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Molecular dynamics simulations are used to investigate the influence of surface curvature on
the slip boundary condition for a simple fluid. The slip length is measured for flows in planar
and cylindrical geometries with a range of wall-fluid interactions. As wall curvature increases, the
slip length decreases dramatically for closely packed surfaces and increases for sparse ones. The
magnitude of the changes depends on the crystallographic orientation and is different for flow along
and perpendicular to the direction of curvature. These different patterns of behavior are related
to the curvature-induced variation in the ratio of the spacing between fluid atoms to the spacing
between minima in the potential from the solid surface. The results are consistent with a microscopic
theory for the viscous friction between fluid and wall that expresses the slip length in terms of the
lateral response of the fluid to the wall potential and the characteristic decay time of this response.

I. INTRODUCTION

Modern developments in micro- and nano-technologies
have created great interest in studying and modeling fluid
transport at these small scales. Solving continuum hy-
drodynamic equations requires boundary conditions at
solid-fluid interfaces. As the system size shrinks to micro-
or nano-scales, these boundary conditions play increas-
ingly important roles because of the large surface-volume
ratio. The traditional no-slip boundary condition for
macroscopic flows may break down, and a slip boundary
condition is then needed to describe the fluid velocity at
the solid surface [1–5].
Navier proposed the first and the most widely used slip

boundary condition [6], which states that the slip veloc-
ity is proportional to the shear rate of the fluid at the
surface. The slip length is introduced as the proportion-
ality coefficient, and is used to characterize the degree
of fluid slip at the surface. In the simple case of flow
past a flat surface, the slip length measures the distance
from the actual surface to the virtual plane where the
extrapolated fluid velocity would equal that of the solid
surface.
Molecular dynamics (MD) studies for flat surfaces [7–

12] have indicated that when the shear rate is small, the
slip length is flow-independent and only depends on the
properties of the fluid (e.g., viscosity, temperature, fluid
structure) and the microscopic properties of the local in-
terface (e.g., wall-fluid interaction strength, atomic struc-
ture of the surface). For surfaces with more complicated
geometries, one can apply the Navier slip boundary con-
dition locally with the same slip length but only if the sur-
face normal changes on length scales that are much larger
than the atomic scale and all the microscopic properties
remain the same [13, 14]. This geometrical independence
is of practical importance. For example, one can mea-
sure the local slip length from a surface with a simple
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geometry (e.g., cylindrical for Surface Forces Apparatus
experiments, spherical for atomic force microscopy ex-
periments) [2, 3, 15, 16], and use it as the local intrinsic
property for other surfaces as long as they are microscop-
ically the same.

In the limit where the radius of curvature of the sur-
face approaches the molecular-scale, the separation of the
characteristic length scales fails and the small scale cur-
vature becomes one of the microscopic properties of the
surface. Some simulations suggest that curvature may
affect the local slip length [17–20]. In particular, Falk
et al. found very large changes with slip length in axial
flow along nanotubes [19, 20]. A more recent study [21]
argued that these nanotubes were so slippery that no ve-
locity gradient occurred in the fluid and the effective slip
length was infinite. The authors argued that slip was
a material property and presented MD simulations that
showed almost no change in slip length with curvature.

In this paper, we present MD simulations of slip over
curved solids with a wide range of solid/fluid interac-
tions and solid geometries. Curved walls are generated by
smoothly rolling up planar walls into cylinders while pre-
serving the local atomic structure of the surface. Studies
of flow between cylinders give slip boundary conditions
at walls with negative (outer) and positive (inner) cur-
vature. Both axial flow along the cylinder and rotational
Couette flow are studied.

We find very different changes in slip length with cur-
vature for different surfaces and different flow directions.
As curvature increases there can be little change in slip
length, as found by Chen et al. [21], large decreases in
slip length, as found by Falk et al., or increases in slip
length. The key factor is the ratio of the lateral spacing
between minima in the wall potential to the spacing be-
tween fluid atoms. Slip is suppressed when these spacings
are comparable and fluid atoms can lock in registry with
the substrate [7, 19, 20, 22, 23]. Curvature increases the
spacing between minima, which may enhance or suppress
locking. Since curvature does not affect the spacing along
the cylinder axis, the change in slip length can be much
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greater for rotational flow around the cylinder than for
axial flow.
All of the simulation results can be collapsed using a

theory for friction between a solid and fluid layer [22, 23].
In this theory the key measure of the strength of viscous
coupling between fluid and solid is the magnitude of lat-
eral density modulations in the first fluid layer due to the
periodic potential from the solid. Most of the variation
in slip length with curvature is related to changes in this
response. Slip also depends on the lifetime of these den-
sity modulations which is found to be a material property
of the fluid, depending only on the ratio of the spacing
between solid atoms to the mean spacing between fluid
atoms. The relation between this theory and the later
work of Falk et al. [19, 20] is discussed.
The paper is organized as follows. In Sec. II, the

details of molecular dynamics simulations are described.
In Sec. III, we describe how key quantities such as
fluid layering, lateral structure factor and slip length are
defined and measured from the simulations. In Sec. IV,
results for slip length and fluid structure are presented
and the behavior of the slip length is interpreted by a
microscopic theory. The summary and conclusions are
given in the last section.

II. DETAILS OF MOLECULAR SIMULATIONS

A. Interaction Potentials and Equations of Motion

We use standard molecular dynamics to simulate sim-
ple fluid flows over rigid solid walls. The simulations are
performed using LAMMPS from Sandia National Labo-
ratories ([24]). A truncated Lennard-Jones (LJ) potential
is used to model the interactions between fluid atoms:

VLJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

− Vc, for r < rc (1)

where r is distance between the two atoms, and ǫ and σ
define the characteristic energy and length scales of the
fluid, respectively. VLJ is truncated at a distance rc =
2.2σ to save computational cost, and Vc is chosen so that
VLJ(rc) = 0. Wall (w) and fluid (f) atoms also interact
through a truncated LJ potential with parameters ǫwf ,
σwf and rc,wf . The four sets of wall-fluid interaction
parameters studied are listed in Table I. If not stated
otherwise, σwf = 1σ and rc,wf = 2.2σ.
The equations of motion are integrated using the

velocity-Verlet algorithm with a time step ∆t = 0.005τ ,
where τ = σ

√

m/ǫ is the characteristic time scale and m
is the mass of a fluid atom. For most simulations, fluid
temperature is maintained at T = 1.1ǫ/kB by imposing
a Langevin thermostat on all fluid atoms in the flow-
irrelevant y-direction [7, 25]. The thermostatted equa-
tion of motion in the y-direction is given by

mÿ = fLJ −mΓẏ + F (t) (2)

Wall Type ǫwf/ǫ σwf/σ rc,wf/σ

A 0.1 1 2.2

B 0.4 1 2.2

C 0.4 1 1.12

D 0.057 1.27 2.2

TABLE I. The four sets of wall-fluid interaction parameters
(subscript wf) studied in this paper. The energy ǫwf , inter-
action length σwf and cutoff distance rc,wf are normalized by
the fluid interaction energy ǫ and length σ. The surface lat-
tice spacing was a/σ = 0.75, 0.86, 1.0, 1.09 or 1.20. For walls
aligned with the (110) direction along the cylinder axis the
inner and outer cylinder radii are 3.85σ and 23.0σ or 7.67σ
and 26.83σ. For the (100) direction along the axis, the radii
are 4.09σ and 21.69σ or 8.14σ and 25.75σ. The surface cor-
rugation is decreased and slip length increased when ǫwf is
decreased or σwf is increased.

where fLJ is the total LJ force from all other particles.
The damping rate Γ controls the heat flux between the
system and the heat bath and F (t) is a random force
sampled from a Gaussian distribution with zero mean
and variance 2mΓkBT/∆t. We use a damping rate Γ =
0.5τ−1, which is small enough that the atomic motions
are underdamped, but large enough to eliminate viscous
heating. We checked that varying Γ by a factor of 2 does
not change the results. Past studies of slip boundary
conditions have shown there is little effect of thermostats
on the low rate limit of interest here([7, 26, 27]). Effects
are observed when rates are high enough that heating
occurs([26, 27]).
For simulations of axial flow between cylinders, instead

of the Langevin thermostat, an isotropic dissipative par-
ticle dynamics (DPD) thermostat with a damping rate
0.5τ−1 is applied on the fluid [28–30]. Thus the angu-
lar invariance of the fluid flow is preserved. Changes in
damping rate and comparison to the Langevin results for
flat surfaces confirmed that this thermostat has negligi-
ble impact (<2%) on the presented results for flow, slip
length and fluid structure.
The bulk density of fluid is fixed at ρ = 0.81σ−3.

The strain rates in our simulations are low enough (.
0.07τ−1) to ensure that the bulk fluid is Newtonian with
shear viscosity µ ∼ 2.13ǫτσ−3. In this low strain rate
regime, linear response is also observed at the wall-fluid
interface and the slip length is insensitive to shear rate
[7, 8, 12, 21].

B. Planar Geometry

For the planar Couette geometry, fluid is confined in a
channel between two solid walls parallel to the x-y plane
(Figure 1(left)). Flow is generated by moving the top
wall along x at a speed Uw. Periodic boundary condi-
tions are imposed along x- and y-directions. Each pla-
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FIG. 1. (Color online) Geometry of planar (left) and cylindri-
cal (right) geometries. In the planar case fluid is confined be-
tween rigid walls separated by height H and periodic bound-
ary conditions are applied in the plane of the wall. Flow is
generated by moving the top wall along x at a speed Uw. In
the cylindrical case the walls are rigid coaxial cylinders with
Rwi and Rwo the inner and outer radii of the solid surfaces,
respectively. Angular and axial flow are generated by rotating
the inner wall or translating it along the y-axis, respectively,
so that surface atoms have speed Uw . Periodic boundary con-
ditions are applied along the axial, y-direction.

nar wall consists of three (001) layers of a FCC crystal.
Wall atoms are fixed rigidly to lattice sites. Past studies
show thermal vibrations affect the value of slip length
but do not change the trends with surface geometry and
interactions [7, 11]. The x-axis is aligned with either the
(110) or the (100) vector of the FCC lattice. We take
the nominal height of the wall surfaces to coincide with
the center of the wall atoms in the layer closest to the
fluid. The separation distance between wall surfaces is
H = 30σ. The spatial periods along x- and y- directions
are Lx = Ly = 24.08σ and Lx = Ly = 25.54σ for cases
of flow along (110) and (100) direction, respectively.
A key parameter of the wall is the lateral separation

of the nearest neighbor atoms in the first layer, desig-
nated by the surface lattice spacing a. The surface lat-
tice spacing determines the characteristic length of the
atomic-scale corrugations in the wall potential felt by
fluid atoms, and it has been disclosed to be an essential
factor that regulates the degree of slip [7]. Here we in-
vestigate slip boundary conditions for four values of the
surface lattice spacing on the bottom wall (a = 1.20σ,
1.09σ,1.00σ, 0.86σ, and 0.75σ), and for various sets of the
wall-fluid LJ parameters (Table I). The results serve as
the reference cases for flat surfaces, i.e., curvature κ = 0.
For top wall surfaces, no-slip boundary conditions are
always enforced by using large values of ǫwf .

C. Cylindrical Geometry

As shown in Figure 1(right), fluid is confined in the re-
gion between two coaxial cylindrical walls, whose central
axes lie along the y-axis. A periodic boundary condition

with a period of length Ly = 24.08σ or 25.54σ is applied
along the y- (axial) direction.
Each cylindrical wall is made by curving a planar wall

along the x-direction, while the atomic arrangement re-
mains unchanged along the y-direction. As depicted in
Figure 2, the cylindrical wall is formed by three rolled-
up layers of solid atoms, and the atoms of a given layer
have the same radial distance from the central axis. Each
layer consists of Nθ rows of atoms along the axial direc-
tion and the azimuth angle between neighboring rows is
2π/Nθ. The value of Nθ is chosen so that the surface
layer adjacent to the fluid has a locally square structure
with nearest-neighbor spacing a. Two orientations of the
flat wall relative to the cylindrical axis are considered. In
the first, the nearest-neighbor direction, (110), is aligned
with the axis. In the second, the next-nearest neighbor
direction (100) is aligned with the axis. Carbon nan-
otubes grow with a wide range of axis orientations and
this is known to play an important role in determining
their properties, such as conductivity [31–35].
The nominal position of the wall surface is defined by

the first layer of wall atoms, such that the surface radius
Rw equals the radial coordinate of surface atoms. The
surface curvature κ is defined as κ = 1/Rwi for the inner
wall, and κ = −1/Rwo for the outer one, where Rwi and
Rwo denote the surface radii of the inner and the outer
walls, respectively. In this study, for walls aligned with
the (110) direction along the cylinder axis the inner and
outer cylinder radii are 3.85σ and 23.0σ or 7.67σ and
26.83 σ. For walls aligned with the (100) direction along
the axis, the radii are 4.09σ and 21.69σ or 8.14σ and
25.75σ.
The procedure used to generate the curved walls may

produce very small or large separations between atoms in
the layers away from the fluid. These might lead to plas-
tic rearrangements in experimental systems. However,
the structure of these inner layers has very little effect
on the flow boundary condition. Simulations without
the third layer gave indistinguishable results for the slip
length. The main effect of the second layer is to prevent
fluid atoms from penetrating between atoms of the outer
solid layer [7]. As shown in Sec. IV only the response to
the periodic potential from the outer layer is needed to
explain the detailed trends in slip length. This is why re-
sults for very short range interactions where fluid atoms
only feel the outer layer (rc = 21/6σ) show the same
trends as simulations with larger rc. It also explains why
our results are very similar to those of Chen and Koplik
[21] who used a very different crystalline structure under
the outer solid layer.

D. Fluid Structure near Wall

Figure 3 shows the time-averaged fluid density profile
as a function of distance from the wall for flat surfaces
with a = 1.2σ and 0.75σ. In the near wall region, the dis-
tribution of fluid atoms becomes non-isotropic and lay-
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FIG. 2. Close up side views of the wall geometry for planar
(bottom) and cylindrical (top) simulations with the nearest-
neighbor direction aligned with flow. Circles show lattice sites
and closed circles indicate atoms on the surface closest to the
fluid. Surface atoms are separated by a and successive lay-
ers are separated by a/

√

2. The spacing between subsurface
atoms changes with radius for curved surfaces.
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FIG. 3. (Color online) Fluid density as a function of dis-
tance from wall surface for lattice spacing a = 1.20σ and
0.75σ at the indicated curvatures. Surfaces have wall-fluid
interaction strength ǫwf = 0.4ǫ, σwf = 1σ, and the density
is averaged over 104τ . The oscillations reflect layering and
the layer boundaries are typically associated with the density
minima. Here the (110) direction is along the cylinder axis
but similar results are found for the (100) orientation.

ering emerges in the density profile [7, 10, 36–46]. The
first peak corresponds to the preferred spacing between
wall and fluid atoms. The density profile then oscillates
with peaks separated by one fluid atom diameter, and
gradually relaxes to a uniform bulk density after a few
oscillations. Near a wall surface, layers can be associated
with each density peak and the boundaries between layers
with local density minima. Trends in layering with wall
geometry and interactions are discussed in Sec. III B.

Layering is less related to the slip length than the de-
gree of lateral structure within the first layer of fluid
[7, 11, 12, 17, 19, 20, 43, 47–49]. To describe the in-
layer structure, the 2D static structure factor, S1(~q), is
calculated as a function of wave vector ~q for the first layer
of fluid atoms.

For the flat surface, S1(~q) is evaluated according to

S1(~q) = S1(qx, qy) = |
∑

j

exp[i(qxxj + qyyj)]|
2

/N1, (3)

where xj and yj are the 2D coordinates of atom j and N1

is the number of fluid atoms in the first layer. The al-
lowed wave vectors are determined by the periods of the
system in the x-y plane, ~q = (2πh/Lx, 2πk/Ly) where
h and k are integers. The periodic potential of the
wall produces sharp peaks in S1(~q) at the correspond-

ing reciprocal lattice vectors ~Gm,n of the wall. For the
fcc (100) surface with nearest-neighbors along x and y,
~Gm,n = (2πm/a, 2πn/a).
The squared relative amplitude of the areal density

modulation n1(~G) produced at each ~G is

|n1(~G)/n̄1|
2 = S̃1(~G)/N1 (4)

where n̄1 = N1/A1 is the number of particles per area in
the first layer. This response to the substrate potential
is independent of system size while the intrinsic diffusive

background S1,eq(~G)/N1 decreases linearly with system
size. We increase the system size until the diffusive back-
ground is small and then subtract it from the total signal.
The induced peaks are confined to only one of the wave
vectors allowed by periodic boundary conditions, and the
background is obtained by averaging over the four closest
allowed ~q.
For the cylindrical surface, we approximate the first

fluid layer by a 2D cylindrical sheet located at the radius
corresponding to the first peak in the fluid density. As
noted below this radius is associated with the flow bound-
ary condition and is denoted Rbc. The polar coordinates
of each atom in the first layer (rθ, y) are mapped to 2D
coordinates on a sheet (x, y) with x = Rbcθ [19, 20]. Then
the lateral structure factor is evaluated with respect to
the 2D coordinates. The main difference from the planar
case is that the period Lx is replaced by the circum-
ference of the layer, 2πRbc, in determining the allowed
wavevectors.
The structure factors shown below are obtained for

equilibrium systems. They are nearly the same in sheared
systems because the shear rates are kept in the limit of
linear response. Structure factors are typically evaluated
every 0.05τ and temporally averaged over up to 500τ .

E. Calculating the Slip Length

1. Planar Couette flow

For stationary Newtonian fluid flow past an impene-
trable solid surface, Navier’s slip model assumes that the
friction force per unit area between the fluid and the solid
surface is proportional to the slip velocity ∆ut, i.e., the
relative velocity of fluid and solid. This force is balanced
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by the viscous shear stress Πnt of the fluid at the surface,

β∆ut = Πnt, (5)

where β is the drag coefficient between the fluid and the
solid surface, and n and t represent the normal and tan-
gential directions to the surface, respectively. Newton’s
law for the bulk fluid relates the shear stress to the strain
rate ∂ut/∂n:

Πnt = µ
∂ut

∂n
. (6)

where µ denotes the fluid viscosity. Combining these
equations one arrives at Navier’s slip boundary condition,

∆ut =
µ

β

∂ut

∂n
= Ls

∂ut

∂n
(7)

where the slip length Ls ≡ µ/β quantifies the degree of
slip at the surface.
For planar Couette flow, the viscous stress Πxz is

constant throughout the channel, and the incompress-
ible Navier-Stokes equations reduce to µ∂2ux/∂z

2 =
∂Πxz/∂z = 0. Solving this equation, one arrives at a
linear velocity profile,

ux = A1z + A2. (8)

The two constants, A1 and A2, are determined by the
boundary conditions at the wall-fluid interfaces.
Mean velocity profiles from two very different lattice

constants are presented in Figure 4(a). Both profiles ex-
hibit the expected linear velocity profile (Eq. (8)) in
the central region of the fluid. Deviations begin to be-
come apparent within one or two atomic diameters of the
wall due to the layering and in-plane structure discussed
above [7]. At the top wall there is a strong interaction
that causes the fluid velocity to saturate to the wall ve-
locity inside the fluid. This is called a stick boundary
condition and is kept the same for all runs. The behav-
ior near the stationary bottom wall is very sensitive to
wall density. For the sparse surface case (a = 1.2σ) the
velocity approaches zero, but for the closely packed sur-
face there is a substantial velocity difference at the wall,
i.e. slip.
The definition of the slip length in Eq. (7) requires

both the strain rate and slip velocity. For Couette flow
the strain rate is uniform in the central region and given
by the coefficient A1 in Eq. (8). The value of slip ve-
locity is more ambiguous. Since the goal is to determine
boundary conditions for the continuum equations, the
slip velocity is evaluated from the extrapolation of the
continuum solution rather than the actual velocity profile
[5]. The answer still depends on the location of the wall
which is uncertain up to lengths of order σ. We choose
the height d1 of the density peak associated with the first
fluid layer (Fig. 3) as the hydrodynamic boundary. The
slip velocity ∆ut then corresponds to the velocity differ-
ence between the first fluid layer and the solid wall. This
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FIG. 4. (Color online) Velocity profiles for (a) planar Cou-
ette flow at a = 0.75σ (dashed blue) and 1.2σ (dotted red),
and (b) angular (dashed blue) and axial flow (dotted red)
in cylindrical geometry at a = 0.75σ. Thin solid black lines
show fits to continuum theory and dotted vertical lines show
the positions of wall surface atoms. Flows are along the (110)
orientation with ǫwf = 0.1ǫ.

is the natural quantity for Eq. (5) and the calculation of
frictional drag discussed below. For the planar Couette
case any other choice (e.g., in [7, 12, 50, 51]) gives a con-
stant shift in the slip length and other common choices of
the reference plane differ by less than the layer spacing.

For the planar flow simulations, the velocity profiles
are averaged within horizontal bins of thickness ∆z =
0.05σ for a time period of 104τ at steady state. The
resulting flow profile is fit to Eq. (8) over the region more
than 3σ from either surface. We verified that changing
this condition by ±σ does not produce any noticeable
changes. The slip length is then obtained from the fit
coefficients as

Ls = d1 +A2/A1 (9)

The fit results are further averaged over 5 independent
realizations of the system to quantify statistical errors
and remove any long-time correlations.
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2. Cylindrical Couette Flow

For the case of angular flow between rotating cylinders,
the viscous shear stress at the curved cylindrical surface
is given by

Πnθ = µ

(

∂uθ

∂n
− κuθ

)

(10)

where κ denotes the local curvature of the surface. For
the convex inner surface in Figure 1, κ > 0, and for the
concave outer surface, κ < 0. Plugging Eq. (10) into the
force balance condition, Eq. (5), one arrives at the slip
boundary condition for a curved surface [13, 14],

∆uθ =
µ

β

(

∂uθ

∂n
− κuθ

)

= Ls

(

∂uθ

∂n
− κuθ

)

. (11)

In terms of the local angular velocity, ω = uθ/r, Eq. (11)
can be rewritten into a form similar to Eq. (7) [21]:

∆ω = Ls
∂ω

∂n
. (12)

Therefore the slip length along the direction of curvature
can be interpreted as the distance inside the wall to which
the fluid angular velocity is linearly extrapolated to reach
the angular velocity of the wall surface.
For bulk flow between two rotating concentric cylin-

ders, the incompressible Navier-Stokes equations reduce
to

dp

dr
= ρ

uθ
2

r
, (13)

d

dr

(

1

r

d

dr
(ruθ)

)

= 0, (14)

where the pressure p and the tangential velocity uθ are
functions only of the radial coordinate r and there is no
flow along the cylinder axis. The general solution of the
velocity profile is given by

uθ(r) = B1r +B2/r, (15)

where the constants B1 and B2 are determined by the
boundary conditions.
In simulations, the angular flow is generated by rotat-

ing the inner wall at a rotation rate Uw/Rwi, where Uw

is the speed of the surface atoms (closest to the fluid).
For the cylindrical simulations, the velocity is averaged
within cylindrical slabs of thickness ∆r = 0.05σ every
5× 103τ over a simulation time of 105τ . The slip length
is then calculated for each average velocity profile, and
further averaged over 20 consecutive time intervals.
Figure 4(b) shows that the mean flow profiles from

MD simulations are well fitted by the continuum solution
except for regions within a few sigma of the walls (Eq.
(15)). As found in past work, the viscosity of the fluid

may be modified in the layers closest to the walls ([7,
44, 52]). The sharp peak shown in Fig. 4 (b) near the
inner wall comes from a very low density of atoms that
are so close to the wall that their velocity is close to
that of the wall. They make up a very small fraction
of the first density peak. This effect is not visible near
stationary walls because the density and wall velocity are
both going to zero.
To measure the slip length from the MD velocity pro-

files, we rewrite Eq. (15) as

ruθ(r) = B1r
2 +B2, (16)

and fit the simulation data by this parabolic function.
Combining Eq. (15) and Eq. (11), plugging in the fitted
parameters B1 and B2, and solving for Ls, the slip length
of the inner wall is given by

Ls = −

(

B1Rbc +
B2

Rbc
− Ubc

)

Rbc
2

2B2

, (17)

where Rbc = Rwi + d1 denotes the position of the hydro-
dynamic boundary, and Ubc = Uw(1+d1/Rwi) designates
the fluid velocity at the effective hydrodynamic boundary
Rbc. For the outer surface,

Ls =

(

B1Rbc +
B2

Rbc
− Ubc

)

Rbc
2

2B2

, (18)

where Rbc = Rwo − d1, and Ubc = 0 since the outer wall
is held at rest.
As for the planar case the wall position is defined at the

center of the first density peak in the above analysis. For
the cylindrical geometry, changing this definition does
not produce a constant shift in the slip length because
the flow is nonlinear. Shifting the reference plane to the
midpoint between wall and first fluid layer ([19–21]) can
reduce Ls by up to ∼ 4σ for the smallest radii and largest
slip lengths but the trends with curvature remain the
same. The definition used here is most natural for the
theory described in Sec. IV which relates the friction
between the first fluid layer and substrate to structure in
the first layer.

3. Axial Flow in Cylindrical Geometry

For the axial flow case, the viscous shear stress at the
cylindrical surface is Πny = µ∂uy/∂n and thus the slip
boundary condition has the same form as Eq. (7), ∆uy =
Ls(∂uy)/∂n. The Navier-Stokes equations for the bulk
flow reduce to

µ

r

d

dr

(

r
duy

dr

)

=
dp

dy
= 0, (19)

and the velocity profile is given by

uy(r) = C1 ln(r) + C2. (20)
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In simulations, the axial flow is produced by moving
the inner cylinder along the y-direction at a speed Uw. To
measure the slip length, Eq. (20) is fitted to the mean
velocity profile (as illustrated in Figure 4(b)), and the
slip length along the axial direction is calculated by

Ls = (C1 ln(Rbc) + C2 − Uw)
Rbc

C1

, (21)

and Ls = −(C1 ln(Rbc) + C2)
Rbc

C1

, (22)

for the inner and the outer wall, respectively.

III. RESULTS

A. Slip Length

Calculated slip lengths are tabulated in the supple-
mentary material for all the flow geometries and surface
properties included in this study [53]. For each case we
verified that the results are in the low strain rate limit
by varying the strain rate by at least a factor of two.
The quoted values were evaluated for planar flows with
top wall speed Uw = 1.0σ/τ , for cylindrical angular flows
with inner wall speed Uw = 0.2σ/τ , and for cylindrical
axial flows with inner wall speed Uw = 0.6σ/τ . In all
cases the maximum strain rate is less than 0.071/τ which
Chen et al. [21] also find is in the linear response limit.
In Figure 5(a), the value of the slip length is plotted

against the surface curvature for cylindrical Couette flow
with different surface lattice spacings. Here ǫwf = 0.1ǫ,
σwf = 1σ and flow is along the (110) direction between
nearest neighbors of the fcc surface. For this rotational
flow case, three typical patterns are clearly observed. For
the highly packed surfaces, a = 0.75σ or 0.86σ, the slip
length Ls decreases by up to a factor of 5 as curvature
increases. The opposite trend is observed for sparse sur-
faces, a = 1.20σ or 1.09σ, where Ls increases slightly
(∼ 30%). Nonmonotonic behavior is found for a = 1.00σ:
Ls drops as κσ increases from −0.043 to 0.13 and then
rises as κσ further increases from 0.13 to 0.25, These
trends with curvature are determined by surface density
and are not affected by changing the wall-fluid LJ inter-
action, although the absolute slip lengths are. Note that
Chen et al. [21] considered a = 1.09σ and positive cur-
vatures. We also find little change in Ls for this special
case.
The changes in slip length with curvature are very de-

pendent on surface orientation as shown in Figure 5(b).
For the nearest-neighbor (110) orientation, the slip length
for rotational flow shows the large changes illustrated in
Figure 5(a) while there is very little (∼ 10%) change in
the slip length for axial flow. In contrast, for the (100)
orientation, curvature affects axial flow more strongly
than rotational flow. Both follow the trend with cur-
vature for rotational (110) flow but change more gradu-
ally. Note that for flat surfaces Ls is the same for flow
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FIG. 5. (Color online) Slip length Ls as a function of sur-
face curvature κσ for ǫwf = 0.1ǫ. (a) Ls for cylindrical Cou-
ette flows along (110) direction with different lattice spacing:
a = 1.2σ (triangles), 1.09σ (circles), 1.00σ (squares), 0.86σ
(hexagons) and 0.75σ (pentagons). (b) Ls with a = 0.75σ
for cylindrical Couette flows along (110) (blue pentagons)
and (100) direction (red triangles), and axial cylindrical flows
along (110) (black circles) and (100) direction (green squares).
Dotted lines are guides to the eye.

along (100) and (110) even though the directions are not
crystallographically equivalent.
The different patterns of behavior of slip length for

different flow directions, atomic spacings and lattice ori-
entations can only be understood from the microscopic
perspective. We first consider how curvature affects the
structure of the fluid and then present a quantitative the-
ory for the variations in slip length.

B. Fluid Structure

The correlation between the atomic spacing on flat sur-
faces and the degree of fluid layering has been discussed
in Refs. [7, 10]. As illustrated in Figure 3, denser surfaces
(smaller a) lead to sharper density peaks. One reason is
that a higher density increases the number of wall atoms
that interact with a given fluid atom and thus deepens
the potential energy minimum at the first layer. Increas-
ing the density also reduces the ability of fluid atoms to
penetrate in between wall atoms. Figure 6(a,b) illustrate
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the lateral variation of constant energy surfaces above
flat walls. As wall atoms move closer, the depth of local
minima decreases rapidly. The decrease in the corruga-
tion of the equipotential surface reduces fluctuations in
the preferred height of fluid atoms and thus sharpens the
first density peak.
Figure 3 provides new information about how curva-

ture affects layering. For all cases considered we found
a monotonic increase in layering as the curvature went
from positive to negative. The effect is particularly no-
ticeable for large κσ where the radius of curvature ap-
proaches atomic scales. Figure 6(c) provides insight in
to the origin of this trend. While the spacing between
wall atoms remains fixed, the first fluid layer forms at a
different radius. Since the number of atoms is fixed, the
spacing between potential minima scales as the radius of
the fluid layer divided by that of the wall layer. This
produces an effective decrease in the wall density with
increasing κσ. As for flat surfaces, the decrease in wall
density leads to a broader and lower density peak.
Past work shows that the degree of slip correlates more

strongly with lateral structure than fluid layering or wet-
ting [7, 11, 12, 17, 19, 20, 43, 47–49, 54, 55]. Even fea-
tureless walls that are perfectly wetting produce strong
layering peaks, but they provide a translationally invari-
ant surface that cannot transmit friction. The drag co-
efficient β only depends on the variation in surface po-
tential that is related to lateral corrugation (Figure 6).
As noted in Sec. II D this lateral corrugation produces

in-plane density modulations n1(~G) (Eq. 4) at the re-

ciprocal lattice vectors ~G that characterize the period-
icity of the substrate. The squared relative amplitude

|n1(~G)/n̄1|
2 = S1(~G)/N1.

Figure 7(a,b) show S1(~q)/N1 for flat walls with high
and low density. Only positive qx and qy are shown since
the structure factor has the 4-fold symmetry of the wall.
The weak circular ridges at a wave vector |~qf | ≈ 2π/σ
reflect the intrinsic short range order within a fluid. They
are insensitive to wall density but decrease with system
size as 1/N1 since S1(~qf ) is constant. There are also sharp
peaks at the reciprocal lattice vectors characterizing the
periodicity of the substrate. These Bragg peaks represent
the response of the fluid to the surface corrugation and
are independent of system size [7, 22, 23].
Previous studies of flat surfaces found that β increased

with the in-layer response to the substrate potential at
reciprocal lattice vectors Ref. [7, 22, 23, 54, 55]. For
flat surfaces the largest response is at the shortest re-

ciprocal lattice vectors, ~G±1,0 and ~G0,±1. As noted
above, a denser surface tends to have a weaker corru-

gation and thus smaller values of S1(~G)/N1. In Figure
7(a,b) the peaks for a = 1.2σ are about 40 times larger
than those for a = 0.75σ. Larger systems had to be used
for a = 0.75σ to reduce the circular ridge from the diffuse
background below the Bragg peaks.
Figure 7(c,d) show S1(~q)/N1 for the same atomic spac-

ings but with curvature κσ = 0.26. Here the cylinder axis
is along the 110 direction and the curvature breaks the

FIG. 6. (Color online) Equipotential surfaces at Vwall = 1.1ǫ
for (a) planar wall and (b) cylindrical wall with positive cur-
vature and radius Rw = 3.84σ. (c) Potential contours over
the xz-plane at y = 0 for the same flat (thin blue) and
cylindrical (thick red) surfaces presented in (a) and (b). Dif-
ferent line patterns correspond to different energy contours:
Vwall = −0.4ǫ (solid), −0.3ǫ (dashed) and −0.1ǫ (dotted).
The black circles and asterisks mark atomic positions of the
flat and the cylindrical wall, respectively. The z coordinate is
shifted so the topmost atoms of cylindrical and flat surfaces
coincide. Here ǫwf = 0.1ǫ and a = 1.20σ.

symmetry between x and y directions. The peaks along
the axis of the cylinder change relatively little (∼ 10%)
from the values for flat surfaces, but the peaks along the
direction of curvature change dramatically. From our
previous arguments we expect the curvature to produce
a larger effective spacing and thus a larger Bragg peak.
This is consistent with the order of magnitude increase
in the peak height for the dense surface, a = 0.75σ. How-
ever the Bragg peak for the sparse surface, a = 1.2σ, is
smaller by about a factor of three. The reason is that the
relative spacing of fluid and wall spacings is also impor-
tant. The fluid can respond more to the potential when
the Bragg peak is close to the circular ridge. Curvature
moves the peak away from the ridge for a = 1.2σ and
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FIG. 7. (Color online) In-plane order as characterized by normalized structure factor S1(~q)/N1 for two lattice spacings,
a = 1.20σ (a,c,e) and 0.75σ (b,f,d), with ǫwf = 0.1ǫ. (a) and (b) show results for flat walls with x-axes along (110). (c) and (d)
show results for cylindrical walls with κσ = 0.26 and axes along (110) direction. (e) and (f) show results for cylindrical walls
with κσ = 0.24 and axes along the (100) direction.

towards the ridge for a = 0.75σ.

In the following we focus on the wall induced portion

of the Bragg peaks, S̃1(~G). We verified that increasing
the system size reduced the background from the circular

ridge and did not affect the value of S̃1(~G) obtained by
subtracting this background. The calculated values of

S̃1(~G)/N1 at smallest reciprocal lattice vectors are also
tabulated in the supplementary material for all the flow
geometries and surface properties included in this study
[53].

The variation of S̃1(~G1,0)/N1 with surface curvature κ
is manifested in Figure 8 for (110) flow at different surface
lattice spacings a. Note that the trends with curvature

in S̃1(~G1,0)/N1 are exactly opposite to the trends in Ls
shown in Figure 5(a). For dense surfaces the Bragg peak
rises by an order of magnitude as curvature increases and
the effective corrugation increases. For the sparse sur-
faces, the Bragg peak decreases monotonically because
the associated wave vector is moving away from the cir-
cular ridge associated with the intrinsic spacing between
fluid atoms. For the intermediate wall density the two
effects compete and the peak height has a maximum at
intermediate curvature.

The fundamental cause of these variations is the
change in the effective spacing aeff between potential
energy minima divided by the intrinsic spacing between

fluid atoms. The spacing between fluid atoms scales as

n̄
−1/2
1

where n̄1 changes by of order 10% with interaction
strength and other parameters. The effect of curvature
on aeff depends on oritentation. For the (110) orienta-
tion the axial spacing is not affected while the spacing
around the circumference scales as aeff = aRbc/Rw =
a(1 + κd1).

Figure 9(a) presents a clear picture of how the Bragg

peak height varies against aeff n̄
1/2
1

for the full range of
wall densities studied. Similar results are obtained for
other wall/fluid interaction strengths. The largest re-

sponse is obtained for aeff n̄
1/2
1

around 0.8 to 0.9, where
the Bragg peak is near the center of the circular ridge.
The peak height falls off as aeff increases or decreases
because the peak position moves away from the intrinsic
fluid spacing. The decrease in corrugation with decreas-
ing aeff produces a very asymmetric curve that drops
much more rapidly as aeff decreases. Note that curva-
ture does not change aeff along the cylindrical axis for
the 110 orientation and we observe little (< 10%) change

in S̃1(~G0,1)/N1 with κ. Figure 9(b) replots the data from
Figure 5(a) as a function of aeff . Note that the trends in

Ls are exactly opposite to those in S̃1(~G)/N1. Stronger
order induced by the solid leads to less slip.

The effect of curvature on S̃1(~G)/N1 is quite different
for the (100) orientation where flow is along the next-
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FIG. 8. (Color online) Variation of S̃1( ~G1,0)/N1 (open blue)

and S̃1( ~G0,1)/N1 (closed black) with surface curvature for the
same surfaces shown in Fig. 5(a), i.e., ǫwf = 0.1ǫ and lattice
spacing a = 1.2σ (triangles), 1.09σ (circles), 1.00σ (squares),
0.86σ (hexagons) and 0.75σ (pentagons). Dotted lines are
guides to the eye.

nearest neighbor direction. Curvature now rotates the
direction θ between the cylinder axis and the nearest po-
tential energy minima as well as changing the distance.
Accounting for the change in spacing around the circum-
ference we find:

aeff = a(1 + κd1 + κ2d21)
1/2 ∼ a(1 + κd1/2) (23)

tan(θ) = 1/(1 + κd1) ∼ 1− κd1 . (24)

Figure 7(e,f) show S1(~q)/N1 for the same curvature as
Figure 7(c,d) but with this new orientation. As expected,
the smaller change in aeff leads to smaller changes in
the Bragg peak heights. This is also consistent with the
smaller change in Ls with curvature for this wall orien-
tation. Note that the reciprocal lattice vectors rotate in
the opposite direction from the vector to adjacent poten-
tial energy minima and thus towards the cylinder axis.
As we now discuss, this change in direction explains why
curvature affects axial flow more strongly than rotational
flow for the (100) direction.

C. Relating Slip Length to Structure

In this section, we describe a microscopic theory that
provides a quantitative relationship between the slip
length, curvature and fluid structure, and thus gives a
deeper insight into the mechanism of the wall-fluid cou-
pling. By definition, the slip length Ls is the fluid vis-
cosity divided by the interfacial drag coefficient. We
have verified that for our simulations the viscosity can be
treated as a constant parameter. Thus, the slip length is
only a function of the strength of the viscous friction at
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FIG. 9. (Color online) (a) Variation of S̃( ~G)/N1 at ~G1,0 for

y-axis (110) orientation (open blue) and at the smallest ~G for
y-axis along (100) orientation (closed red) as a function of the

relative effective spacing aeff n̄
1/2
1

, i.e., the effective spacing
of minima in the wall potential energy aeff normalized by

the mean spacing of the first layer n̄
−1/2
1

. The symbols indi-
cate lattice spacing a = 1.2σ (triangles), 1.09σ (circles), 1.00σ
(squares), 0.86σ (hexagons) and 0.75σ (pentagons). (b). Vari-
ation of Ls as a function of effective spacing for cylindrical
Couette flow and for the same surfaces in (a). Dotted lines
are guides to the eye and ǫwf = 0.1ǫ.

the wall-fluid interface, i.e., Ls varies inversely propor-
tional to the drag coefficient β.

The force between the wall and the first fluid layer
dominates the drag force. It can be calculated us-
ing a model for the closely related problem of friction
between an adsorbed monolayer and a solid substrate
[22, 23, 54, 55]. While the fluid layer slides over the
substrate, the density modulation produced by the pe-
riodic substrate potential remains locked in phase with
the substrate. The relative motion of the wall-induced
modulation and the center of mass of the layer leads to
dissipation and thus a viscous drag. The rate of energy
dissipation is proportional to the energy stored in the
modulation and to the decay rate of energy into other
modes. Equating this dissipation to the power per unit
area dissipated by drag, β∆u2, gives an expression for β
and an associated time τslip = mn̄1/β.
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Smith et al [23] present expressions for β in the limit
of linear response where the modulation in areal num-
ber density at wave vector ~q and frequency ω, n(~q, ω), is
proportional to the substrate potential U(~q, ω):

n1(~q, ω) = −α(~q, ω)U(~q, ω) (25)

where α(~q, ω) represents a linear susceptibility to the sub-
strate potential. Their Eq. (10) gives

β =
∑

~G

|U(~G)|2|Ĝ ·∆û|2|~G|2
Im[α(~G, ~G ·∆~u)]

~G ·∆~u
, (26)

where ~G · ∆~u represents the oscillation frequency pro-
duced by relative motion at slip velocity ∆~u and the last
term on the right side becomes independent of ∆~u as ∆~u

goes to zero. Ĝ and ∆û are unit vectors along ~G and
∆~u, respectively. Note that β scales as the square of
the Fourier components of the substrate potential. Refs.
[22, 23] tested this scaling over 3 orders of magnitude
in β. One of the complexities associated with using Eq.
(26) is that the substrate potential depends upon height.
One can calculate the Fourier transform averaged over
the density profile in the first layer or one can use the
Bragg peaks in the structure factor to measure the effec-
tive potential. Using the general relation

S̃1(~G)

N1

=

∣

∣

∣

∣

∣

n1(~G, 0)

n̄1
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∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

α(~G, 0)

n̄1

∣

∣

∣

∣

∣

2

|U(~G)|2, (27)

one can rewrite the drag coefficient as

β = n̄1

∑

~G

|Ĝ ·∆û|
2 S̃1(~G)

N1

1

tph(~G)
, (28)

where

tph(~G) ≡ lim
ω→0

m

n̄1|~G|2
ω|α(~G, 0)|2

Im[α(~G, ω)]
, (29)

can be interpreted as the lifetime of acoustic phonons in
the fluid layer [23], and is inversely proportional to the
rate at which the energy stored in this induced modu-
lation is dissipated into other density waves. The first
factor in the sum of Eq. 28 reflects the fact that only
modulations with a component along the direction of flow
∆û are affected by the motion and contribute to dissipa-
tion.
Eq. (28) explains many of the trends found above,

including the inverse correlation between S1(~G) and Ls

seen in Figure 8 and in previous studies of flat surfaces
[7, 11, 12, 43, 47–49, 56]. In the case of flat surfaces the
predicted slip length is independent of direction by sym-
metry (Table S3). For example for flow along the (110)
orientation two of the four reciprocal lattice vectors are
along the flow and contribute to β while the others are
perpendicular. For the (100) orientation, all four con-
tribute to β but only half as much, since they are at 45

degrees to the flow. Curvature breaks this symmetry. For
the (110) orientation, curvature only affects the magni-

tude of ~G and S̃1(~G) along the rotation direction. This
explains why rotational slip lengths change but axial do

not. For the (100) orientation all four ~G change in mag-

nitude and all have the same S̃1(~G). Thus the axial and
rotational slip lengths change in the same direction. The

axial slip length is smaller because ~G rotates to be more
along the axial direction (Eq. 24).

In the cases considered in Refs. [22, 23], the phonon
lifetime was nearly constant and the slip length scaled
inversely with the sum over the smallest wave vectors of

S̃1(~Gmain)/N1. Figure 10(a) shows there is a strong in-

verse correlation between slip length and S̃1(~G)/N1 for all
curvatures and orientations considered. However there is
a significant spread that must reflect a variation in tph.

Figure 10(b) shows the value of the phonon lifetime cal-
culated from Eq. (28) as a function of the ratio between

minima spacing and fluid atom spacing, aeff n̄
1/2
1

. All
the data collapse onto a universal curve that represents
the intrinsic response of the fluid layer. This represents
a very compelling confirmation of Eq. (28).

We have attempted to calculate tph independently by
measuring the susceptiblity to a sinusoidal potential. As
discussed in the Appendix, the potential oscillated with
time but was constant for heights below the first min-
imum in the density shown in Fig. 3. For a = 1.0

(aeff n̄
1/2
1

= 0.82) we find tph/τ = 0.92, which is in excel-
lent agreement with the numerical results in Fig. 10(b).

However, for aeff n̄
1/2
1

= 0.6 and 1.0 the calculated val-
ues of tph are much larger than the numerical results,
tph/τ = 0.62 and 0.61, respectively. This deviation re-
flects the fact that Equations 25 to 28 assume that the
density modulations in the first layer are independent
of height. This assumption is reasonably accurate for
aeff = 1.0 but there are strong variations with height
for larger and smaller aeff .

Figure 11 shows the cosine Fourier transform n(~G) of
the local area density as a function of height for flat sur-
faces of different a. A negative value corresponds to den-
sity peaks out of phase with the solid substrate so that
fluid atoms lie in gaps between solid atoms. Positive val-
ues correspond to fluid atoms lying above solid atoms.

For a = 1.00σ the order is similar to that in an fcc
crystal with all atoms in the first fluid layer above gaps
in the solid. Atoms in the second layer lie above gaps in
the first layer and thus above solid atoms. For smaller
and larger a the oscillations in in-plane order do not cor-
respond with the peaks and troughs in the density vs.

height. The sign of n(~G) changes within the first layer-
ing peak in both cases. Indeed for a = 0.75σ the sign
change occurs near the density peak of the first layer.

The transition to n(~G) > 0 indicates that the atoms are
not responding to the direct interaction with the wall, but
instead to the density modulation in fluid atoms that lie

closer to the wall where n(~G) < 0. The lack of coher-
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FIG. 10. (a) Variation of slip length Ls as a function of

the first peak in the structure factor S̃1( ~Gmain)/N1 for cylin-
drical Couette flows along (110) (blue) and (100) (red) di-
rections, and axial cylindrical flows along (110) (black) and
(100) (green) directions. Results are shown for lattice spacing
a = 1.2σ (triangles), 1.09σ (circles), 1.00σ (squares), 0.86σ
(hexagons) and 0.75σ (pentagons) and different wall-fluid in-
teractions from Table I: A (open), B (closed), C (right-side
left triangle and pentagon) and D (diamond and right-side up
triangle). Dotted lines are guides to the eye. (b) Variation

of phonon lifetime tph from Eq. 28 with S̃1( ~G) integrated
over the entire first layer as a function of the relative effective

spacing aeff n̄
1/2
1

.

ence in the first density peak reduces the lifetime of the
associated mode and thus tph is smaller than in the two
dimensional approximation of Eq. 29.

It is possible to choose different definitions of the layer
width that improve the quantitative agreement with Eq.
(28). For example, choosing the top of the first layer to

coincide with the height where n(~G) first becomes posi-
tive, improves quantitative agreement in all cases. How-
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FIG. 11. (Color online) (a) Variation of cosine Fourier trans-

form n( ~G) of the local area density (averaged over a thin slice)
as a function of height for flat surfaces where ǫwf = 0.1ǫ and
a = 1.2σ (red), 1.00σ (green), and 0.75σ (blue). The dotted

line designates n( ~G) = 0. (b) Fluid density profiles for the
same surfaces.

ever, deviations for large aeff remain larger than the
statistical uncertainties.
In Refs. [19, 20], the drag coefficient β along the axial

direction was explored for carbon nanotubes. They used
a fluctuation dissipation argument that is closely related
to the above discussion in the linear response limit. They
find

β =
tF n̄1

kBT

∑

~G

S1,eq(~G)f2

1
(~G), (30)

where tF is the force decorrelation time at equilibrium

and f1(~G) is the Fourier component of the force field
along the flow direction. They did not specifically state
that the equilibrium structure factor rather than the in-
duced peak should be used in Eq. (30) but the density

modulations were too small to influence S1(~G) in their
system and this identification is consistent with their dis-
cussion.
Note that Eq. (30) has many similarities to Eq. (26).

Since f1(~G) = U(~G)(~G · ∆û), both expressions predict
quadratic scaling of beta with substrate potential. This
is the lowest order scaling allowed by symmetry and the
quadratic scaling was confirmed in Refs. [22, 23] over 3

orders of magnitude in β. As discussed above, S1,eq(~G)
is related to the response to the substrate potential.
In the Appendix we show that Eq. (30) is quantita-

tively consistent with both Ls and the theory of Smith
et al. (Eq. (28)) for a model potential that is uniform
throughout the first layer. However for the actual atom-
istic potential, Eq. (30) is less accurate because of the
variations in order shown in Fig. 11. Falk et al. [20]
note that the rapid decay of the potential corrugation
with height lead to a quantitative discrepancy from their
theory by a ”constant prefactor of 10 or less, depending
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on the liquid”. The Appendix shows that the prefac-
tor may depend on the solid as well as the liquid. We
also show that the initial fluctuation-dissipation argu-
ment that leads to Eq. (30) breaks down for atomistic
interactions.

IV. SUMMARY AND CONCLUSIONS

We have used molecular dynamics simulations of flows
in planar and cylindrical geometries to study the varia-
tion of the slip length with surface curvature for a range
of geometries and surface interactions. Curvature at
nanometer scales can increase or decrease Ls by an or-
der of magnitude, depending on the direction of flow and
surface geometry. The results explain why little change
in Ls was seen in one previous study [21] while another
found large changes [19, 20].
The slip length scales inversely with the viscous drag β

between the first fluid layer and the solid wall, Ls = µ/β.
As in previous studies of flat surfaces [7, 11, 12, 17, 19, 20,
43, 47–49], the drag is directly related to lateral density
modulations induced in the fluid by the wall potential.
The magnitude of this epitaxial order increases with the
strength of the corrugations in the wall potential and
also with the susceptibility of the fluid to respond to the
potential. This susceptibility is greatest when the sepa-
ration between minima in the potential is comparable to
the spacing between fluid atoms in the first layer.
Curvature changes the effective separation aeff be-

tween minima because the fluid atoms lie at a different
radius than the solid substrate. As shown in Fig. 6, pos-
itive curvature increases the spacing because fluid atoms
are at a larger radius, while negative curvature decreases
the spacing. The fractional change in the spacing be-
tween potential minima is ∼ κd1 where d1 is the height
of the first fluid layer above the solid.
A natural measure of the ratio between the spacing of

minima and the spacing between fluid atoms is aeffn
1/2
1

where n1 is the areal density of fluid atoms in the first
layer. Independent measures of the susceptibility (see
Appendix) show that the fluid is most able to lock into

the potential corrugation when aeffn
1/2
1

≈ 0.8 and drops
as aeff increases or decreases. Fig. 12 shows that the slip
length is smallest (β is largest) at slightly larger aeff and
changes much more rapidly with decreases in aeff than
increases in aeff . This asymmetry reflects changes in the
strength of the periodic corrugation from the substrate.
Increasing the spacing between solid atoms allows fluid
atoms to penetrate more deeply into the spaces between
them and greatly increases the lateral variation in poten-
tial energy. Decreasing the spacing betwen solid atoms

makes the potential more nearly constant. As aeffn
1/2
1

decreases below 0.8, the decrease in corrugation and sus-
ceptibility both reduce β leading to a rapid rise in Ls. As

aeffn
1/2
1

increases above 0.8, the increase in corrugation
partially offsets the drop in susceptibility and Ls rises

slowly.

Curvature does not affect the spacing along the cylin-
der axis. This explains why there is almost no change in
Ls for axial flow and large changes for radial flow when
the nearest-neighbor atoms of a square surface lattice are
aligned along the axis. However, when the next-nearest
neighbors are along the cylinder axis, Ls changes more
for axial flow than radial flow. This change in behav-
ior can be understood by considering how the density
modulations produced by the substrate are affected by
flow. The largest modulations are at the smallest recip-

rocal lattice vectors of the substrate ~G. Flow only affects

modulations with a component of ~G along the flow ve-
locity ~v. When the nearest-neighbor direction is along
the axis there is a reciprocal lattice vector along the axis
and another perpendicular. Curvature only affects the
perpendicular vector and thus does not affect axial flow.
When the next-nearest neighbor direction is along the
axis, the reciprocal lattice vectors have both axial and
radial components. Curvature rotates the reciprocal lat-
tice vectors towards the axial direction so that axial slip
lengths change most (Eq. (24)).

Falk et al. considered axial flow over nanotubes with
hexagonal symmetry. In this case the reciprocal lattice
vectors are not parallel to the nearest-neighbor spacing.
Thus they found large changes for axial flow when the
nearest-neighbor direction was along the axis. For this
lattice there should be almost no change in axial flow if
the nearest-neighbor direction is along the radial direc-
tion.

All the observed changes in slip length can be under-
stood in terms of a simple model for friction between
the first fluid layer and the substrate [22, 23]. In this

model the viscous drag is directly related to |Ĝ · v̂|2 times
the strength of the density modulations produced by the
substrate as measured by the in-layer structure factor

S(~G)/N1. The changes in structure factor are inverse to
the changes in Ls noted above (Fig. 9 and 10(a)). It

is largest when aeffn
1/2
1

is near 0.9 and drops off more
rapidly at small aeff because the corrugation becomes
weaker as the surface is more closely packed.

The only remaining factor in the theory is the inverse
phonon lifetime tph which describes the rate of energy dis-
sipation out of the density modulations. Numerical data
for all surface densities, orientations and interactions col-
lapse onto a universal curve when tph is plotted against

aeffn
1/2
1

(Fig. 10(b)). The phonon lifetime is largest for

aeffn
1/2
1

≈ 0.8 where the fluid can most easily lock into
epitaxy with the substrate. When the spacing between
fluid atoms is larger or smaller, this locking is difficult
and the lifteime decreases. The lifetime is futher sup-
pressed by the fact that the density modulations are not
uniform across the first layer when spacing between fluid
atoms deviates from aeff .

We compared our results to a model proposed by Falk
et al. that is also based on the friction between the sub-
strate and first fluid layer [19, 20]. The results are equiv-
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alent to the theory of Smith et al.[22, 23] when the poten-
tial producing the density modulations is uniform across
the two layers (Appendix). This quantitative agreement
breaks down for the more realistic potentials used in the
main text because the density modulations vary across
the first layer. As noted by Falk et al., the exponential
decrease in density modulation with height causes quan-
titative discrepancies between Ls and Eq. (30) by up to
an order of magnitude.
Although this study used simple models for both fluid

and solid surfaces, the observed trends with curvature
should be quite general and the theoretical approach
[22, 23] can be extended to more complex cases. Poten-
tially important applications are transport of fluids inside
and outside carbon nanotubes [19, 20, 57–61] and other
other nanotubes and nanowires. Moreover, many exper-
imental surfaces are rough down to nanometer scales. In
this case the effect of topography can not be determined
by applying a constant slip length along the surface.
There will be intrinsic variations in the local slip bound-
ary condition due to curvature. Including these may ex-
plain deviations between past simulations and continuum
theories that assume constant Ls [13, 14, 17, 62] and
allow construction of a more accurate mesoscopic flow
boundary condition.
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VI. APPENDIX

In this appendix we describe simulations that were
used to calculate Ls using the models in Refs. [19, 20,
22, 23]. These two dimensional models implicitly assume
that the periodic potential from the substrate and the re-
sponse of the fluid are independent of height within the
first layer. In the following we associate the first layer
with all atoms in the density peak nearest to the wall.
The end of the layer is taken to be the position of the
first minimum after the peak in plots like Fig. 3 or 11.
All atoms in the first layer feel the same lateral potential
from the wall.
The wall-fluid interaction along the z-direction is mod-

eled by a Lennard-Jones 9/3 potential:

V (z) = 4ǫwf

[

2

15

(σ

z

)9

−
(σ

z

)3
]

− Vc, for r < rc, (31)

where ǫwf = 0.1ǫ and the potential is zero for r > rc.
To model the lateral corrugation of the wall potential, a
lateral force was applied only to fluid atoms in the first
layer:

~F (x, y) = −∇V1(x, y) , (32)

V1(x, y) = 2U1[cos(Gx) sin(ωt) + cos(Gy)] , (33)

where G = 2π/a and the strength of the potential cor-
rugation U1 = 0.1ǫ. We compare to simulations with
flow along the x-direction and the corrugation along this
direction varies sinusoidally in time with frequency ω.
The slip length in Eq. (6) is Ls = µ/β. To determine

β from the theory of Smith et al. we need to calculate the
phonon lifetime from Eq. (29). In the limit of small ω,
the imaginary part of α(G,ω) is proportional to ω and the
magnitude becomes equal to the real part. In this limit
we can use Eq. (25) to write ω|α(G, 0)|/Im[α(G,ω)] =
ωRe[n1(G,ω)]/Im[n1(G,ω)], where n1(G,ω) is the areal
density modulation in the first layer due to the time de-
pendent corrugation in Eq. 33. We evaluated this ratio
for progressively lower frequencies to determine the limit-
ing value for each system. The ratio typically converged
for ωτ < 0.001. Then |α(G, 0)| was determined from the
ratio |n(G, 0)|/U1 evaluated in steady state (ω = 0) and
tph was calculated from Eq. (29).
For the ideal wall potential of Eq. (33), we can also

quantitatively compare Eq. (28) with the model pro-
posed by Falk et al. [19, 20]. The periodic force in Eq.

(30) is f1(~G) = (~G ·∆û)U(~G). Thus the only additional
quantity to be evaluated is the force decorrelation time

tF =

∫∞

0
dt < Fx(0)Fx(t) >

< Fx(0)Fx(0) >
, (34)

where Fx is the total force between the fluid and the sub-
strate along the x-axis. Note that equating the expres-
sions for β from the two theories gives a relation between
tF and tph:

tF
kT

|~G|2n̄2
1

|α(~G, 0)|2
S1,eq(~G) =

1

tph(~G, ~G ·∆~u)
. (35)

Falk et al. note that there is a long tail in the inte-
grand for the force decorrelation time due to hydrody-
namic effects. They argue this should not be included in
tF . Following their procedure, we evaluated tF by taking
the plateau value of the integral of Eq. (34). An alterna-
tive Green-Kubo relation that avoids long tails has been
developed by Huang and Szlufarska [63].
Calculated results for the slip length from both theories

are compared to values determined from flow simulations
in Fig. 12. All results are equivalent within the statistical
errors and show the trends with the ratio of wall atom
to fluid atom spacing, an̄

1/2
1

, that were identified in the
main text. The slip length is shortest when the wall
spacing and fluid spacing are similar so that the fluid
can more readily lock in phase with the substrate. The
slip length increases with the mismatch in lengths.
Fig. 12 shows that both two-dimensional theories for

Ls are accurate for all wall densities when the physical
system is effectively two-dimensional. However, as noted
in the main text, atomic surfaces produce a lateral corru-
gation in potential that can change substantially within
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the first layer. The theory of Smith et al. remains quan-
titatively accurate when the wall and fluid have simi-
lar spacings, but predicts too large a phonon lifetime for
larger and smaller a. One can view this as a reduction in
the lifetime of density modulations that are not coherent
across the layer.
We found significant quantitative differences between

Ls and the theory of Falk et al. for atomistic surfaces
with all spacings. When one evaluates f1 at the den-
sity peak, as they suggest, their model gives values of Ls

that are up to an order of magnitude too large. Given
the variation in modulation with height one may won-
der whether other definitions could improve the quan-
titative agreement, but we also found a breakdown in
the fluctuation-dissipation relation used to derive their
expressions. Their starting point is

βF =

∫ ∞

0

dt < Fx(0)Fx(t) > /AkBT (36)

where the left side represents the dissipation, the right
side is the fluctuation and the superscript F indicates
that this is the prediction of their model. Fig. 13
shows the ratio of βF to the directly measured value
of β = µ/Ls. The ratio decreases linearly with a and
Eq. (36) is wrong by up to a factor of 2. Of course this
does not represent a failure of the fluctuation-dissipation
approach, but rather an assumption about how the dissi-
pation is related to flow. Converting βF to a slip length
requires assuming that the first layer is moving coher-
ently and this approximation is invalid because of the
rapid change in corrugation potential with height.

a n̄
1/ 2
1
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FIG. 12. (Color online) The variation of slip length as a func-

tion of the relative wall spacing an̄
1/2
1

for the ideal wall po-
tential of Eq. (32). Asterisks show the slip length determined
directly from the Couette profile, diamonds are from the the-
ory of Smith et al. (Eq. (28)), and squares are from the
theory of Falk et al. (Eq. (30)). Symbol sizes are comparable
to statistical errorbars.
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FIG. 13. (Color online) Ratio of the drag predicted by Eq.
(36) to the measured drag β = µ/Ls as a function of the

relative wall spacing an̄
1/2
1

. Red crosses show results for the
ideal wall potential of Eq. (32). Blue symbols show results for
flow along the (110) direction of flat atomic walls with lattice
spacing a = 1.2σ (triangles), 1.09σ (circles), 1.00σ (squares),
0.86σ (hexagons) and 0.75σ (pentagons). The symbol type
indicates the wall-fluid interaction from Table I: A (open),
B (closed), C (right-side left triangle and pentagon) and D
(diamond and right-side up triangle).
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