good agreement 

with the analytical result. At larger amplitudes, the perturbation amplitudes from the numerical 

simulations undergo nonlinear saturation, and as a result deviate from the exponential growth 

predicted by equation (32). The corresponding scaled growth rates (Γ/Γtheory) from the linear stage 

are plotted in figure 1(b) as a function of the normalized zoning parameter kΔ, where Δ is the 

mesh spacing in cm. As kΔ  0, the growth rates from the simulations saturate to ~ 90% of the 
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inviscid theoretical value, with the 10% difference in growth rate likely due to the inclusion of 

viscosity in the simulations. Table 1 contains a summary of all acceleration profiles included in 

this study, and their properties.  

At the resolution employed in our simulations, we do not expect the numerical viscosity to 

significantly affect our results in the linear or nonlinear regimes. From dimensional analysis [51 

and references therein], the numerical viscosity may be modeled as ߴ௡௨௠௘௥௜௖௔௟ ൌ ϖඥ݃ܣሺݐሻ∆ଷ , 

where Δ = λ/N is the zone width employed in the simulations, and ϖ is a constant that 

characterizes the dissipative lossiness of a particular numerical scheme or its implementation. 

From detailed zoning studies reported in [51], we found ϖ ~ 0.3 for the third order advection 

implementation in MOBILE. Then, the ratio of physical and numerical viscosities in our 

simulations could be estimated as 
ణ೛೓೤ೞ೔೎ೌ೗ణ೙ೠ೘೐ೝ೔೎ೌ೗ ~ ణೄ಴ಽ

ϖ
ටλయ∆య ൌ ణೄ಴ಽ

ϖ
ܰଷ/ଶ  independent of the particular 

g(t) profile used. For ߴௌ஼௅ ~ 10-3 and N = 128 zones employed in this work, we estimate 
ణ೛೓೤ೞ೔೎ೌ೗ణ೙ೠ೘೐ೝ೔೎ೌ೗ 

~ 4.8 so that most of the dissipation observed in our simulations is physical in origin. For the 

typical simulation parameters employed here, the RT linear growth dispersion relation of [53] may 

be simplified to  Γ~ඥ݇݃ܣ െ ଶ݇ସߴ ଶ, by considering g = constant for simplicity and taking݇ߴ ا  ݇݃ܣ

for our conditions. Thus, viscous dissipation (physical and numerical) reduces the linear RT 

growth by an amount ݇ߴଶ. From figure 1 (b), it can be inferred that the 10% growth reduction 

observed is primarily due to ߴ௣௛௬௦௜௖௔௟ which accounts for more than 80% of this reduction in linear 

growth rate. We expect these trends to continue in to the nonlinear and late-time chaotic stages 

of RT development. Specifically, the seeding and growth rate of secondary Kelvin-Helmholtz 

structures is dependent on the viscosity (and Reynolds number), but we expect the physical 

viscosity to dominate this dynamics as demonstrated above for the linear stage. 

 

4. NUMERICAL RESULTS 
We first discuss 2D and 3D simulations in this section that were driven by time-dependent 

acceleration histories of the form g(t) = g0tn, with n = 0,1,2,3 and g0 varied for each case so that 

all simulations evolve to s2 = 200 cm by t = 10 s. For the baseline case (n = 0), this meant g0 = 2 

cm/s2. The acceleration history g(t), width s2 , and displacement34,36 Z ؠ ׬ ׬ ݃ሺݐᇱሻ݀ݐԢ݀ݐ"௧"଴  ௧଴  are 

plotted for the different acceleration profiles in figures 2 (a), (b) and (c), respectively. Note that the 

variable Z may be interpreted as the displacement of the test rig in a LEM34,35-type of experiment 

when driven by an acceleration function g(t). For the g(t) profiles shown in figure 2, ௚ሶ௚మ ൌ௡௚బ   .ሺ௡ାଵሻ from table 1 and vanishes at late timesିݐ

4.1 2D SIMULATIONS  
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To study the effect of dimensionality on the nonlinear RT development under time-varying 

acceleration histories, we performed a set of 2D DNS calculations initialized with interfacial 

perturbation specified as h(x) = h0 cos(kx), where h0 = 0.01λ. We interpret the z-locations of the 

1% and 99% planar-averaged volume fraction levels as the bubble and spike tip locations, from 

which the corresponding amplitudes are inferred. In figures 3 (a) – (c), we plot the time evolution 

of the bubble/spike amplitudes from 2D simulations with A = 0.15, and g = g0tn, with n = 0, 1, and 

3, respectively. The data from simulations are compared with the solution from the potential flow 

model we describe in § 2.1 and the DBM, and show excellent agreement at early and 

intermediate times (hb/s < λ). Note that the solution to the potential flow model (Eqs. 15-21) is only 

valid asymptotically. As a result, the dashed line in figure 3 (a) – (c) is obtained at early times as 

the solution to the linear theory (eq. 4), while a transition to the nonlinear solution is carried out at 

t = tnl, where tnl can be obtained from the so-called Fermi transition22: Γሺݐሻ݄ሺݐሻ௟௜௡௘௔௥|௧ୀ௧೙೗ ൌ
௕ܸ|௧ୀ௧೙೗. At late times, the appearance of secondary nonlinear instabilities in the form of Kelvin-

Helmholtz (KH) vortices accelerate bubbles and spikes to higher velocities54-57, in contrast with 

the “Layzer-type” model which assumes bubble/spike structures where shear instability has not 

yet developed nonlinearly. The bubble/spike acceleration is particularly evident in figures 4 (a) – 

(c), where we plot the time development of the Froude number defined in eq. (3), and compare 

MOBILE results with the potential flow model as well as the analytical solution to the DBM (§ 2.2). 

The Froude number shows three distinct stages of evolution: (i) an early linear stage, where our 

simulation results are explained by numerically integrating eq. (4) but for the g(t) profiles 

considered here, (ii) a nonlinear stage during which the 2D DNS results are in agreement with the 

DBM and the potential flow model, and (iii) a late-time chaotic stage during which the appearance 

of Kelvin-Helmholtz vortices complicate the bubble and spike evolution so that the corresponding 

fronts accelerate away from the constant Froude numbers predicted by the models. In figures 3-4, 

as n is increased, the linear stage of growth is prolonged in time, but we expect the results to 

collapse when scaled with either length scales considered here (s2 or Z). This is discussed further 

in § 4.2. 

We repeat these calculations at higher density ratios corresponding to A = 0.9, and plot the 

corresponding bubble and spike amplitudes in figures 5 (a) – (c). Once again, as n is increased, 

the amplitude plots reveal a linear growth phase that is extended in time. At such large density 

differences, the shear-driven Kelvin-Helmholtz instability is inertially suppressed21,54-55, so that the 

bubble amplitudes remain in good agreement with the potential flow model even at late times for 

all the acceleration histories considered here. However, the spike amplitudes in figs. 5 (a) – (c) 

exhibit accelerated behavior (free-fall) in contrast with the model prediction of a constant terminal 

velocity. This discrepancy can be clearly seen in the Froude number plots in figs. 6 (a) – (c), 

where the spike Froude numbers do not show any sign of saturation, in contrast with the 2D 
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model predictions of an Atwood-dependent Froude number for the spikes. We explore this further 

for 3D flows in the next section.  

 

4.2 3D SIMULATIONS: A = 0.15  
4.2.1 g(t) = g0tn: In this section, we describe results from 3D simulations initialized with 

perturbations specified according to eq. (31), and at an aspect ratio of 4 (for A = 0.15). Diagonal 

slices of volume fraction from the simulation with n = 0 are shown in figs. 7 (a) – (c) at early 

݇݃ܣඥݐ) ൌ2), intermediate (ݐඥ݇݃ܣ ൌ6) and late times (ݐඥ݇݃ܣ ൌ8.9) respectively. At early times 

(fig. 7a), the interface retains its sinusoidal form, while remaining symmetric with respect to the 

light and heavy fluids. At ݐඥ݇݃ܣ ൌ6, the differentiation of the interface in to bubble and spike 

structures is evident, while the incipient formation of secondary Kelvin-Helmholtz structures is 

visible at this stage. By ݐඥ݇݃ܣ ൌ8.9, the KH rollups have saturated to form secondary vortex 

structures on either side of the primary RT bubble/spike columns. The vorticity associated with 

the KH instability results in an induced flow that drives the bubble/spike structures to velocities in 

excess of the potential flow predictions54-57.  

The locations of the bubble and spike fronts (based on displacement from the initial interface 

height of the 1% and 99% of the planar-averaged volume fraction) are plotted against t in figures 

8 (a) – (c) (n = 0, 1 and 3 respectively), while the corresponding Froude numbers are shown in 

figs. 9 (a) – (c) and compared with the level 2 and 3 models of [43] as well as the modified DBM45 

solution (§ 2.2). The simulations were carried out with νSCL ~ 10-3, and hence at early times 

appear to slightly lag behind the models which were initialized with the inviscid linear theory. 

Following nonlinear saturation, the amplitudes associated with bubble/spike structures are in 

good agreement with the level 2/3 models43 as well as the modified DBM45, while the Froude 

number from the simulations approaches 1 √ߨൗ  when scaled by g(t) in eq. (3). Once again, the 

late-time acceleration due to secondary instabilities is observed for both bubble and spike Froude 

numbers in figures 9 (a) – (c), but the magnitude of acceleration (and eventual saturation velocity) 

could be determined by the Reynolds number of the flow57. Previous studies54,57 have observed 

the precise magnitude of this acceleration could depend on several factors including the viscosity 

of the flow and the density difference between the fluids.  

In fig. 10, we evaluate the appropriate scaling for RT driven by time-dependent g, by plotting the 

bubble and spike amplitudes against time t (fig. 10 (a)), the width s2 (fig. 10 (b)) and the 

displacement Z (fig. 10 (c)). From eqs. (6)-(7), it is clear that the use of s2 as a scaling length 

emphasizes a balance between buoyancy and drag forces in the flow, while the use of ‘Z’ implies 

a balance between inertia and buoyancy forces. If either s2(t) or Z(t) were found to adequately 

collapse all of our results, it would imply the existence of a universal scaling parameter, and thus 

a universal solution that describes all acceleration profiles. Models suggest s2 should be that 
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variable, an assertion we test with our 3D simulations. Furthermore, since s2 and Z emphasize 

the balance between different aspects of the drag-buoyancy equation, collapsing the data based 

on either variable would imply the dominance of those terms in the DBM and the flow dynamics. 

Clearly, neither picture is sufficiently complete when g(t) varies with time, but earlier studies34,36,42-

43 have shown the scaling width s2 collapses bubble (and spike) amplitudes at low Atwood 

numbers, while spike amplitudes are explained by the displacement ‘Z’ at large density 

differences. Furthermore, s2 falls out as a natural length scale in the analytical solutions derived 

in [43], as well as the solution to the DBM obtained in § 2.2 of this article. In spite of this, for the 

low Atwood number set plotted in fig. 10, we find both s2 and ‘Z’ to collapse the amplitudes from 

all of our simulations with varying values of n. Thus, we defer a judgment on the appropriate 

scaling for time-dependent g’s to the next section, where we examine RT behavior at large 

density differences. 

 

4.2.2 LEM-type profiles: We examine two idealized g-profiles inspired by the Linear Electric 

Motor experiments of [34,35], and theoretically investigated by Mikaelian42-43. The acceleration 

histories studied here (figure 11 (a)) correspond to an idealization of profiles G_1 and G_2 

reported in [34], and are given by  ݃ሺݐሻ ൌ  ௚బ௧బ ,ݐ ൑ ݐ  ଴    (33)ݐ 

        ݃ሺݐሻ ൌ  ݃଴ ቄ1 െ ௧ି௧బ௧ಽି௧బቅ , ݐ ൐  .଴ݐ 

In figure 11, LEM1(2) profiles correspond to t0 = 2(6), while g0 = 6 cm/s2 and the time of the end 

of the ‘experiment’ tL = 8s for both cases. The corresponding scale s2 is plotted in figure 11 (b) for 

both profiles, and is given by the expression ݏଶሺݐ௅ሻ ൌ ସଽ ݃଴ݐ௅ଶ, independent of t0 the time at which 

the acceleration pivots from positive to negative slope. In contrast, the displacement Z(t) retains a 

dependence of t0 (Table 1), and is shown for both profiles in figure 11 (c). For the first segment 

( ሶ݃ ൐ 0ሻ, Mikaelian43 provides linear theory solutions in terms of Airy functions, which we use to 

initialize Vb,nl in our Drag-Buoyancy model (eq. 30). Eq. (33) may also be easily modified to 

represent an impulsively accelerated test cell giving rise to a Richtmyer-Meshkov (RM) instability-

driven flow, but we have not included this case in our analysis.  

Figure 12 (a) and (b) are plots of time evolution of bubble and spike amplitudes for the LEM1 and 

LEM2 profiles respectively obtained from our 3D DNS calculations. We also include predictions of 

bubble amplitude from the Level 3 model of [43] and bubble and spike amplitudes from our 

analytical solution to the DBM equations. Once again, the planar-averaged amplitudes obtained 

from simulation results are in good agreement with the simplified potential flow solution43 as well 

as the DBM solution obtained in § 2. At late times, slight deviation between simulations and 

models are observed due to the appearance of secondary KH instabilities that accelerate the 

bubble and spike tips. The solution to the DBM equation asymptotes to a Froude number of ~ 
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1 ൗߨ√  for the bubble in agreement with simulation data (0.58 ± 0.04) before secondary instabilities 

assert themselves on the bubble dynamics. Similarly, the spike Froude number is obtained from 

eq. (3) as Frs  0.65 in agreement with our simulation predictions (0.7 ± 0.03). As commented 

earlier, we find that both scaling widths (s2 and Z) collapse bubble and spike data from the 

different LEM simulations, with the scale s2 achieving slightly better collapse of the data.  

 

4.2.3 g(t) = g0(t/t0)a, a = -1.2:  
Acceleration profiles that evolve as ta with a < 0 are interesting since they violate the condition ሶ݃ ݃ଶ൘ ՜ 0 , required to obtain closed-form solutions to the DBM or the level 4 model of [43]. Thus, 

such profiles could potentially constitute a discriminating test case for the analytical solutions 

derived in this work. We report results from 3D simulations driven by ݃ሺݐሻ ൌ ݃଴ ቀ ௧௧బቁ௔ ݐ   , ൐  ଴    (34)ݐ 

    ݃ሺݐሻ ൌ 0, ൑ ݐ  ,଴ݐ 

with a = -1.2 and g0 = 2 cm/s2. Furthermore, [58,59] attribute blastwave acceleration observed in 

their experiments on the OMEGA laser to a g-profile modeled by eq. (34), with a ~ -1.2. Recent 

numerical simulations of a chemically reacting RM mixing layer60 revealed pressure waves from 

combustion that accelerated the material interface approximately according to the profiles 

specified in eq. (34). Figure 13 is a plot of the time dependence of the variables (g, s2, Z) for the 

acceleration profiles considered in this section. For this acceleration profile, the scaling width s2 

and displacement Z for t > t0 are given by  ݏଶ ൌ ൜ ସ௚బ௧బೌ ሺ௔ାଶሻమ ቀೌݐశమమ െ ଴ೌశమమݐ ቁଶൠ   (35) ܼ ൌ ௚బ௧బೌ ሺ௔ାଵሻ ቄ௧ೌశమି௧బೌ శమ௔ାଶ െ ݐ଴௔ାଵሺݐ െ  ଴ሻቅ  (36)ݐ

and are thus related through a complex time-dependent expression. In figure 14, we plot bubble 

and spike amplitudes for the above acceleration history, which show good agreement with 

predictions from the DBM solution (eq. 30) and the simplified level 3 model from [43], even 

though ሶ݃ ݃ଶ൘ ് 0 for these profiles. The RT flow is initialized by the impulsive acceleration at t = t0, 

followed by a decaying function.  

 

4.3 3D SIMULATIONS: A = 0.9 
The simulations described above were repeated with a fluid density ratio of 19 (A = 0.9), with the 

perturbation interface positioned asymmetrically at z = 2λ to accommodate spike acceleration. 

Similar to fig. 7, we plot the diagonal slices of the volume fraction at early, intermediate and late 
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times for the large Atwood number simulations in figs. 15 (a) – (d). Following nonlinear saturation 

(τ = 6), significant asymmetry is visible between bubble and spike structures in figs. 15 (c) and 

(d), with the spikes outpacing bubble penetration in to the heavy fluid. In contrast with the low 

Atwood number simulations, secondary instabilities are inertially suppressed at large density 

differences21 rendering bubble and spike structures featureless.  

The time evolution of planar-averaged bubble and spike amplitudes are shown in figures 16 (a) – 

(c) for the high A simulations with n = 0, 1, and 3, respectively. The corresponding plots for the 

bubble/spike Froude numbers are shown in figs. 17 (a) – (c). In fig. 16, the bubble amplitudes are 

compared with the level 2/3 models of [43] and the modified DBM45, while the spike amplitudes 

are compared with the DBM prediction since the potential flow models are not valid for spikes at 

large density differences. In contrast to the low Atwood results, at A = 0.9, bubble velocity 

asymptotes at late times with a terminal velocity that is marked by a Froude number  1/√π in 

agreement with eq. (3), and independent of the specific acceleration profile used. Thus, in this 

limit, the suppression of secondary instabilities renders bubble profiles consistent with the 

assumptions in potential flow models, which accurately predict the bubble amplitudes/velocities 

for n = 0, 1, and 3. Figure 17 reveals strikingly different behavior for spikes, which appear to 

evolve with an acceleration for instance corresponding to hs ~ gt2 (for n = 0) in agreement with the 

potential flow model of Zhang [60]. However, note that the model of [61] suggests free-fall 

behavior for spikes only in the limit of ρh/ρl  ∞, while the simulations in this work reveal such a 

behavior even at finite (but large) density ratios. We explore this trend in greater detail in § 4.4, 

where we discuss an Atwood variation study. The spike prediction from the modified DBM misses 

this critical behavior, instead evolving to a saturation Froude number that is dependent on A.  

We explore the appropriate scaling behavior at large Atwood numbers by plotting bubble and 

spike amplitudes against t (fig. 18 a), width s2 (fig. 18 b) and the displacement Z (fig. 18 c). 

Bubble amplitudes are adequately explained by s2 and Z (figs. 18 (b) – (c)), so that hb from 

simulations with different n collapse when plotted against both length scales. However, the 

collapse for spike amplitudes is significantly improved when plotted against the displacement Z 

over the width s2. A closer examination of eqs. (7) or (9) confirms this behavior, since ρl  0 

implies vanishing drag and a dynamic balance only between inertia and buoyancy, the balance 

implied by the displacement Z.  

 

4.4 ATWOOD VARIATION STUDY 
To elucidate bubble and spike scaling at any density ratio or driving acceleration profile, we 

performed a set of 3D simulations at A = 0.5 (n=3), 0.6 (n=2), 0.7 (n=1), 0.8 (n=1), 0.9 (n=0), and 

0.9 (n=1). Based on the earlier discussion, we restrict ourselves to spike behavior in this section, 

since bubbles appear to evolve independent of the density ratios (modulo secondary instabilities). 

We plot –hs vs t for all the cases considered here in figure 19 (a). From eq. (9) at large density 
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differences (ρl  0) and late times (E(t)  0), it is reasonable to expect that spikes should evolve 

with hs ~ 2AZ(t) or  

hs = 2αsAZ(t).     (37) 

For A = 1, eq. (7) and Zhang61 predict αs = 0.5, but the behavior at finite density ratios (and time-

varying acceleration histories) is not clear. By varying A and n in our simulations, we seek to 

verify the applicability of eq. (37) over a wide range of conditions. From our detailed simulation 

study, we find that eq. (37) accurately describes spike behavior for A ≥ 0.5, while spikes resemble 

bubbles at lower density ratios. Figure 19 (b) is a plot of the spike acceleration coefficient αs 

against the Atwood number from our parameter scan, where αs is obtained in each case from 

fitting eq. (37) to our simulation data. In addition to data from MOBILE, we also plot results from 

earlier studies at constant g (n = 0), including simulations using the incompressible code 

RTI3D19,55,62, and the experiments of [18] that used magnetorheological fluids to achieve A 1. 

Regardless of the value of ‘n’, figure 19 (b) clearly shows spike free fall behavior for A ≥ 0.5 from 

both simulations and experiments. This finding lies in contrast to the DBM28-32,45, as well as the 

potential flow models22-27. In figure 19 (c), we plot the spike amplitudes from all the simulations 

described above, and find that spikes satisfy hs ~ 2αsAZ(t) in every case.  

 

5 SUMMARY 
Using nonlinear models and 3D Direct Numerical Simulations, we have investigated the response 

of the single-scale RT problem to time-dependent accelerations. As noted earlier, experiments17-

20,34-36 and applications3-11 are more suitably characterized by such complex, acceleration 

histories rather than a constant g, which has been the focus of most RT studies. Several 

acceleration profiles were considered as part of our study, including profiles that fit g(t)=g0tn, 

LEM-type profiles, and g-profiles that are suggestive of blastwaves. Our results build extensively 

on earlier work by many authors, particularly the series of articles by Mikaelian [42-44], who 

developed potential flow models (at different levels of coarse-graining) that were compared with 

2D simulations using the CALE code. In the current study, we have developed a 2D potential flow 

model, while also deriving solutions to an intuitive drag-buoyancy model28-32 for bubble and spike 

tips for any g-profile satisfying the condition ௚ሶ௚మ ՜ 0 . We validate our models with detailed 2D and 

3D simulations of variable g RT. By systematically varying the Atwood number, we are able to 

elucidate spike behavior and clarify limitations of existing potential flow and drag-buoyancy 

models. Finally, the wide range of acceleration histories and density ratios explored here allows 

us to investigate appropriate scaling factors for bubble and spike amplitudes. A brief discussion of 

our results follows.  

Models: Consistent with earlier findings42-44, we report bubble amplitudes from 3D simulations in 

good agreement with predictions from potential flow models as well as the DBM, for all A and g-

profiles investigated. We have developed a 2D potential flow model valid for arbitrary g(t), which 
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we have validated extensively using numerical simulations. We compare bubble amplitudes from 

3D MOBILE simulations with the level 2/3 models of [43], and our solutions to the DBM presented 

in the § 2 (accounting for transients due to the initial linear growth). The DBM solution was 

obtained by transforming the original set of nonlinear equations (6-7) to a linear, 2nd order 

equation. Following [42,43], we neglect ௚ሶ௚మ to obtain a general analytic solution in terms of the 

variable s. Note that the omission of the ௚ሶ௚మ term was not found to be very restrictive, with the 

DBM (and likely the level 4 model) successfully predicting the bubble amplitudes for all cases 

considered here, even when g~ta, a < -1, which would seemingly violate this condition. From the 

simulations and models, we conclude bubbles always evolve with a constant Froude number 

approaching 1 ൗߨ√ . 

Atwood number: Spikes exhibit a strong dependence on the Atwood number, mimicking bubble 

behavior at low density differences, while transitioning to free-fall behavior at large A. None of the 

existing models accurately describe this transition, which occurs at A ~ 0.5 in our simulations. 

Thus, for A ≥ 0.5, our simulations suggest ݄௦ ൌ  where Z is a displacement scale and αs is ,ܼܣ௦ߙ2

an Atwood-dependent growth coefficient for spikes. We find that in general, potential flow 

models22-27 are incapable of describing the spike free-fall observed in our simulations occurring at 

large density ratios, since they do not account for the sharpening of the spike tips. An exception is 

the Zhang model61 for 2D spikes that was generalized to 3D in [63], which accurately predicts αs 

= 0.5 at A = 1 (fluid/vacuum case). Eq. (7) also captures spike behavior at infinite density ratios, 

since the last term in that equation vanishes in that limit resulting in the expected free-fall 

behavior. However, several simulations19,55 including results from MOBILE presented here, have 

revealed the onset of the so-called “free-fall” behavior to occur starting at A ~ 0.5. If confirmed 

with experimental verification, this would imply no single model describes the entire range of 

spike behavior – spike evolution at the extremes in Atwood number are captured by the potential 

flow models (A  0) and the model of Zhang/DBM (A  1) respectively, but the transition between 

these limits remains unexplained by models. Mikaelian44 has suggested interpolating between the 

extremes of spike behavior. Such an interpolation strategy will have to be informed by the new 

simulation results presented here. Alternatively, eq. (7) may be modified by neglecting the drag 

term for A > 0.5, but an additional coefficient must be introduced to explain the Atwood-

dependent growth rate αs(A).  

Scaling: Simulations driven by time-dependent accelerations also afford us the opportunity to 

search for the existence of a universal scaling parameter that collapses bubble/spike amplitudes 

from any g(t). For instance, the level 4 model of [43] (and our DBM solution) obtain bubble and 

spike amplitudes as explicit functions of s, rather than the displacement function Z. As noted 

earlier, the Z-scaling emphasizes a dynamic balance between inertia and buoyancy forces in eq. 

(6-7), while the s2-scaling implies buoyancy and drag forces are balanced. The width (ݏଶሻ was 
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introduced as a candidate for scaling observed amplitudes from the rocket rig experiments36. The 

LEM experiments34,35 evaluated both variables and concluded that the width provided a slightly 

better collapse of the turbulent mixing width data. From 2D single-mode simulations, 

Mikaelian42,43 also found a better collapse when amplitudes were plotted against s2 rather than Z, 

but only at low A.  

From our detailed simulation study with a wide range of acceleration profiles, and variations in the 

Atwood number, we conclude there is no single scaling variable that collapses all the reported 

data. At low A, the solution to the DBM and level 4 models suggest bubbles (and spikes) should 

prefer to scale with s2. However, an examination of fig. 10 suggests both scaling variables 

collapse the data reasonably well. This is not surprising since for the acceleration profiles shown 

in fig. 10 (g ~ tn), s2/Z is constant and independent of time. This result was derived analytically in 

[44], and implies both variables encapsulate the same time dependence associated with g(t) and 

can thus collapse the data equally well for such acceleration histories. In fact, this remained the 

case for many of the g-profiles investigated in our study (table 1). We also investigated through 

numerical simulations, acceleration profiles of the form, ݃ሺݐሻ ൌ ௚బቀଵି೟೅ቁೌ,    (38) 

with a = -2 or -3 and t < T. The case a = -2 was investigated by [44], who defined τ = 1- t/T and 

obtained the ratio s2/Z as a strong function of τ. For a = -2, ௦మ௓ ~ െ ln ሺ1 െ ௧்ሻ and diverges as t  

T, but the solution is self-similar. However for a = -3, s2/Z is independent of t asymptotically. We 

compare data from simulations with a = -2 and -3 in fig. 20, and find both s2 and Z to collapse the 

amplitudes. Finally, we also compared data between different classes of acceleration profiles, 

and still found both scaling variables to be adequate. It is surprising that even for g-profiles where 

s2/Z depends strongly on time, both variables collapse our simulation data. Since the 

displacement Z also explains our spike data (starting at A > 0.5), these results suggest that Z 

might be a superior scaling over the entire range of density differences studied here. 

At A = 1, the DBM explicitly suggests a scaling of spike amplitudes with the displacement 

Z (since the drag term in eq. 7 vanishes), while bubbles should retain the same behavior from low 

A. Data from several previous simulations, experiments, as well as the MOBILE calculations 

reported in this work support this claim. While potential flow models generally fail in this limit, the 

model of Zhang61 and the extension by [63] capture this behavior as well as the observed spike 

growth rate of αs = 0.5. However, our simulations report hs ~ Z (and not s2) for any g-profile, even 

at finite density ratios, starting at A = 0.5. If verified experimentally, this would require 

corresponding modifications to both the DBM and the potential flow models. From the above, we 

conclude for most acceleration profiles that satisfy s2/Z  constant either exactly or 

asymptotically, bubbles (at any A) and spikes (at low A) may be collapsed adequately with either 

scale. For certain profiles44 that violate this condition (fig. 20), the width should be the superior 
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scaling, however even in such cases we find the displacement to collapse the data reasonably 

well. For A > 0.5, spikes from any acceleration grow as 2αsAZ, with the growth rate αs depending 

on the density ratio.  
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ଶݏ ݃ ؠ ൛ඥ݃ሺݐሻ݀ݐൟଶ
 ܷ ؠ න ݃ሺݐሻ ܼ ݐ݀ ؠ  න ൬න ݃ ൰ݐ݀  ሶ݃݃ଶ ݐ݀

݃଴ݐ௡ 4݃଴ሺ݊ ൅ 2ሻଶ  ௡ାଶݐ
݃଴݊ ൅ 1 ௡ାଵ ݃଴ሺ݊ݐ ൅ 1ሻሺ݊ ൅ 2ሻ ௡ାଶ ݊݃଴ݐ ןሺ௡ାଵሻ ݃଴ሺ1൅ିݐ ଶሻ  ݃଴ݐ ቊ12 ඥ1ݐ ൅ ଶݐߙ

൅ sinhିଵ൫√ݐߙ൯2√ߙ ቋଶ 
݃଴ݐ ൅ 13 ݃଴ ן ଷ 12ݐ ݃଴ݐଶ ൅ 112 ݃଴ ן ସ 2ݐ ן ן଴ሺ1൅݃ݐ  ଶሻଶݐ

൞݃଴ݐ଴ ൑ ݐ                             ݐ ଴݃଴ݐ  ൜1 െ ݐ െ ௅ݐ ଴ݐ  െ ଴ൠݐ  ݐ     ൐ ଴ݐ   ସଽ  ݃଴ ቊݐ௅ െ ሺ௧ಽି௧ሻయమඥ௧ಽି௧బቋଶ
, t >t0 

௚బଶሺ௧ಽି ௧బሻ ሼെݐଶ ൅2ݐ௅ݐ െ ଴ሽ, t > t0 ௚బ௧బమ଺ݐ௅ݐ ൅ ௚బଶሺ௧ಽି ௧బሻ ቄെ ଵଷ ଷݐ ൅ ଶݐ௅ݐ െݐ௅ݐ଴ݐ ൅ ଵଷ ۔ە ଴ଷቅ, t > t0ݐ
ۓ ଶݐ଴݃଴ݐ ݐ ൑ ௅ݐ଴െሺݐ െ ଴ሻ݃଴ଶሺݐ ௅ݐ െ ሻݐ ݐ ൐ ଴ݐ

ቐ ݐ               0  ൏ ଴݃଴ݐ  ൬ ଴൰௔ݐݐ ݐ     ൒ ଴ݐ ܽ൏ െ1 
ସሺ௔ାଶሻమ ௚బ௧బೌ ቀೌݐశమమ െ ଴ೌశమమݐ ቁଶ

, 

t> t0 

௚బሺ௧ೌశభି௧బೌశభሻሺ௔ାଵሻ௧బೌ , t > t0 ௚బሺ௔ାଵሻ௧బೌ ቄ௧ೌశమି௧బೌ శమሺ௔ାଶሻ െݐ଴௔ାଵሺݐ െ ଴ሻቅ, t > t0 ቐݐ ௔ାଵݐ଴௔݃଴ݐܽ ݐ ൒  ଴ݐ
݃଴ሺ1 െ ݐܶ ሻଶ ܶଶ݃଴ ൜ln ሺ1 െ ݐܶ ሻൠଶ

 
݃଴ ܶሺ1 െ ݐܶ ሻ െ ݃଴ܶ െܶଶ݃଴ ln ൬1 െ ݐܶ ൰ െ ݃଴ܶݐ 

2݃଴ ܶ ሺ1 െ ݐܶ ሻ  ݃଴ቀ1 െ ݐܶ ቁଷ 4ܶଶ݃଴ ۔ە
ۓ 1ට1 െ ݐ ܶൗ െ 1ۙۘ

ۗଶ
 

݃଴ ܶ2ሺ1 െ ݐܶ ሻଶ െ ݃଴ ܶ2  
݃଴ ܶଶ2ሺ1 െ ݐܶ ሻ െ ݃଴ ܶ2 ݐ െ ݃଴ܶଶ2  

3݃଴ ܶ ሺ1 െ ݐܶ ሻଶ 

Table 1: Summary of acceleration profiles investigated using MOBILE.  
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