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Using a probabilistic approximation of a mean field mechanistic model of sheared systems, we
analytically calculate the statistical properties of large failures under slow shear-loading. For general
shear F'(t), the distribution of waiting times between large system-spanning failures is a generalized
exponential distribution, pr(t) = A(F(t))P(F(t)) exp [— fot dr /\(F(T))P(F(T))], where A\(F(t)) is
the rate of small event occurrences at stress F'(¢), and P(F(t)) is the probability that a small
event triggers a large failure. We study the behavior of this distribution as a function of fault
properties, such as heterogeneity or shear rate. Because the probabilistic model accommodates any
stress loading F'(¢), it is particularly useful for modeling experiments designed to understand how
different forms of shear loading or stress perturbations impact the waiting-time statistics of large
failures. As examples, we study how periodic perturbations or fluctuations on top of a linear shear
stress increase impact the waiting time distribution.

PACS numbers: 46.50.+a,05.40.-a,62.20.M-,81.40.Np

I. INTRODUCTION

Earthquake faults and other sheared media exhibit
large, sudden failures when placed under excessive stress
[IH7]. Due to the destructive nature of these large fail-
ures, understanding the statistical properties of their be-
havior — such as the distribution of waiting times be-
tween events — is a subject of intense study. Here we
calculate the distribution of waiting times between large
earthquakes for various loading conditions, using a prob-
abilistic approximation of a successful mechanistic mean
field model of earthquake and plastic deformation statis-
tics [3HB) [BHIO].

The mechanistic model is a mean field model of earth-
quake dynamics, described in detail in Refs. [3H5], BHIO].
This model has been shown to reproduce the scaling be-
havior of magnitude distributions of earthquakes [I] and
of sudden slips in slowly deformed crystalline and amor-
phous pillars [I1] 12]. We translate the physical assump-
tions of the mechanistic model into a probabilistic de-
scription that allows for analytic derivations and simula-
tions that are difficult or impossible in the mechanistic
model.

We discuss the physical assumptions of the mech-
anistic model and our probabilistic reformulation in
Sec. M In Sec. I, we present the distribution
of waiting times between large failures, which we
find to be a generalized exponential distribution,
pr(t) = A(F(®)P(F(®)exp [~ Jy dr AF(r)P(F(7))],
where A(F(t)) is the instantaneous rate of small earth-
quake occurrences at stress F'(t), and P(F(t)) is the prob-
ability that a small event triggers a large failure, calcu-
lated from the mechanistic earthquake model. We study
how the distribution changes with fault properties, fo-
cusing in particular on the effect of weak versus strong
heterogeneity on the fault. In the simple case of a slow

linear shear rate, F'(t) = f + Tt, where f is the baseline
arrest stress of the fault and T is the shear rate, we study
the shape of the distribution as a function of f and Y.
For linear shear, we compare our waiting time distribu-
tion to three other waiting time distributions commonly
used to fit earthquake waiting time distributions: the
Weibull distribution, the Gamma distribution, and the
Brownian passage-time distribution.

While we consider linear shear loading for the first
part of this work, one of the advantages of our proba-
bilistic model is the ease of treating arbitrary kinds of
stress loads on the fault. This feature is particularly use-
ful for modeling experiments designed to test the effects
of different kinds of shear. The Weibull, Gamma, and
Brownian Passage time distributions do not generalize
easily to arbitrary stress loading. As specific examples of
different shear loads, in Sec. [[V] we study how the wait-
ing time distribution changes in response to periodic or
stress-fluctuation perturbations to linear shear loading.

Finally, we note that although in this article we primar-
ily phrase our discussion in terms of earthquake faults,
the basic physics of slip events occurs in many systems,
including sheared granular matter and rock-interfaces [3-
5, BHI0]. Our analysis does not take into account af-
tershocks, so the results are relevant for the statistics of
mainshocks and laboratory experiments that typically do
not have aftershocks. Our results can be tested in exper-
iments on driven systems with stick-slip responses, like
slowly sheared granular materials [2, [, [13], crystalline
nano-pillars [I1], plastic deformation [I4], [I5] and even
bulk metallic glasses [12].



II. PHYSICAL ASSUMPTIONS OF
EARTHQUAKE-LIKE SLIP MODELS

The statistical behavior of slips in slowly sheared me-
dia, including earthquake faults, has been previously de-
scribed using a simple mechanistic model [3H5, BHIO).
The primary assumption of the mechanistic model is that
weak patches along the fault fail when the shear stress
on a patch exceeds a given failure threshold. Elastic cou-
plings to other weak patches may trigger those patches
to slip as well, resulting in slip-avalanches (i.e., earth-
quakes). Most earthquakes are small compared to the
fault size; the distribution of their sizes follows the well-
known Gutenberg-Richter power-law. However, if the
failure thresholds of slipping weak spots are dynamically
reduced for the duration of the earthquake, the earth-
quake may run away to become a “characteristically large
earthquake” that spans the entire fault [T} 8] 5], BHI0].

In the mechanistic model, small earthquakes are trig-
gered deterministically as the system is slowly sheared.
Randomness in the slip-timings arises due only to an in-
homogeneous distribution of strength and stress along
the fault. The distribution of waiting times between the
characteristic earthquakes in simulations of the mecha-
nistic model is approximately Gaussian, but deriving the
form of the distribution analytically is difficult, and does
not generalize easily to different stress loadings. Simulat-
ing the slip dynamics is also computationally expensive
for large systems. Since we are primarily interested in
the statistics of quantities that do not depend on de-
tailed mechanistic dynamics, we develop a probabilistic
model based on the physical assumptions of the mech-
anistic model that matches the rate of large failures as
predicted by the mechanistic model. The resulting prob-
abilistic model has the advantage of being much easier
to study analytically and simulate than the mechanistic
model, yet retains the relevant coarse grained informa-
tion.

The results of the mechanistic model can be rephrased
as the following assumptions of the probabilistic descrip-
tion [16]:

1. Small earthquakes occur randomly in time with
a stress-dependent rate A(F'), where F = F(t) is
the total (average) stress across the fault at time ¢
since the last characteristically large earthquake.
The small earthquakes are produced by a non-
homogeneous Poisson process. The rate A\(F') can-
not be calculated analytically from the mechanistic
model, so for the cases of present interest we ap-
proximate it as a constant, A(F) = Ag. This will
not qualitatively affect the distribution of waiting
times between characteristically large earthquakes,
as explained below.

2. A small earthquake triggers a large earthquake with
stress-dependent probability P(F'). This probabil-
ity is near zero for small stresses, but rapidly in-
creases towards 1 near a critical stress value, F.

We calculate the probability P(F') from the mech-
anistic earthquake model (see Sec. [ITI).

3. After a large earthquake occurs, the stress re-
laxes to a baseline stress level f. We assume the
timescale on which this relaxation occurs is much
faster than any other relevant timescale; i.e., the
relaxation is approximately instantaneous. The
stress released by this process is, on average, F,.— f.

Because F(t) is taken to be the average stress over
the fault, we are ignoring spatial variation in the stress,
as in the mean field mechanistic earthquake model. We
also assume stress drops due to small earthquakes, or a
rapid succession of small earthquakes, may be neglected,
as they represent local spatial fluctuations of the fault
stress, which do not contribute significantly to the total
average stress F'(t) to zeroth order. However, we consider
the effect of weak temporal stress fluctuations in Sec. [[V]

In the mechanistic model, the driving stress F'(¢) is typ-
ically assumed to be adiabatically increasing: % — 0.
This ensures that each earthquake originates from a sin-
gle nucleation site. With our probabilistic formulation,
we can relax the adiabatic assumption and consider more
forms of general stress loading F(t).

III. LARGE EARTHQUAKE WAITING TIME
DISTRIBUTION

From the probabilistic interpretation of our physical
assumptions, we derive the cumulative distribution func-
tion for the waiting times ¢ > 0 of the large events:

® (t{F(1)}) = Prob(0 <7< 1)
= 1— e Jodr AMF(), (1)

where A(F (7)) = AMF(7))P(F(1)); i.e., the large earth-
quake rate is a modulated version of the small earthquake
rate. This result follows from the fact that the triggering
of large earthquakes in the probabilistic model is a thin-
ning of the small earthquake inhomogeneous Poisson pro-
cess. Here, we have used the notation {F(t)} to denote
explicitly that the probability ® (¢|{F(¢)}) is conditional
on parameters in the total fault stress; in the following
we will suppress this notation for brevity, except where
necessary.

The corresponding probability density of waiting times
is

pr(t) = AEW) e [~ [ar aE@)]. @

Eq. holds for any functions A\(F') and P(F') that cap-
ture the phenomenology of stick-slip failure dynamics.
For example, \(F') and P(F') could be computed or simu-
lated in detailed models of specific earthquake faults and
used in Eq. to efficiently simulate earthquake time



series on that particular fault. Here we choose the func-
tional forms of the small earthquake rate A(F') and the
large earthquake probability P(F), calculated using the
mechanistic model of earthquake statistics of Refs. [2--
oL, [8HI0].

We calculate the large earthquake triggering probabil-
ity P(F) as follows. On faults which do not exhibit char-
acteristic earthquakes, the mechanistic model predicts
that the distribution of small earthquake moment-sizes,
S, follows a stress-dependent probability density D(S, F')
[2, 5], which scales asymptotically as a power-law with a
stress-dependent cutoff:

D(S,F) ~ S™%? exp (—5/Smax) - (3)

The units of S are dimensionless; the sizes can be thought
of as the earthquake moment relative to some minimum
measurable moment, Sy. The distribution is exponen-
tially suppressed for earthquakes larger than a cutoff size
Smax. The size of the cutoff depends on both stress and
the amount of heterogeneity in the local failure stresses
of weak patches on the fault. Near the critical stress,
Smax o (1 — F/F.)~2. The proportionality factor de-
pends on the distribution of the local failure stresses. The
greater the degree of heterogeneity (hereafter, disorder),
the larger the cutoff, as it is less likely that the weak
patches will all fail at once, allowing for a larger range
of smaller-sized earthquakes. The exact dependence of
Smax on disorder is complicated in general, so we phe-
nomenologically capture this effect by defining the dis-
order parameter b? as the coefficient of proportionality:
Smax = b*(1 — F/F.)~2. This choice of disorder depen-
dence matches the disorder dependence of the cutoff as
seen in related mean-field models of domain wall depin-
ning [I7, [I8]. At the critical point of an infinite system,
F = F,, Smax = o0, and D(S, F..) has pure power-law
tails.

If the failure thresholds of the weak spots are dy-
namically weakened during an earthquake, the mechanis-
tic model produces characteristically large earthquakes.
On such a fault, small earthquakes approximately fol-
low D(S,F) up to a critical size S.. If an earthquake
exceeds S., it grows into a large characteristic earth-
quake. The probability P(F) that a characteristically
large earthquake occurs is equivalent to the probability
that a small earthquake drawn from D(S, F') would have
size greater than S., and hence will run away to become
a large earthquake [5]. Then,

1 g(\/s*clbe/Fc)
Vg o O

P(F) = /:O dS D(S, F) =

where
g(x) = exp(—2?) — V/mx erfe(x). (5)

Here, erfc(x) is the complementary error function
erfe(z) = (2/y/x) [ dt exp(—t*). The factor of g(-)

in the denominator of Eq. comes from normalizing
D(S, F) given in Eq. . We plot P(F) for high and low
disorder in Fig. [1]
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FIG. 1: Plot of the probability P(F') that a small earthquake
triggers a large system-spanning earthquake (Eq. ), for low
and high disorder b = 0.1, 1.0, respectively. The (dimension-
less) critical small earthquake size necessary for triggering a
large earthquake is S. = 100. The stress axis is in units of
Fe, the mean field value of the critical stress, for which the
earthquake occurs at a well-defined stress. In our finite-fault
approximation, the actual values of stress at which the fault
fails tend to be slightly larger than the mean field value F..

Technically, the mean field mechanistic model de-
scribes an infinitely large fault, for which there is a def-
inite value of F,. at which the characteristic earthquake
occurs for faults without weakening. P(F') should thus
be equal to 1 for F' > F.. However, in simulations, real
faults, and experiments, for which the systems are fi-
nite in size, there is actually a distribution of stresses at
which the system fails, and the probability P(F') should
approach 1 smoothly. Eq. captures this behavior as F'
exceeds F, so we use it to describe the triggering proba-
bility of characteristically large earthquakes at all stresses
F(t). However, note that the value of F,. that we use as
our stress scale in our plots is the mean-field value in the
absence of weakening; as seen in Fig. [I] the probability
that a large event will occur can be less than 1 for stresses
exceeding the mean field value F, and hence the effective
value of the critical stress is larger than the reference F,
we use in this study.

The small earthquake rate A(F(t)) is not simple to
calculate from the mechanistic model. The details of the
small earthquake rate in simulations of the mechanistic
model can vary depending on model parameters, such as
the distribution of heterogeneity on the fault, the amount
of slip-weakening, or the size of the fault. Moreover, the
implementation of stress loading can lead to a wide vari-
ety of different behaviors in the mechanistic model. Our



probabilistic formalism mimics an implementation of the
mechanistic model in which the fault is slowly driven with
“spring-like” boundary conditions that relax the stress,
preventing a continuous flow of the material. The slip-
weakening enables the stress relaxation to concentrate
into a single large event — i.e., the large earthquake. The
spring-like boundary condition is natural for an earth-
quake fault, which we assume to be elastically coupled to
the bulk material (the crust). For certain other bound-
ary conditions or rheology leading to distributed defor-
mation, the mechanistic model will not have large stress
relaxation events [4I]. Our probabilistic model is not in-
tended to capture the statistics of these cases without
sudden large events.

Immediately following the large event in the mecha-
nistic model, there are few, if any, small earthquakes.
The small earthquakes begin to occur at larger stresses.
Rather than model the activation of small earthquakes
for our probabilistic formalism, we approximate the small
earthquake rate as a constant, A(F') = Ao, for the results
presented in this work. Although not strictly correct,
this will not have significant qualitative effects on the
statistics of large earthquakes. This is because the small
earthquake rate only affects the large earthquake rate
through the product A(F)P(F'). When the stress is much
less than the critical stress, P(F') ~ 0, and hence even if
A(F) = Ao is non-zero at these stresses, the probability
of nucleating a large event is negligible. Furthermore, if
the small event rate does not increase drastically over the
range of stresses over which P(F) increases from 0 to 1,
we can approximate A(F) as constant over that range,
taking Ao to be the average rate over the stress range
over which P(F') becomes significantly larger than zero
preceding the occurrence of the large earthquake. We
thus expect our A(F) = A\g approximation will not have
significant qualitative effects on the waiting time statis-
tics of large earthquakes that are within the scope of this
work. Time-varying small event rates can, however, have
important consequences in many real systems. For exam-
ple, time-dependent small event rates may be necessary
to trigger aftershocks, which are important for a full un-
derstanding of earthquake faults and some granular sys-
tems. We do not consider the possibility of aftershocks
in this work. Our results are thus most directly applica-
ble to slips in granular materials without aftershocks or
earthquakes faults with limited aftershock activity. Fi-
nally, the statistics of small events may yield important
information in their own right, which we again do not
consider in this work. A separate study on using statis-
tics of the small events as potential predictive signals for
large events is the focus of Ref. [16].

Having specified A(F) and P(F), we can now com-
pute the waiting time distribution for any given F'(¢). In
many experiments, the shear stresses on the fault are due
mainly to applied shear stresses that increase linearly in
time: F'(t) = f + Yt. Here, f is the stress that the fault
relaxes to after each large earthquake, T is the slow shear
rate in an experiment or earthquake fault. The time since

the last characteristically large earthquake is t. For this
form of stress loading, plots of the waiting time probabil-
ity density pr(t) at low and high disorder b are shown in
Fig. |2l using Eq. for P(F'). These plots are exemplars
of the qualitative shape of the waiting time distribution
for any arrest stress f/F. 2 0.5 and slow shear loading
T. Changing these parameters within reasonable ranges
does not drastically affect the qualitative behavior of the
distribution, as reflected in the mean, standard devia-
tion, and skew of the waiting times as a function of these
parameters, shown in the next section, Sec. [ITA]
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FIG. 2: (Color online) Plot of the distribution of waiting times
between large system-spanning earthquakes, pr(t), for an ex-
ternal stress F'(t) = f+7Tt, for low disorder (b = 0.1) and high
disorder (b = 1.0). We set f/F. =0.73 and Y/F. = 0.015\0,
and the critical small earthquake size is S. = 100. We mea-
sure time in units of the inverse small earthquake rate A;"
(effectively, Ao = 1). The density drops off quickly for large
waiting times ¢, and is similarly small for very short waiting
times. Though the mean waiting times are similar for the two
disorders shown, the variances are quite different.

A. Moments of the waiting time distribution

We would like to understand how fault properties such
as heterogeneity (disorder b), baseline stress level f, or
shear stress YT affect the statistics of the waiting times
between large earthquakes. To this end, we study the
moments of the waiting time distribution. The moments
cannot be evaluated in closed form, but can be computed
easily by numerically evaluating the integrals

<tn> _ n/o dt tn71€7 fot drA(F (7)) (6)

for the n'" moment. This particular form of the inte-
gral is more convenient for numerical evaluation than



directly integrating t" against the probability density
pr(t). From these moments we calculate the mean, vari-
ance, and skewness of the distribution, respectively:

> t
<t> — /(; dt e Jo dTA(F(T))’ (7)

o? var[t] = (%) — (t)?
e~ fot drA(F (1)) _ 2
2 /O dt t (t) (8)

and

() = 3(t)0 — (1]
o3
3 fdt e o dTA(Z(T)) — 3t = (07 )

g

skew[t] = v =

These are plotted as functions of f and 1/7 in Fig. We
restrict the parameter ranges to small values of T (rel-
ative to the reference shear rate 1/A\gF.), corresponding
to slow shear, and f/F. 2 0.5, as we do not expect the

fault to release most of its total stress when it fails.

A large earthquake typically occurs when the stress
is close to F.; i.e., when f 4+ Ttqpjwe =~ Fe, giving
teaiture =~ (Fe. — f)/Y. Accordingly, we expect the mean
waiting time to decrease approximately linearly with f
and increase with 1/Y. This scaling will hold even at
high disorder, when failure typically occurs at stresses
larger than the mean field reference scale F,.. We see in
Fig. [3] that this is indeed the case.

The variance of failure times depends on the disorder,
or heterogeneity, of the fault, characterized by the param-
eter b in the probabilistic model. When b is small, P(F')
increases to 1 sharply near the mean-field critical stress
F,, and hence the variance of failure times is small. As b
increases, P(F') becomes less steep, and P(F') approaches
1 for stress greater than the mean field critical stress. Ac-
cordingly, the variance of waiting times between failures
also increases. At low disorder, the variance is insensitive
to f, but decreases for f/F, near 1 at high disorder.

Finally, at low disorder the skewness is insensitive to
the arrest stress, but depends strongly on the shear rate
T. As 1/T decreases, the skewness of the waiting time
distribution shifts from being negative (the distribution
skews left) at very small shear rates to being positive
(the distribution skews right) at moderately larger shear
rates. At higher disorders, the behavior of the skewness
changes qualitatively. At high shear rates the distribu-
tion is relatively unskewed, while at small shear rates and
low arrest stresses the skew is negative. As the arrest
stress increases, the distribution begins to skew right.
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FIG. 3: (Color online) Mean, variance, and skewness

(Egs. (7)-(9)) of the large quake waiting time distribution as
functions of the arrest stress f and inverse shear rate 1/7,
for low disorder (b = 0.1; left column) and high disorder
(b = 1.0; right column). The arrest stress was swept over
a range f/F. = 0.5 to 0.95, and the slow shear rate was
swept over a range T/AoFe = 0.001 to 0.03. Time is again
measured in units of A;'. The mean scales roughly as —f/T
and is weakly dependent on disorder. The variance is rel-
atively insensitive to the arrest stress at low disorder, but
increases with decreasing shear rate and increasing disorder.
At high disorder, the arrest stress decreases the variance for
f/Fe close to 1. At low disorder, the skewness is insensitive to
arrest stress, but changes sign as the shear rate varies. High
disorder increases the range of skewness, becoming more pos-
itively skewed for f/F. < 1, and is relatively unskewed for
large shear rates.

B. Comparison to other models of earthquake
waiting time distributions

The shape of our waiting-time distribution for a lin-
ear stress increase F'(t) = f + Tt agrees qualitatively
with the distribution observed in some recent granular
matter experiments in which large stick-slip events oc-
cur [6]. Unfortunately, there is presently not much de-
tailed published data on the waiting time distributions in
granular matter or friction experiments. Many systems
yield periodically recurring large slips with little vari-
ance in timing. Similarly, comparing our distribution to
observed waiting-times between characteristically large
earthquakes is made difficult by the fact that there is lit-
tle data available for characteristic events [19]. Future
laboratory experiments with sufficient aperiodicity be-
tween stick-slip events will provide opportunities to test
predictions of our distribution against real data in mate-
rials. For now, we compare our waiting-time distribution
to three other models of earthquake waiting times: the
Gamma, distribution, the Weibull distribution, and the



Brownian passage-time distribution. The properties of
these distributions are summarized in Table [l

We make this comparison for two reasons. First, to
demonstrate that the qualitative behavior of the proba-
bilistic model is consistent with the behavior of models
currently used in the literature to fit earthquake or slip-
failure data. Second, our model has more parameters
than the probability distributions we compare to. Our
model would thus require more data than these models
to constrain the parameter values in fitting. The quali-
tative comparisons between our model and the Weibull,
Gamma, and BPT models will be useful for providing
a sense of how the fitted parameters of these models
are influenced by our model parameters, though a thor-
ough quantitative comparison of the models is outside
the scope of this work. Qualitatively, we find that the
individual parameters of the Gamma, Weibull, and BPT
distributions are not necessarily well-constrained; only
the parameter combinations specifying moments (mean,
variance, skew, etc.) of the data are well constrained. It
is therefore through these moments that the parameters
of our probabilistic model influence these fits.

We make no claim as to whether any of the discussed
distributions is best suited to fit earthquake data. How-
ever, in addition to requiring model results to fit data, our
probabilistic model has an advantage over the Weibull,
Gamma, or BPT models: because our probabilistic
model can accommodate different kinds of stresses, ex-
perimentalists can probe the qualitative behavior of the
waiting time distribution by using different stresses F'(t),
and thereby compare qualitative features of the measured
waiting time distribution to the qualitative predictions
of the probabilistic model, under a variety of conditions
such as low or high disorder.

1. The Gamma, Weibull, and Brownian passage time
distributions

We provide a brief overview of the phenomenological
origins of the three distributions we compare to our prob-
abilistic model: the Weibull distribution, the Gamma dis-
tribution, and the Brownian passage-time (BPT) distri-
bution. Note that these distributions (and any waiting
time distribution) can formally be written in the form
of Egs. (1)) or by defining an effective large failure
rate A(t) = —®.(t)/®.(t), where B, (t) = 1 — B(t) is
the complementary cumulative distribution function of
the waiting time distribution. Thus, differences between
the probabilistic model and other models are due to the
particular assumptions about the large earthquake rate,
rather than the exponential form of Egs. and . It
is of note, however, that we expect the rate to depend
implicitly on time through the stress on the fault; if the
stress does not vary linearly in time, it may not be pos-
sible to map the effective rates A(t) from the Weibull,
Gamma, or BPT distributions onto rates A(F(t)) that
depend only on fault stress.

The probability density functions and cumulative dis-
tribution functions of the Weibull, Gamma, and BPT
distributions are given in Table [l The Weibull distri-
bution is a common phenomenological fit to earthquake
waiting-time data [2IH23]. It arises in some models of
brittle materials [23, 24], often as a limiting distribu-
tion of an extreme value statistic [22H24]. Often, the
Weibull distribution is used to fit the waiting times be-
tween earthquakes of all sizes greater than some cutoff
magnitude. These waiting times may be very close to
zero, as smaller earthquakes may occur soon after each
other. However, we focus only on waiting times between
characteristically large earthquakes, for which we expect
there to be a minimum waiting time to. We add this shift
to the Weibull distribution when fitting it to simulation
data produced by the probabilistic model.

The Gamma distribution combines a power law be-
havior at small times compatible with the Omori-Utsu
aftershock decay law and a Poissonian behavior at large
times [I]. Various forms of the Gamma distribution have
been used to fit earthquake waiting times in different re-
gions [21] 25], as well as to collapse observed data by
rescaling the waiting times using the rate of seismicity
in the region [26] 27]. The Gamma distribution has also
been used to fit recurrence time distributions in simu-
lated earthquake catalogues generated by the same mech-
anistic model for earthquake dynamics assumed in this
work [28, 29]. Like the standard Weibull distribution,
the standard Gamma distribution allows for arbitrarily
small waiting times, so we add a minimum waiting time
to when fitting the Gamma distribution to our simulation
data.

The BPT model describes the distribution of waiting
periods between characteristically large ruptures on a
fault. The BPT model assumes a linear accumulation
of stress on a fault, which results in a rupture when
the stress reaches a critical value. These physical as-
sumptions are similar to the physical assumptions in the
mechanistic model on which our probabilistic model is
based; however, the derivation of the BPT distribution
is different from the derivation of our distribution. It
is derived from a stochastic process called the Brownian
relaxation oscillator process [20]. The Brownian passage-
time distribution is characterized by two parameters: p,
the mean waiting time, and «, the “aperiodicity”, which
characterizes the spread of the waiting time distribution.

2. Fitting distributions to simulated data generated from
our probabilistic model

To compare these distributions to our own, we sim-
ulate a series of 5000 waiting times from our distribu-
tion, at both low and high disorders, which we then fit
with the Gamma, Weibull, and BPT distributions. The
logic of this comparison is to simply perform a check that
our model produces waiting time distributions that could
reasonably be fit by models that have been used to fit ex-



Distribution ‘

Probability density function

‘Cumulative distribution function‘

Our distribution

AF(®) exp (= Jy dr A(F()))

1 — exp (— I dTA(F(T)))

Weibull distribution
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Gamma distribution
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Brownian passage time distribution

(/2708 7 exp(— (¢ — 1%/ (2u0?D))

See Ref. [20].

TABLE I: Comparison of the different waiting time distribution density functions:
A(F()P(F(t)), the Weibull distribution, the Gamma distribution, and the Brownian passage time distribution.

our distribution with A(F(t)) =
In this

article, we set the small earthquake rate to be A(F) = Ao, and the triggering probability P(F) is given by Eq. (). In the
Weibull and Gamma distributions, to is the minimum waiting time before a large event occurs, k is a positive real number,
Aw and A, are the characteristic failure rates, and I'(k,z) = [ dy y* =1 exp(—y) is the lower incomplete Gamma, function and
I'(k) = T'(k,0) is the Gamma function. In the Brownian passage time distribution, « is the “aperiodicity” and p is the mean
waiting time. The cumulative distribution function of the Brownian passage time distribution is long, so we do not include it

in our table; interested readers should consult Ref. [20].

perimental or observed waiting time data.

The low disorder fits, with residuals, are shown in
Fig. [ and the high disorder fits are shown in Fig.
In all cases, the distributions fit our simulated data qual-
itatively well, though the BPT distribution appears to
have slightly more trouble fitting the tails than the other
two distributions. It is worth noting that the Weibull
and Gamma distributions only provide good fits when
we include the minimum waiting time ¢y as a parameter
in the fit. Without this shift, the distributions provide
poor fits (not shown) to our simulated data, as they re-
quire large values of the shape parameters k£ in order to
shift the peak of the distributions out to waiting times
much larger than 0.

It is the qualitative character of the fits, and their abil-
ity to capture the various moments, rather than the ac-
tual values of the fit parameters that is of importance
here. The exact parameter values of the fits are not well
constrained in some cases — for example, at high disorder,
the Gamma distribution fit yields very large confidence
intervals for the fit parameters. This is not a cause of
concern, as the wide variability simply suggests that the
individual model parameters are sloppy; it is only pa-
rameters such as the mean that are stiff and need to be
captured accurately [30]. For completeness, the values of
the parameters corresponding to the fits in Figs. |4 and
are given in Table [[l in Appendix [A]

It is worth noting that the number of waiting times
sampled from our distribution is much larger than the
amount of data typically available for fitting the wait-
ing time distributions of large earthquakes on real faults,
owing to the fact that large earthquakes are rare. Dis-
tinguishing between the distributions at a statistically
significant level is difficult as a result. Laboratory exper-
iments that mimic the behavior of earthquake faults and
may be able to record sufficient numbers of large failures
to make statistically significant comparisons between dif-
ferent waiting time distributions. However, another pos-
sible experimental paradigm that does not need as much
data would be to vary the kinds of loading stresses F'(t)
in experiments and observe the qualitative changes in the

waiting time distributions. As the loading stress F(t) is
an arbitrary input to our probabilistic model, the model
can be used to make predictions for how the waiting time
distributions will change in such experiments.

IV. LOADING STRESS PERTURBATIONS

To demonstrate the flexibility of the probabilistic
model with respect to different forms of the loading stress
F(t), we now consider two relevant kinds of perturbations
to the linear shear stress increase F'(t) = f+ Yt: periodic
perturbations and stress fluctuations. Again, we do not
need to re-derive the waiting-time distribution for these
cases — the stress as a whole is simply an input to the
distribution.

Recent experiments [14] [T5] 31 B2] have investigated
the distribution of waiting-times between large slips in
faults with an additional oscillating stress component,
such as F(t) = f + Tt + Fo(sin(wt + ¢) — sin @), where
Fy, w, and ¢ are the amplitude, angular frequency, and
phase of the periodic component added to the linearly
increasing stress. There may also be implications for im-
proving hazard assessment by comparing failure times to
the phases of these periodic stress components [16] [33-
35]. Similarly, real faults experience fluctuations in stress
that may advance or delay failures. Below, we briefly
study the effects of each of these perturbations on our
waiting time distribution.

A. Periodically-stressed faults

Faults may be subject to many kinds of periodic
changes in stress load across numerous timescales.
Prominent examples include fast oscillations due to daily
tides, and much slower oscillations on the order of a year
due to seasonal temperature or rainfall/ice-load varia-
tions. Understanding how these perturbative periodic
changes in stress affect the waiting times of large earth-
quakes is of considerable interest, and could even be
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FIG. 4: (Color online) Low disorder fits: Fitting Gamma, Weibull, and Brownian passage-time (BPT) distributions to a
histogram generated by our distribution, Eq. , for a low disorder condition of b = 0.1. Other parameters for the probabilistic

model were f/F. = 0.73, T/XoF. = 0.015 and S. = 100. All distributions capture the qualitative trends well.
was performed with MATLAB’s curve-fitting toolbox, which performed non-linear regression on the simulation data.
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parameters for these examples are given in Table[[]] Top row: data points represent observation frequencies of binned waiting
times simulated from our probabilistic model, solid curves represent fits of the Gamma (left), Weibull (middle), or BPT (right)
distributions to the simulated data. Bottom row: data points represent residual difference between simulation data and fits in

the top row, solid lines represent the line of zero residuals.
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FIG. 5: (Color online) High disorder fits: Same as Fig. [4] but for a high disorder condition of b = 1.0.

useful for developing predictive measures of impending
earthquake likelihoods [I6] B3H35]. We thus consider an
external stress with a periodic component:

F(t) = f+ Yt + Fo(sin(wt + ¢) — sin ¢). (10)
As before, F'(0) = f is the baseline stress level the fault
relaxes to after a large earthquake, Y is the slow tectonic
shear stress, and ¢ is the time since the last large earth-
quake. The perturbative periodic stress component has
amplitude Fy, frequency w, and phase ¢. The effective
phase will change after every large earthquake; we discuss
some consequences of this effect below.

As mentioned above, we do not need to re-derive the

waiting-time distribution for this periodic stress; we may
simply plug Eq. into Egs. (1) or (2)) to obtain the cu-
mulative distribution or probability density, respectively,
or into Eq. @ to compute the moments. For low and
high disorder, we plot the mean, variance, and skew-
ness of the waiting times in Fig. [f] as a function of the
frequency w and small amplitudes Fj of the perturba-
tive periodic stress component, relative to their values —
70, 04, and 7o — in the absence of periodic perturbations.
The moments are perturbed by small amounts when the
frequency is near a small integer multiple of the “nat-
ural” failure frequency 27/79. Between these frequen-
cies, the oscillations increase or decrease the mean wait-
ing times, variance, and skewness. As frequency grows,



the oscillatory component of the perturbation approxi-
mately averages out, leaving only the D.C. component
—Fysin¢. This contributes an effective decrease to the
arrest stress, such that the moments continue to change
as Fy increases, even at high frequencies. At low disor-
ders, the enhancement or suppression of the moments is
strong. At larger disorders, the effect of oscillations is
dampened for all moments, being prominent only for fre-
quencies around 27 /7. However, the range of skewness
relative to the unperturbed skewness vy is much larger
at high disorders. The range of variance relative to un-
perturbed variance o3 is less than the range of relative
variance at low disorder. However, this is due to the fact
that the unperturbed variance at high disorder is much
larger than the unperturbed variance at low disorder, re-
sulting in the smaller relative range observed in Fig. [6]

It is important to point out that the plots of the mo-
ments shown in Fig. |§| are for fized phase, ¢ = w/4. As
remarked earlier, the phase of the periodic stress changes
after every large earthquake (due to the fact we track
only time between earthquakes rather than total time
elapsed since the first earthquake). Accordingly, to prop-
erly account for the fact that there is actually a distri-
bution of phases at which the large earthquakes occur,
we should derive this phase distribution and average out
the phases from the waiting time distribution. However,
the frequency- and amplitude-dependence of the phase
distribution is complicated and requires a more involved
study that is beyond our focus here. Nonetheless, we
show some initial results in Appendix[B] where we derive
an integral equation for the steady-state phase distribu-
tion from our waiting time distribution conditioned on a
specific phase. As shown in the Appendix, we find that
for low frequencies, the most likely phase at which large
failures occur is ¢ = 0, while at high frequencies the
most likely phase is ¢ = 7/2. For the purposes of the
results shown in Fig. [f] we thus selected an intermediate
phase, ¢ = m/4. These results agree qualitatively with
the timing of stick-slip events observed in slowly sheared
rock-friction [14, [I5] and granular [31 [32] experiments
subject to perturbative periodic stressing: at driving fre-
quencies much smaller than the typical “failure rate” at
which characteristic-sized slips occur, most slips occur at
the maximum stress rate. However, at driving frequen-
cies larger than the typical failure rate, most slips occur
at the maximum stress.

The effects of perturbative stress oscillations on the
waiting time distributions warrant a more detailed study,
which we leave for future work. A study looking at cor-
relations between the timings of small earthquakes (i.e.,
A(F(t)) # const.) and phases was reported in Ref. [16].

B. Effect of stress fluctuations

We have thus far only considered deterministically
evolving loads on the earthquake fault — all variability in
the timing of large earthquakes has been assumed to arise
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FIG. 6: (Color online) Mean, variance, and skewness of the
large quake waiting time distribution in the presence of peri-
odic perturbations to linear shear, normalized by their respec-
tive values in the absence of periodic perturbations (denoted
by a subscript 0). We plot these quantities as functions of an-
gular frequency w and amplitude Fp, at low disorder (b = 0.1;
left column), and high disorder (b = 1.0; right column). The
frequencies were swept over a range w7o/2m = 0.001 to 10,
where 79 is the mean waiting time in the absence of peri-
odic perturbations. We focus on small amplitudes Fy/F. = 0
to 0.05. We fixed the phase of the stress at ¢ = /4 (see
comment in text). The arrest stress was set to f/F. = 0.73
and the slow shear rate was set to T/AoF. = 0.015. At
low disorder, the mean waiting time, variance, and skewness
are approximately equal to their unperturbed values (7o, od,
and 7o) near small integer multiples of the “natural” failure
frequency 27 /70, but vary significantly at intermediate fre-
quencies. The effect diminishes as frequency increases. At
high disorders, similar effects are observed, but they dimin-
ish much more rapidly as frequency increases. Note that the
unperturbed values 1o, o3, and o are disorder-dependent (as
shown in Fig. . White contours or bands represent regions
where mean/7y & 1, variance/ 02 ~ 1, and black contours or
bands represent regions where skewness/vo =~ 0.

from heterogeneity in the local failure stresses across the
fault. However, real faults are subject to a wide variety of
uncontrolled — and hence random-looking — stress varia-
tions, such as seismic waves from other nearby faults. Ac-
cordingly, we would like to understand the effects of these
stress fluctuations on the timing of large earthquakes.

We can incorporate stress fluctuations into the proba-
bilistic model by including a stochastic component in the
load stress F'(¢):

F(t) = F(t) +£(¢).

Here, we assume that varied sources of external stress
inputs combine to give effectively random stress fluctu-
ations £(¢), which have zero mean and correlation time



07, which is much smaller than the typical small earth-
quake rate; i.e., A\g07 < 1. For such short temporal cor-
relations, we may treat the stress fluctuations as Gaus-
sian white noise with correlation function (£(¢)&(t')) =
K%M\ 10(t —t'). The factor of 1/, which we have been
using as our reference time scale in this work, is present
so that k, and hence £(¢), has units of stress.

The standard deviation k sets the scale of the stress
fluctuations, and can be used as an expansion parameter
to perform averages in the small noise limit, as we will
show shortly. At the level of our probabilistic formula-
tion of the problem, this is a phenomenological addition
to the stress. To achieve a similar effect in the full mech-
anistic model, we could couple the mechanistic model to
a large bath of, for example, harmonic oscillators at some
temperature T. Integrating out the harmonic oscillators
would yield an effective noise contribution to the model.
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The probability of a large earthquake occurring within
a time 7 < t, as given by Eq. (1)) with F(¢) — F(t)+£(¢),
is conditional on a given instantiation of the stress fluc-
tuations £(t). To calculate the effective distribution of
waiting times, we must average the cumulative distribu-
tion function over all possible stress fluctuations:

(1) = (2(t¢(t))) (11)

- <exp {— /0 L A(F(r) + 5(7))} > ,

where the averages (...) are over all possible stress fluc-
tuation paths £(¢). The expectation over fluctuations can
be written using a path integral formalism for the white
noise process [36]:

F(r)+&(r) +€(r) }]

(o] [ aeace

Because the noise appears inside A(F + ), which is
a nonlinear function, performing the path integral in
Eq. is intractable. However, in the small noise limit,
k — 0, the path integral is dominated by fluctuations
&(7) for which the “action”

sigj= [ ar [i’f}A(F(r) LE(r) +€2()

is stationary (i.e., 65 = 0). In this case we may approx-
imate the integral by a saddle point expansion around
this “mean field” path, £*, given by solving the transcen-
dental equation

€= - NEE) ), (13)
0

Because time only appears in this equation through the
deterministic stress F'(7), the mean field path £* is an im-
plicit function of time through the stress: £ = £*(F(7)).
This equation must be solved numerically; however, some
caution is in order. The equation displays a cusp bifur-
cation as a function of x and F": for small enough values

J

K2

At (F) 20

cg]) - 2 fyar {3

:A(F+§*(F))+—(A’(F+§( ))) +—1n 1+

I DE exp [ [y dr 25e2(r)]

of k there is a single solution at all F'. However, for
large enough k, there is a range of stresses F' for which
Eq. yields multiple solutions for £*. There is no way
to join the solutions to construct a single continuous so-
lution £*(F'). Here, we restrict our calculation to cases
for which there is a single solution, which is the case
when 1+ % A”( ) does not change sign as a function of
F'. This condltlon is violated when the slope of the large
earthquake rate A(F) is large, as is the case for faults
with small disorder b.

Expanding the action to second order around &* yields
a Gaussian path integral for deviations of the stress fluc-
tuations from the mean field path £*, which contributes
a logarithmic correction to the large earthquake rate (see
Appendix , yielding the cumulative distribution func-
tion of the waiting times,

B(t) ~ 1 — exp {_ /0 “ar Aeff(F(T))} L e

where

1 N () (15)



is the effective large earthquake rate. Note the explicit
appearance of the correlation time §7. The logarithmic
term is an asymptotic correction that is valid only when
the preceding terms are much larger than it, which is the
case when (A’)2/A” > 1/67. The logarithmic correction
is necessary to capture changes in the distribution for
some parameter regimes (for example, the b = 1.0, k =
0.025 case shown in Fig. [7).

For very small noise, k/F. < 1, * = —i—zA’(F) and
to lowest order

1%2

Ao (F(1) ~ A(F(7)) = 5=

(N (F(1)))*.

i.e., the effective rate is reduced, which in turn implies an
increase in the mean waiting time. However, the increase
will only be of order x%/\g, and an impractically large
number of events would need to be recorded in order
to distinguish the shift from the standard error in the
sample mean.

To study the effect of stress fluctuations of larger stan-
dard deviation k, we simulate the probabilistic model
with white noise stress fluctuations (see Appendix |C| for
details). The results for several values of k are shown in
Fig. We see that, contrary to the case of very small
K, the stress fluctuations cause the distribution of wait-
ing times to shift towards smaller times. However, for
high disorder and intermediate values of x, the shape of
the distribution is correctly captured by the derivative of
Eq. 7 obtained by numerically solving Eq. and
using it to estimate the effective rate, Eq. (15). For val-
ues of k/F, on the order of 0.01, the logarithmic correc-
tion to the saddle point approximation is necessary to
capture the shift in the distribution. We do not plot the
predicted curves for low disorders, as the high slope of the
rate A(F) invalidates the saddle point approximation in
this regime.

As k increases further, the stress fluctuations begin to
swamp out the actual loading stress F'(7). In this regime,
triggering of the fault occurs primarily due to random
fluctuations. If the arrest stress of the fault is close to
the typical failure stress 2 F., it is very likely that large
fluctuations will frequently push the stress over thresh-
old, making large events much more frequent. As a result,
we expect the waiting time distribution to look more and
more exponential as x grows. This is indeed what hap-
pens, as seen in the simulation results for x/F. = 0.1,
shown in Fig. [/l The saddle point approximation is not
valid for such larger values of k. While we do not ex-
pect earthquake faults to experience stress fluctuations
of the magnitude necessary to result in an exponential
distribution of waiting times between large earthquakes,
such regimes can be explored in laboratory experiments
on sheared frictional media, which would allow for tests
of the probabilistic model in extreme stress fluctuation
regimes.
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V. SUMMARY OF RESULTS

For the reader’s convenience, we summarize our main
results here.

1. We introduced a probabilistic reformulation of a
mechanistic model of earthquake dynamics. This
probabilistic reformulation enables studies of the
statistics of waiting times between large earth-
quakes that are intractable using the full mecha-
nistic model.

2. To understand how fault properties affect the wait-
ing time statistics, we studied how the distribu-
tion depends on several fault properties, including
heterogeneity (disorder), baseline stress level, and
shear rate.

3. In particular, for linear shear loading, F(t) = f +
Tt, we studied how the mean, variance, and skew-
ness of the distribution change as functions of the
arrest stress f and shear rate Y. We also showed
that the qualitative shape of the distribution can be
fit well by Weibull, Gamma, and Brownian Passage
time distributions, distributions commonly used to
fit earthquake waiting time data.

4. To demonstrate the ability of the probabilistic
model to incorporate arbitrary shear loads F'(t), we
studied how the waiting time distribution changed
in response to two kinds of non-trivial perturba-
tions to linear shear loading: periodic perturba-
tions and stress fluctuations.

e For periodic perturbations, we showed that
the mean waiting time may be increased or
decreased depending on how large the angu-
lar frequency of oscillations is compared to the
mean failure rate in the absence of perturba-
tions.

e For stress fluctuation perturbations, we cal-
culated how the distribution of waiting times
shifts for moderate-sized fluctuations; for fluc-
tuations of general strength we reported the
results of simulations of the probabilistic
model.

VI. CONCLUSIONS

We have introduced a probabilistic formulation of a
mechanistic earthquake model to study the statistics of
characteristic stick-slip failure events in slowly sheared
solids, jammed granular materials, and earthquake faults.
Within this probabilistic approximation, we have com-
puted the distribution of waiting times between large
earthquakes. The mechanistic model has correctly pre-
dicted [T, BHE, BHIO] many properties of earthquake
statistics, with very few assumptions, so that there is
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FIG. 7: (Color online) Normalized histograms of waiting times between large earthquakes generated by simulations of the
probabilistic model subject to white noise stress fluctuations. Histograms have all been normalized so that the total area is
1, giving probability density functions for the waiting times (i.e., y-axes are normalized counts). The standard deviation of
the fluctuations is k, given in units of F. = 1. At high disorder, the theoretical prediction is shown, along with the x = 0
prediction to emphasize the shift in the distribution caused by the stress fluctuations. For values of x smaller than 0.01 the
difference between the k # 0 and k = 0 curves are very small, so we omit these results. At low disorder, the high slope of
the large earthquake rate invalidates Eq. 7 so a theoretical curve is shown only for the no noise case (k = 0, top row). We
use a linear stress increase F(¢) = f + Tt with parameter values f/F. = 0.73, T/AoF. = 0.015, S. = 100, and AodT = 0.1.
Low disorder corresponds to a value of b = 0.1 and high disorder corresponds to b = 1.0. In plots where only simulation data
is shown, the value of x is given in the legend. In plots with theoretical curves, the value of k used for the simulation and
theoretical prediction corresponds to legend value for the solid blue curve if shown, or k = 0 otherwise.

good reason to believe that the derived distribution also
applies to experiments and earthquake observations, at
least at a qualitative level. The probabilistic approxi-
mation of the mechanistic model that we present in this
work enables faster simulations of the large earthquake
statistics, and allows us to investigate perturbations to
the slow linear shear-loading that are difficult to study
with the mechanistic model and other models of waiting
time statistics.

The study of large failures in earthquake faults and
materials is limited by the amount of data available for
fitting models. The lack of statistical power often pre-
cludes ruling out different models. However, because the
probabilistic model we present in this work can accom-
modate general fault-loading conditions, we can study
the qualitative effects of different loading conditions on
the waiting time distribution. In this way we can further
our understanding of material properties in cases where
statistical power is limited. Experimentalists can probe
the qualitative behavior of the waiting time distribution
for large slips by using different loading stresses F(t),

and comparing qualitative features of the measured wait-
ing time distribution to the qualitative predictions of the
probabilistic model, under a variety of conditions such
as low or high disorder. We have shown two examples
of stress perturbations relevant to real earthquake faults
and laboratory materials: periodic stress loads and stress
fluctuations. Extensions of these results — such as con-
sidering periodic perturbations with multiple frequencies,
stress fluctuations with longer correlation times, non-
constant small event rates, and aftershocks — can be im-
plemented and pursued with this probabilistic model.

This framework enables a wide variety of studies — an-
alytical and numerical — on the behavior of brittle ma-
terials under different loading conditions, and for differ-
ent degrees of disorder (or heterogeneity) on the fault.
Our calculations of the waiting time distribution (and
phase distribution briefly discussed in the appendices)
agree qualitatively with experimental observations, such
as in Refs. [6] and [31][32]. Future theoretical and exper-
imental studies — particularly those with broad distribu-
tions of waiting times between characteristic large events



— will allow for quantitative evaluation of the probabilis-
tic model predictions.

Finally, while we framed our study in terms of earth-
quake faults, the basic physical principles that give rise
to stick-slip behavior occur in a wide variety of sheared
systems. Our results are thus expected to be applicable
to sheared granular matter, plasticity, and rock interfaces
that exhibit clear, large slips. For experimental set-ups
in media which produce stick-slip behavior that is not
strongly-periodic, and lack aftershocks, we expect phe-
nomenological models based on that presented here will
be useful descriptions of the statistics of waiting-times
between stick-slip avalanches.
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Appendix A: Fitting other distributions to
simulated data from the probabilistic model

We provide some details on the simulations of the prob-
abilistic model, to which we fit the Weibull, Gamma, and
Brownian passage time distributions. The large failures
are generated by a filtering of small failures, which oc-
cur following a Poisson process with constant rate Ag.
The times between small events are thus exponentially
distributed with mean A L. To generate large failures,
we draw waiting times from this exponential distribu-
tion, and after each draw, we draw a uniformly dis-
tributed random number on (0,1) and compare it to
P(F(t)), the large failure triggering probability, at the
stress F'(t) = f 4+ Tt, where t is the total time since the
last large failure. If P(F(t)) is larger than the uniform
random number, a large earthquake occurs and we reset
the process.

For the comparison in Sec. [[ITB] we drew 5000 waiting
times, using a parameter set f/F. = 0.73, T/AF, =
0.015, and S, = 100. We may set F, = 1 and A\g = 1,
as these just set the units of f and Y. We performed
simulations for low and high disorder, b = 0.1 and b =
1.0, respectively.

Fits of the Weibull, Gamma, and Brownian passage-
time (BPT) distributions were performed using MAT-
LAB’s curve fitting tool, which performed nonlinear re-
gression. To get the fits to converge, it was necessary to
restrict the ranges of the fit parameters. In particular, all
parameters are positive, and for the Weibull and Gamma
distributions we restricted the range of waiting times tq
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to be between 0 and a value little bit less than the peak
of the distribution. The shape parameters k also had to
be initialized to be more than 1, and the initial guesses
for the rates were also near 1. For the BPT distribution,
we initialized the mean to be close to the sample mean
of the distribution.

A rough exploration of different initial guesses did not
yield very quantitatively different results for the fit pa-
rameters. However, different samples of the waiting time
distributions (not shown) can yield different parameter
estimates in some cases, but this is a reflection of the
sloppiness of the fit [30]. For example, the mean of the
Gamma distribution is to + k/\,, the variance is k/)\g,
and the skewness is 2/ Vk; when the skewness is small,
as it is for the high disorder case, the shape parameter
is not well constrained, and the parameters tg, k and A,
can be played against each other with a wide degree of
variability that holds the mean and variance relatively
close to the sample mean and variance.

The fit parameters for the simulations shown in Figs. [4]
and [p] are given in Table[]

Appendix B: Derivation of probability distributions
of phases for periodic stressed faults

Here, we derive the form of the probability density for
the phase of the next earthquake given the phase of the
previous earthquake, as well as the integral equation for
the steady-state phase distribution.

The following derivations are valid for any A(F) =
A(F)P(F). For simplicity, we assume a constant small
earthquake attempt rate in the simulations shown in this
appendix.

The probability density for the large earthquake wait-
ing times for constant small event rate is just

pr(t6) = O(1) M P(F (1)) exp (—Ao / ar P<F<r>>) ,

(B1)
where the external stress F'(¢) has a periodic component
of phase ¢. We explicitly include a step function O(t) to
enforce the condition that ¢ > 0; this will make the fol-
lowing derivations slightly easier. We explicitly denote
that the density function is conditional on the phase.
This is important, as the effective phase changes every
time a large earthquake occurs, due to the fact that we
are only measuring time differences between earthquakes.
The update rule is ¢r+1 = wtx4+1 + Pk, where w is the
angular frequency of the periodic stress component, t51
is the waiting time between the (k 4+ 1)'" and £*" events,
and ¢ and ¢y are the phases of the stress following
the k and (k + 1)'" events, respectively. Note that the
probability of the (k + 1) waiting time ¢, is condi-
tional on the set of all previous waiting times. However,
the distribution is conditional on only the most recent
phase, which makes calculations of the phase distribu-
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Distribution Parameter|Low disorder fit with 95% C.I.‘High disorder fit with 95% C.I“
Weibull distribution Aw 0.367 (0.3528,0.3811) 0.06391 (0.05548,0.07234)
Weibull distribution k 2.003 (1.888,2.119) 3.538 (3.02,4.055)
Weibull distribution to 17.5 (17.4,17.59) 6.606 (4.484,8.729)
Gamma distribution Ay 1.483 (1.342,1.625) 0.9642 (0.4674,1.461)
Gamma distribution k 4.178 (3.568,4.789) 20.48 (0.3794,40.59)
Gamma distribution to 17.19 (17.01,17.37) 0.0001579 (—10.23,10.23)
Brownian passage time distribution « 0.06303 (0.05914, 0.06692) 0.2226 (0.2113,0.2338)
Brownian passage time distribution 1 19.72 (19.63,19.82) 21.53 (21.23,21.83)

TABLE II: Parameters obtained for Weibull, Gamma, and Brownian passage time distribution fits to a series of earthquake
waiting times simulated from the probabilistic model, Eq. (I). We set A(F) = XAoP(F) and F/F. = f/F.+ Tt/F. = 0.73 +
0.015X0t. We provide fits to a low and high disorder case, b = 0.1 and b = 1.0, respectively. We set Ao = 1 in our simulation,
50 {Xw, Ay} and {to, u} are in units of Ao and Ay, respectively. Fits were done using nonlinear regression in MATLAB’s curve

fitting tool. C.I. = confidence interval.

tions much nicer to work with.
The exact form of the stress we choose to use is given

by Eq. .

1. Conditional phase distribution

First, we derive the distribution of the next phase
that a large earthquake will occur at, denoted ¢ be-
low, given the phase of the previous large earthquake,
denoted ¢. This conditional phase distribution will be
denoted pg(p|¢). We begin by changing variables from ¢
to ¢, and then taking care to reduce the domain of ¢ to
[0, 27).

From the normalization condition, we can write

1 :/_ dt pr(t|e) = w_l/_ dy pr (SD;(b | ¢> )

where we make the change of variables ¢ = wt 4+ ¢. The
negative waiting times do not actually contribute to the
integral due to the step function O(t) in Eq. , but
explicitly working with the infinite limits will make the
following calculation easier. We want ¢ to take on values
in [0, 27), so we split the integral up into infinitely many
regions of width 2w. We then change variables to reduce
the range of the integrals to [0, 27):

o ram(kt1) _
Y [ e (22010)

= — ¢+ 27k
= dgprZPT(W|¢)-

Because we require 1 = fozw do ps(p|d), we identify

oo

il = Y pr (EEOEIE ).
k=—o0

It is easy to show this is 27-periodic: shifting ¢ — ¢ +
27, the extra 2w can be eliminated by a redefinition of
the dummy index k. The negative k terms are mostly
zero due to the step function in ppr. The step function
O(t) — O(p — ¢ + 2wk) will eliminate all k terms less
than (¢ — ¢)/27. Given the ranges of the phases, this
means the sum starts at either £ = 0 or 1, depending on
the values of ¢ and ¢.

2. Steady-state phase distribution

Given the conditional phase distributions pg(@|@), we
can derive an integral equation for the steady-state distri-
bution of phases after a large number of earthquakes have

occurred. Let QEI:LH)@“H |¢o) be the probability density
of the (n+1)* phase of the system, given a starting phase
of ¢g. This is distinct from pg(Pnt1|dn), which carries
only information about the most recent phase. The den-
sity Qgpn+1)(¢n+1 |¢0) can be calculated, in principle, from

the multiple integral



2m

Q<(1>n+1) (an-‘rl |¢0) =
0

We can rewrite this as

2
0§ (Gnsald0) = / dbn po(dn+1]90)05” ($nldo).

(B3)
The importance of the fact that the conditional phase dis-
tributions pe(¢x|dr—1) depend only on the most recent
phase now comes into play. This fact is equivalent to say-
ing the sequence of phases at which the large earthquakes
occur is described by a Markov process. A well-known
result of Markov chain theory is that such a process has a
well-defined limiting distribution [37, [38]. Furthermore,
this limiting distribution will be independent of the ini-
tial phase, ¢g. If we take the limit n — oo, g;n+1)(<p|¢o)
will approach this limiting distribution, denoted g} ().
The limiting distribution can thus be obtained by solving
the integral equation

27
do(p) = / 06 pa(0l6) 0} (d): (B4)

This is a homogeneous type 2 Fredholm equation [39]
with a kernel pg(p|@). Unfortunately, solving this inte-
gral equation analytically is quite difficult, if not impos-
sible. However, the equation is relatively easy to solve
numerically. We can approximate the integral as an N-
term sum:

27 N
/0 dopa (21603 (8) = > wipa(ploy)oh(;), (BS)

=0

where w; is a quadrature weight evaluated at the dis-
crete points ¢;. If we define o; = 0}(¢:), and K;; =
w;pa(¢i|¢;), then the numerical problem is reduced to
solving the matrix equation

> Kijoj = o (B6)
j

This is just an eigenvalue problem: we need only find
the eigenvalues and eigenvectors of K;;, and choose the
eigenvector corresponding to the eigenvalue of 1 [42]. Af-
ter we solve for this eigenvector, we can write down an
interpolating formula for o*:
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d¢nd¢n—1 ce d¢1 p<1>(¢n+1|¢n)p¢>(¢n‘¢n—1) ce p@(¢1|¢0) (BQ)

05(9) =>_w;pa(eld;)d, (B7)

Jj=0

where g; denotes the eigenvector of K;; corresponding to
an eigenvalue of 1. Note that the kernel, ps(¢|¢;) can be
used with any phase ¢; only the conditional phases must
be the discretization points ¢;.

The distribution can be calculated quite accurately nu-
merically, as seen in Fig. We show two cases, low
perturbation frequencies w < T /Fy and high frequencies
w > T/Fy. We compare w to Y/Fy rather than Y/F,
because the shape of the distributions are determined by
a competition between slow shear and the perturbative

dngt) ~7T + LL}F().

oscillations, i.e., the first two terms of

Though we can accurately predict the phase distribu-
tions, there are a number of pitfalls with the numerical
solution. In particular, the discretized kernel K;; is quite
sparse when Y /(wFp) > 1. As aresult, a large number of
discretization points is needed for the discretized matrix
to have an eigenvalue very close to 1. Another problem
that arises is that if we wish to change the frequency or
amplitude, it is necessary to re-generate the numerical
kernel and re-solve the eigensystem, which can become
rather time-consuming, even if an efficient eigensolver is
used. Due to the computational complexity of solving for
the steady state phase distribution, combined with com-
putational expense of computing the moments in Fig. [6]
we have not pursued a proper marginalization of the wait-
ing time distribution over the steady state phase distri-
bution.

As mentioned in the main text, our results agree qual-
itatively with the timing of stick-slip events observed in
slowly sheared rock-friction [I4} [I5] and granular [31] [32]
experiments subject to perturbative periodic stressing:
at driving frequencies much smaller than the typical “fail-
ure rate” at which characteristic-sized slips occur, most
slips occur at the maximum stress rate. However, at driv-
ing frequencies larger than the typical failure rate, most
slips occur at the maximum stress. Experiments that
measure larger numbers of events, combined with precise
estimates of experimental parameters used in the proba-
bilistic model may allow for quantitative comparisons in
the future.
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Appendix C: Evaluation of path integrals over stress
fluctuations

We compute Eq. by a steepest-descents approach
in which we first find the path £* that extremizes the

Jydr [€(r) + ZEAF +¢(7))] . We then
expand the action around the “mean field” (saddle point)
path £*, to second order, giving

action S[¢] =

* 1 i 52 * *
S~ ST+ [ ar (14 5oA ) ) - €
0 0
We thus need to evaluate the path integral

/D§ o3 Jidr (14BN (P46 ) (6=¢7)°

This is most easily done by discretizing the time interval
[0,t] into N bins of size 67 and evaluating the resulting
N-dimensional Gaussian integral:

/00 d€e” 2
- —1/2
oS H<1+ A”F+€)) )

where F; = F(jér) and §F = £*(F(jd7)). The constant
proportionality factors are canceled out by the denomi-
nator in Eq. (12]). To pass back to a continuum time, we

Noter (1B A (R +E) ) (6-6))?

first write this as an exponential,

T (v o)

[ N1 2 ~1/2
= exp |In <1 + )\_OAH(Fj + {;))
L J=0
[ 1 K2
= exp |—= In (1 + —A"(F(j67) + §;)>
2 = Ao

We approximate the sum as an integral over continuous
time 7, yielding

1+ i—zA”(F(T) + 5*&)))] :

The factor of 1/d7 outside the integral results from the
change of variables from j to 7 = j07. Thus, while we
can safely take the d7 — 0 limit when computing the
dominant contribution to the waiting time distribution,
the logarithmic correction from the Gaussian fluctuations
of the noise process £(7) about £*(7) depends explicitly
on this small time scale, and must be included if we are
to study the effect of noise beyond the steepest descent
result.

The explicit appearance of the small “white noise” cor-
relation time is, in part, a consequence of the fact that
functions of white noise processes are not well defined.
One way to improve upon this result is to model the stress
fluctuations as a stochastic process with finite correlation
time, such as an Ornstein-Uhlenbeck process, which is an
exponentially filtered white noise [36]. Functions of such
stochastic processes are well-defined. However, they are



more complicated to study, as the mean field path that
dominates the path integral will be the solution of a non-
linear differential equation.

To simulate the model with white noise, we modify
the algorithm described in Appendix [A] by adding an
amount & = (k/v/AgdT) X w to the stress each time a
small earthquake occurs, where w is a standard normal
random variable. The fact that & ~ w/+/d7 follows from
the proper treatment of white noise in stochastic calcu-

17

lus [36]. If the time since the last small earthquake is
less than 07, w should in principle be correlated with
the previous value. However, as the probability of more
than 1 small earthquake occurring within a time 7 is
O((Ao67)?), we expect this to have a negligible effect,
and hence approximate every white noise sample as un-
correlated. The agreement between simulations and the
theoretical calculation supports the validity of this ap-
proximation.
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