
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Head-on collisions of dense granular jets
Jake Ellowitz

Phys. Rev. E 93, 012907 — Published 25 January 2016
DOI: 10.1103/PhysRevE.93.012907

http://dx.doi.org/10.1103/PhysRevE.93.012907


Head-on collisions of dense granular jets
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We study head-on impacts of equal-speed but unequal-width incompressible jets in two dimensions
with a focus on dense granular jets. We use discrete particle simulations to show that head-on impact
of granular jets produces a quasi-steady-state where a fraction of the excess incident momentum
from the larger jet is captured by an impact center that drifts steadily over time. By varying
the dissipation in our discrete particle simulations and through additional analogous continuum
jet impacts of different rheologies, we show that this central drift speed is remarkably dependent
primarily on the total dissipation rate to the power 1.5, and largely independent of the dissipation
mechanism. We finish by presenting a simple control volume analysis that qualitatively captures
the emergence of the drift speed but not the scaling.

I. INTRODUCTION

If we collide two ideal fluid streams head-on in two di-
mensions, one larger than the other but both the same
speed, we would observe a steady state with two equally
sized and inclined streams leaving the impact region.
This is because the larger jet has more incident mo-
mentum than the smaller, and these ejecta are how the
system accommodates for the momentum excess. This
steady-state is achieved because ideal fluids are time-
reversible and is thus the reverse of two equal-width jets
incident at an angle. Due to symmetry, this reversed
case is in turn equivalent to a jet impinging onto an infi-
nite wall, a situation that surely reaches a steady-state.
Hence, head-on collisions of ideal-fluids reach a steady-
state where the ejecta compensate for the nonzero inci-
dent momentum.

Since this stationary steady-state impact owes its exis-
tence to the fact that the flow field is entirely reversible,
breaking reversibility by including dissipation, no matter
how small, should destroy the stationary solution. Intu-
ition would then suggest that the head-on impact of dis-
sipative jets should thus produce collective motion in the
central impact region. Numerical simulations presented
in the current study verify this expectation by demon-
strating that a wide variety of dissipational jet impacts
produce quasi-steady-state flows whose entire flow field
and free surface translate at a constant drift speed.

Our findings are at the intersection of two previously
studied but disparate jet impact systems: that of directly
incident turbulent Newtonian streams and that of jet im-
pact against fixed targets. In the case of the impact
of turbulent jets, previous experiments identified that in
fixed-length cavities, the impact stagnation point shifts
toward the nozzle with lower incident momentum flux,
whose offset depends on the incident momentum fluxes
and nozzle separation [1–4]. These studies were focused
on the stagnation point shifts, and reach steady state
flows in the lab frame due to the fixed nozzle separa-
tion. Our study is different because we investigate the
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offset mechanism and transient directly and are able to
completely remove the nozzle effects.

Regarding impacts against fixed targets, previous
workers showed granular and high speed liquid jets as-
toundingly both produce quite similar coherent ejecta
sheets [5–7]. Because the flow from a high speed liquid
impinging a fixed target is similar to a perfect fluid, this
led to a discussion of whether or not a granular jet im-
pact against a target behaves like a perfect fluid [7–10].
Despite the similar ejecta from the target impacts, it was
later shown that granular jet impact against a target pro-
duces a large, stagnant dead-zone, and that furthermore
inserting large dead-zone-like structures into perfect flu-
ids barely affected the ejecta [12]. This dead zone, which
is reminiscent of those found in dilute flows [13, 14], is
a stark contrast to the stagnation point in perfect fluid
impacts, yet the ejecta remained generic in its presence,
showing that the jet composition and internal structure
have little effect on the ejecta when the impact is cold
and incompressible.

Directly colliding fluid streams furthermore parallel
multiple applications in manufacturing processes. Op-
posed jet micro reactors have been utilized to facilitate
combustion and to produce highly controlled chemical
reactions for polymer processing, nanoparticles, and the
careful synthesis of organic compounds in the pharma-
ceutical industry [2, 3, 15–17]. Furthermore, opposing
jets are employed in drying particles and fluid absorp-
tion [18, 19] and mineral extraction [20]. The present
findings are relevant to the mechanics by which the im-
pact center shifts between nozzles in these diverse indus-
trial examples, in particular highlighting the effects of
dissipation which have not yet been considered deeply,
and are explored in this paper.

II. METHODS

In this paper, we consider the two-dimensional head-
on collision of two dissipative jets of different sizes: one
jet of width 2R and a smaller jet of width 2kR, where
0 ≤ k ≤ 1. The two jets are incident such that their
centers align. Their initial velocities are both U0 in mag-
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FIG. 1. (Color online) Two-dimensional head-on impact of two jets produces a steady-state flow with collimated ejecta and a
steadily drifting flow configuration. (a) In two dimensions, A jet of width 2R, shown in blue, is incident against a jet of with
2kR, shown in red. Both jets are initially at 81% packing fraction and traveling toward each other at the same speed U0. Here,
R = 100RG, where RG is the grain width, and k = 0.465. (b) Snapshot at t = 2R/U0 after the two jets directly collide. Here
we indicate the coordinates x and y whose origin is located at the point of initial contact. (c) Snapshot at t = 10R/U0, where
the central saddle point, shown with a dot, is drifting toward the smaller oncoming jet with drift speed Ud. Here, Ud = 0.052U0.
Additionally, the impact produces 2 collimated ejecta streams with widths 2Rout and ejecta velocities with magnitude Uout

exiting at an angle Ψ0 from the horizontal. Note Ψ0 is not quite the same as the spatial angle formed between the ejecta jet
and the horizontal due to the fact that the ejecta streams are drifting alongside the saddle point.

nitude, and are opposite in direction so that the two
jets collide directly (Fig. 1 (a)). To simulate these im-
pacts we used two separate numerical approaches: the
first being a discrete particle simulation of dense granu-
lar jets [12, 21, 22], and the second being the continuum
dynamics of colliding jets using the multi-phase, incom-
pressible fluid flow solver gerris [23–26].

The discrete particle simulations consist of simulat-
ing the motion and collisions of hundreds of thousands
of rigid spheres with specified coefficients of restitution
and friction. We conduct our discrete particle simula-
tions using rigid grains, in line with experiments which
used copper and glass beads with negligible deformation
during impact [7, 12]. The discrete particle simulations
utilize a hybrid timestep- and event-driven method de-
signed to handle dense granular flow efficiently and accu-
rately [21, 22]. This method has been used in many recent
studies of granular jet impact, and has also been quanti-
tatively validated against experimental granular jet im-
pact flow configurations [12].

We prepare our discrete particle jets at 81% packing
fraction, and because our simulations are in two dimen-
sions, we use polydisperse grains to prevent spurious crys-
tallization. The grains we use have radii uniformly dis-
tributed from 0.8RG to 1.2RG, where RG is the average
grain size. In this paper, we use a grain size RG = R/100.
The jet-width-ratio k, restitution and friction coefficients
are varied and the effects on the dynamics of head-on col-
lision are explored.

The continuum simulations of colliding streams are
conducted for liquid jet impacts, where the shear stress is
proportional to the shear rate, for frictional fluid models
of granular jets, where the shear stress is proportional to
the pressure, and a shear thickening fluid whose effective
viscosity increases with the shear rate.

Continuum solutions in gerris utilize an incompress-
ible volume of fluid method to solve multi-phase flow
while providing significant flexibility for specification of
the deviatoric stress tensor [23–25]. Ideally, we are solv-
ing Cauchy’s momentum equations with incompressibil-
ity

ρ
Du

Dt
= ∇ · σ, ∇ · u = 0 (1)

where D/Dt = ∂t +u ·∇ is the advective derivative, ρ is
the jet density, u is the fluid velocity field, and σ is the
stress tensor. The initial conditions are

u =

{
U0x̂ x < 0
−U0x̂ x > 0

(2)

with an initial jet free surface corresponding to the two
impinging jets right when they make first contact. The
boundary condition on the free surface corresponds to
zero-stress with σ · n̂ = 0, where n̂ is the surface normal.
The boundary conditions within the jet are u = U0x̂ for
x→ −∞ and u = −U0x̂ for x→∞.

Our stress tensor is in general given by

σ = −p1 + τ (3)

where 1 is the identity matrix, p is the pressure and τ
is the deviatoric stress. In the cases presented in this
paper, we consider three deviatoric stress tensors: that
of Newtonian liquid flow, where τLiq = ηγ̇, that of a
frictional fluid, where τFF = µpγ̇/|γ̇|, and that of a shear
thickening fluid τST = κ|γ̇|1/2γ̇. Here, γ̇ = ∇u + ∇uT

is the rate of strain tensor, and |γ̇| =
√

γ̇ : γ̇/2.
For the Newtonian rheology, η is the dynamic viscosity,

for the frictional fluid, µ is the dynamic frictional coef-
ficient, and for the shear thickening fluid κ is the flow
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consistency index. Speaking in particular to the fric-
tional fluid, this frictional fluid model has been shown to
reproduce simulations and experiments of dense granu-
lar jet impact, and is therefore a natural choice for this
study [12]. We additionally considered the Newtonian
and shear thickening fluids because their stress tensors
are significantly different from dry granular flow. These
differences are key in our results showing that widely
varying materials produce similar head-on impact re-
sponses.

Even though our idealized problem consists of free-
surface jets of a single fluid type colliding in free-space,
the volume of fluid method that gerris utilizes to solve
the equations based on the boundary and initial condi-
tions above requires a surrounding fluid occupying the
free space outside the jets in our idealized problem. In
order to minimize the effects of the surrounding fluid, we
set its density to ρsurrounding = ρ/250, and we set its devi-
atoric stress to be Newtonian with viscosity ηsurrounding =
10−3RU0ρInter. We conducted our simulations with re-
finement 26 grid points across the jet width.

We have extensively varied the grid refinement, the
surrounding fluid viscosity, and surrounding fluid density
to ensure that the above parameters are in a regime where
the effects of the surrounding fluid and grid discretization
are minimal. Specifically, using a frictional fluid with
µ = 0.3 as a representative impact, we found that there
was a variation in the drift speed of roughly 0.1%, and a
variation of the energy dissipation rate of roughly 2%.

III. RESULTS

A. Steady saddle drift

To begin, we consider two unequal-width granular jets
with k = 0.465, and whose grains have coefficient of resti-
tution 0.9 and coefficient of friction 0.2 (see Fig. 1(a)).
Unless otherwise stated, these are the values we use in
our representative simulation examples in our discrete
particle jet impacts. In Fig. 1 we show early snapshots
(a) just before impact, (b) just after impact, and (c) after
the impact flow configuration has been well established.
The collision produces some familiar behavior, namely
that two collimated ejecta streams are produced as in
the case of impact against a fixed target [7, 12, 27]. The
collimated ejecta are traveling with velocity Uout at an
angle Ψ0 relative to the horizontal.

However, we also find notably unfamiliar behavior in
this system: the steady collision of the two incident
streams produces a steadily translating mode in which
the impact center and ejecta streams drift at a constant
speed Ud. As a result of this drift velocity, the spatial an-
gle traced by the ejecta stream relative to the horizontal
(Fig. 1(c)) is slightly different from Ψ0, the ejecta veloc-
ity angle. In contrast, the more studied case of impact
against a fixed target, there is always a fixed steady state
where the ejecta streamlines are equal to their pathlines.
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FIG. 2. (Color online) Following a short transient, the central
saddle point drifts at a relatively steady speed Ud. Normalized
(a) saddle position and (b) corresponding drift speed versus
time for collision between two jets at k = 0.465 (red) and
k = 0.25 (blue). The impact initially occurs at xsaddle = 0.
Following a short transient of duration ∼ 4R/U0, the saddle
point translates linearly in time. The direct measurement of
the drift speed obtained by differentiating the saddle position.
The drift speed starts high in the transient state and then
fluctuates about the mean drift speed after steady drift has
been reached. The drift speeds above are Ud/U0 = 0.052 for
k = 0.465 and Ud/U0 = 0.100 for k = 0.25.

But, in general, this is not true for head-on collisions of
two jets, since they obtain a quasi-steady-state where the
flow field and free surface steadily translate.

Let us define the saddle position xsaddle as the central
point in the impact at the interface where the grains of
the large jet meet the grains of the small jet. In Fig. 1(c),
this is where the blue and red jets interface along the line
y = 0 and moving toward the smaller incident jet. The
saddle center is initially situated at x = 0 at the point
where the two jets first make contact (Fig. 1(b)). Because
the granular jets are dense, and therefore cold [12], there
is negligible diffusion and mixing between the jets and
their interface is clearly defined. In Fig. 2 (a) we track
the saddle position over time, and find that following
a short transient, the two jets produce a steady central
motion where the saddle position moves linearly in time.

We instantaneously measure the drift speed over time
by computing the time derivative of the saddle position
by fitting a slope to 10 measurements of xsaddle over a
time frame R/U0. These drift speed measurements are
shown in Fig. 2(b). In Fig. 2(a) ,we graph only one xsaddle

for 10 measurements conducted in from our simulations
so that each xsaddle corresponds to one instantaneous
Ud/U0 in Fig. 2(b). This ensures that each Ud is indepen-
dently measured from all other Ud shown. In the discrete
particle jets, we see that there are slight fluctuations in
the rate of motion of the saddle point about the average
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FIG. 3. (Color online) The entire flow configuration arising from the head-on collision of unequal jets drifts steadily in time.
(a) As viewed in the fixed lab reference frame, we show horizontal velocity ux/U0 versus position x/R along the line running
through the centers of the jets defined by y = 0. Velocities are shown at a variety of times, ranging from very soon after
impact (blue) to long after impact (red). The velocity fields at these different times does not coincide when viewed from the lab
frame. (b) Horizontal velocity profile x̄/R along the center line as viewed in the comoving reference frame which is translating
steadily at the drift speed Ud along with the drifting saddle. All of the profiles from (a) are included, where all of the later
(t > 2R/U0) snapshots directly overlap in the comoving frame. Hence, excluding the profiles obtained in the initial transient,
the flow configuration translates at a constant drift speed Ud, remaining preserved as it translates.

drift speed on the order of U0/100, with an average drift
speed Ud/U0 = 0.052 to the right when k = 0.465 and
Ud/U0 = 0.100 when k = 0.25, where the large jet is
pushing the small jet. Thus, smaller k produces a larger
Ud.

As we next show, not only does the saddle drift steadily
in time, but the entire flow field drifts along with the
saddle steadily in time. We measure the flow field along
the jet centers by spatially binning grains into square
boxes of linear dimension 4.5RG along the center of the
jet at y = 0 and averaging the particle speeds within each
bin. A typical bin contains 5 particles.

In Fig. 3(a), we show the instantaneous horizontal ve-
locity field ux along the center line defined at various
points in time. We see the velocity in the large left jet
(x . −4R) is U0, and the velocity at large x in the smaller
jet (x & 4R) is −U0. The velocity fields at different
points in time as viewed from this fixed lab frame appear
distinct from one another.

We now enter the comoving frame whose origin is mov-
ing to the right at the drift velocity Ud obtained from
tracking the saddle point motion as in Fig. 2. Here we
find a dramatically simpler picture than in the lab frame.
Let us denote coordinates in the comoving frame with a
bar above the variable, notation that will be continued
through the rest of this paper. The comoving frame co-
ordinates in this notation are

x̄ = x− Udt (4)

ȳ = y (5)

ūx = ux − Ud (6)

ūy = Uy (7)

In the comoving frame, neglecting the short transient of
duration ∼ 4R/U0, the velocity fields are indistinguish-
able. The clear conclusion here is that when two unequal-

width granular jets collide, they produce a quasi-steady-
state in which the entire flow field uniformly drifts in time
at a fixed drift speed Ud in the lab frame. In the comoving
frame, the impact produces a steady-state, where partial
time derivatives of the velocity field or interface locations
(∂t) vanish, and the streamlines match the pathlines, re-
sulting in the spatial angle traced by the ejecta relative
to the horizontal to match the velocity ejecta angle.

Having established that a central drift emerges during
impact of two head-on granular jets of unequal widths,
we next explore the effects of jet width, and will profile
the flow configuration as k is varied.

B. Characterization of post-impact flow
configurations

The impact configuration is characterized by the drift
speed Ud, the ejecta speed Uout, and the ejecta angle
Ψ0. As later shown, the ejecta width Rout is determined
uniquely from these parameters by mass conservation
(Eq. (17)).

In Fig. 4(a) we see how the drift speed Ud varies as
k is varied when the coefficient of friction is 0.2 and the
coefficient of restitution is 0.9. When the jets are the
same width, there is no drift, as one would expect due to
symmetry. When the small jet is 0.465 times the width of
the large jet, as mentioned earlier, there is a drift speed
of Ud = 0.052U0, and when the small jet is 0.125 times
the width of the large jet, the drift speed increases to
Ud = 0.17U0. For any k < 1 we found the drift emerge;
there is not a threshold or yield k above which there is no
drift and below which it emerges. Rather the drift speed
as a function of k appears simply as an emergent result
of unequal jet widths.

In Fig. 4(b) we show the dependence of the ejecta speed
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FIG. 4. (Color online) As the jets approach equal widths,
the drift speed continuously vanishes. (a) In the lab frame,
we show the saddle point drift speed Ud/U0 versus the ratio of
the incident jet widths k while keeping R = 100RG and the
restitution and friction coefficients 0.9 and 0.2, respectively
in the discrete particle simulation (red points). We further-
more include the outcome from our control volume analysis
for comparison, where we see the analysis perform quite well
despite its simplicity. We see that Ud decreases monotonically
as k increases, and eventually Ud vanishes when the jets are
equal widths at k = 1. (b) Ejecta velocity in the lab (red)
and comoving (blue) frames. Note that the ejecta velocity
appears relatively constant for all k, especially in the drifting
frame. For the grains used here, that constant is approxi-
mately B = 0.73. (c) To complete the characterization of the
flow configuration resulting from the collision we include the
ejecta angle in both the lab and comoving frames.

Uout on k. Here we see much less variation than we did
for the drift speed. Evidently, at fixed jet parameters, the
ejecta speed does not change much even though the jet
sizes are changed dramatically. In the cases presented,
the smaller jet varied in width by a factor of 8 while Uout

varies by just 13% in the lab frame.

Furthermore, we provide the ejecta angle Ψ0 as the fi-
nal ingredient to characterize the impact flow configura-
tion. We see that Ψ0 decreases as k decreases, indicating
that when the larger jet is much wider than the smaller
one, the ejecta are more acute and are less deflected than
the directly vertical jets obtained at the maximum deflec-
tion of 90◦ when k = 1.
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FIG. 5. (Color online) Momentum balance incorporates
momentum absorption into the drifting saddle. Here we show
the momentum absorbed by the drifting saddle Psaddle as a
fraction of the net incident momentum Pin as we vary the
jet-width-ratio k. We see that the drifting saddle absorbs a
considerable fraction of the net incident momentum. In the
discrete particle jets used here, at least 15% of the net incident
momentum is captured by the drifting saddle.

C. Bulk momentum absorption

Most generally, Pin momentum flux is advected into
the impact region, Pout is advected out, and we denote
the final term corresponding to the amount of momentum
absorbed by the impact center Psaddle. Put more simply:

Pin − Pout = Psaddle (8)

As an important note, because of the y-symmetry of our
impact system, P in all cases above refers only to the
horizontal momentum along the x-axis.

For ideal fluid impacts, we know that the ejecta bal-
ance the momentum equation and Pout = Pin because
reversibility requires the center remain stationary. How-
ever, in the case of granular jets, or drifting jets in gen-
eral, we have no reason to expect Psaddle to remain null
because dissipation breaks time reversibility.

In Fig. 5 we show the fraction of the initial momentum
that is absorbed by the saddle Psaddle/Pin as a function
of the jet width ratio k. Here, we measure Psaddle by
measuring the net incident momentum Pin and the net
momentum in the ejecta Pout in our simulations. Be-
cause we find that their difference is nonzero, there is
momentum being deposited into the saddle Psaddle. Fur-
thermore, we see that a significant fraction of the new
incident momentum is being absorbed by the saddle, in
this case roughly 15% for the range of k presented.

This absorption is due to the fact that the flow field
is uniformly translating, which in the lab frame appears
simply as an elongation of the larger jet and a contraction
of the smaller jet. Hence, in a unit time, the change in
momentum due to the large jet elongation is 2ρRU0Ud,
and the change due to the contraction of the smaller jet
is 2ρkRU0Ud. Thus

Psaddle = 2ρRU0Ud(1 + k) (9)

This effect is not unique to the momentum. In fact, the
mass and energy also display this behavior, for example,
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the same approach yields a new term in mass balance due
to the saddle motion given by Min −Mout = Msaddle =
2ρRUd(1− k).

D. Drift dependence on energy dissipation

Now we investigate how energy dissipation affects the
central drift. The energy dissipation rate is most eas-
ily computed in the comoving reference frame. As men-
tioned, there are net mass, momentum, and energy trans-
fers to the drifting center in quasi-steady-state found in
the lab frame, and for simplicity we do our analysis in
the comoving frame where a steady state is reached to
simplify the analysis. In the comoving reference frame,
we denote ŪB and ŪS, as the incident speeds of the large
and small jets respectively, and Ūout and Ψ̄0 as the ejecta
speed and ejecta angle, respectively. These are related to
their values in the lab frame via

ŪB = U0 − Ud (10)

ŪS = U0 + Ud (11)

Ūout =

√
(Uout cos Ψ0 − Ud)2 + U2

out sin2 Ψ0 (12)

Ψ̄0 = tan−1 Uout sin Ψ0

Uout cos Ψ0 − Ud
(13)

The jet cross sections Rout, R, and kR are the same in the
comoving and lab reference frames. The transformations
of the ejecta speed and angle in the lab versus the co-
moving frames can be seen in for representative impacts
in Figs. 4(b) and (c).

In the comoving reference frame, when the impact pro-
duces a steady-state flow configuration, the dissipated
energy Ēdiss is equal to the energy advected in Ēin sans
the energy advected out Ēout. These energy fluxes are
given

Ēdiss = Ēin − Ēout (14)

Beginning with the energy influx, Ēin is simply the sum
of the energy input from both the large and small jets

Ēin = ρR(Ū3
B + kŪ3

S) (15)

Next, the energy advected out by the two ejecta jets is

Ēout = 2ρRoutU
3
out (16)

We can simplify the above slightly by noting that there
is no net mass flux, and that all of the mass entering is
consequently leaving. Denoting the mass fluxes by M̄ ,
we therefore have M̄in = M̄out, giving

R(ŪB + kŪs) = 2ŪoutRout (17)

because M̄in = 2R(ŪB + kŪA) and M̄out = 4ρRoutŪout.
Throughout the above we noted that the density ρ of the
jets remains constant during the impact in dense granular
jet collisions [12].

Combining Eqs. (14) and (17), we obtain

Ēdiss = ρR
[
Ū3

B + kŪ3
S − (ŪB + kŪS)Ū2

out

]
(18)

Using Eq. (18), we could easily calculate the dissipa-
tion rates during impact. We varied the dissipation rate
in the discrete particle granular jets by specifying the co-
efficient of restitution at 0.05, 0.1, and 0.9, and for each
coefficient of restitution, we varied the friction coefficient
from 0 to 1.

We further considered dissipation effects on the drift
speed for continuum frictional-fluid, Newtonian, and
shear-thickening impacts which were computed using the
gerris flow solver. We varied the dissipation rate in the
frictional fluid model by changing the dynamic friction
coefficient µ from 0.05 to 0.7. For the Newtonian im-
pact, dissipation was controlled by varying the Reynolds
number (Re) from 3 to 100 where the Reynolds number
is defined Re = ρRU0/η. Lastly, dissipation was var-
ied in the shear thickening fluid by varying the effective

Reynolds number Reeff = ρR3/2U
1/2
0 /κ from 6 to 100.

For the frictional fluid and Newtonian continuum simu-
lations, we verified that the dissipation rate showed rea-
sonable behavior as µ and η were varied (see Appendix).

In Fig. 6 we show how Ud varies based on the frac-
tion of energy dissipated during impact by comparing
the dissipated energy (18) to the input power Ēin. This
dependence is displayed for 4 different cases: the discrete
particle granular jets like those in our previous results,
and the three continuum fluids computed in gerris. The
continuum fluids we used were a frictional fluid model of
dense granular jets [12], a continuum Newtonian impact,
and a continuum shear thickening fluid. The continuum
impacts were repeated for k = 0.314, k = 0.465 and
k = 0.688 while the discrete case is only presented for
k = 0.465.

In Fig. 6(a) we see that increasing the energy dissi-
pation rate relative to the input power in the comoving
frame, or increasing Ēdiss/Ēin, increases Ud. Also, in the
asymptotic case of no dissipation, the data shows that
the drift speed itself also vanishes entirely. Hence, in-
creasing dissipation increases the drift speed, and having
no dissipation, such as in the head-on impact of ideal
fluids, there is no drift. Also, in Fig. 6(a) we see that,
consistent with Fig. 4(a), reducing k increases Ud.

For all of these fluids, we found that the dependence
of Ud on Ēdiss/Ēin all coincide and collapse together at a
given jet-width-ratio. The drift speed resulting from the
head-on impact of unequal-width jets is insensitive to the
precise type of the dissipation, rather, it only depends on
the amount of dissipation in the jets for a given k. The
mechanisms by which a Newtonian fluid dissipates en-
ergy are different from the generalized Newtonian shear
thickening fluid, and in turn entirely different from that
in a discrete particle granular jet. It is remarkable how
the system produces such similar drift speeds for such
different jet compositions hen controlled for the amount
of dissipation.
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FIG. 6. (Color online) Drift speed reaches a fraction of its maximum based only on how much of the available incident
energy is dissipated. This fraction is achieved entirely independently of all jet-width-ratios and dissipation mechanisms. Shown
in (a) is the drift speed Ud/U0 versus the normalized energy dissipation (from Eqs. (18) and (15)) for the discrete particle
simulations and the continuum fluids. The discrete particle simulations (DPS) with coefficient of restitution (COR) 0.9 (black,
triangles), 0.1 (dark grey, squares), and 0.05 (light gray, circles) are shown for k = 0.465. The continuum impacts are shown
with k = 0.314 (+×), k = 0.465 (+), and k = 0.688 (×) for the shear thickening fluid (ST, magenta), the frictional fluid (FF,
red), and the Newtonian (Liq, blue) cases. At any given k, all of these cases produce similar drift speeds at a given energy
dissipation rate. For comparison, we additionally include our control volume analysis (green, dashed) at k = 0.465, which
qualitatively captures the increasing drift speed with increasing dissipation, but is completely unable to capture other features,
most notably the concavity. (b) Drift speed Ud normalized by the maximum drift Ūmax

d versus the energy dissipation rate
Ēdiss normalized by its maximum Ēmax

diss . Firstly, we find a dramatic collapse of the data, indicating that when the drift speed
reaches a given fraction of its maximum dependent only on the dissipation rate and independent of the details of the highly
varying impact materials and jet-widths-ratios. Secondly, we find that this fraction is robustly dependent on the normalized
dissipation rate to the power 1.5.

E. Maximum drift speed and collapse

The drift speed Ud is clearly a strictly increasing func-
tion in the dissipation rate, and so it is clear that the
maximum drift speed is obtained when the dissipation is
maximized. Here, the maximum energy dissipated Ēmax

diss
is simply bounded by the energy supplied to the system:

Ēmax
diss = Ēin (19)

Next, note that when drift is present, the momentum dif-
ferential of the incident streams is lower in the comoving
frame than in the lab frame. In the lab frame, the net
incident momentum is

Pin = 2ρRU2
0 (1− k) (20)

whereas in the comoving frame the net incident momen-
tum is

P̄in = 2ρR((U0 − Ud)2 − k(U0 + Ud)2) < Pin (21)

The question at hand is how far can the dissipation push
the comoving incident momentum differential; the an-
swer is until the two jets contain equal momenta in the
comoving frame. This corresponds to directly vertical
ejecta streams with Ψ̄0 = π/2. At the maximum energy

dissipation, where the drift speed is maximized, P̄in = 0
and

(U0 − Umax
d )2 = k(U0 + Umax

d )2 (22)

yielding a maximum drift speed

Umax
d

U0
=

1−
√
k

1 +
√
k

(23)

Using Ēmax
diss as the characteristic energy scale and the

corresponding Umax
d as the characteristic velocity scale,

we see in Fig. 6(b) that our results do not only collapse
across dissipation mechanisms for a given k, but further
that all of our head-on impacts appear to be controlled
by these characteristic velocity and energy scales. Hence
when the dissipation is at a given fraction of the available
energy Ēdiss/Ē

max
diss , the drift speed is at a given fraction

of its maximum Ud/U
max
d as well, independent of the

jet-width-ratio k, and independent of the details of the
dissipation mechanisms of the impact. Essentially, the
emergent drift speed in the end appears to be a relatively
simple phenomenon. The effects of the jet-width-ratio
are easily captured based on the total available energy to
the system to the extent where the drift speed is appar-
ently determined by a self-similar equation

Ud = Umax
d f(Ēdiss/Ē

max
diss ) (24)

where f(0) = 0, f(1) = 1, and f is strictly increasing.
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F. Drift speed scaling relative to the dissipation

In Fig. 6(b), aside from the dramatic data collapse, we
see that the drift speed has a power law scaling relative
to the dissipation rate where Ud ∼ Ē1.5

diss. Though this
scaling is clearly and apparently present, we do not have
an explanation for the scaling at this time. In particular,
it appears surprisingly that Ud = Umax

d (Ediss/E
max
diss )1.5

in Eq. (24).
A particularly confounding aspect of the power law

are that straightforward analyses predict nothing like an
exponent of 1.5. For example, in order to recover such a
law using dimensional analysis, our analysis would have
to yield, in some form

U2
d ∼ E3

diss (25)

However, a physically relevant dimensional quantity de-
pendent on the cube of the dissipation rate is highly ob-
scure, and it is unclear to us where one might arise.

Furthermore, linear perturbations to the system, for
example to the similarity equation Eq. (24) to infer the
form for f , would not yield a 1.5 or 3/2 power, but rather
a linear dependence of f on the dissipation. For all of
these reasons, the scaling identified in Fig. 6 is puzzling.

Below we attempt to understand the results exposed
above by presenting a very simple control volume analy-
sis. As we will see, the analysis captures the broad nature
of the effects of dissipation and unequal jet widths on the
drift speed from our simulation, but is far from capturing
the simple form for f as we empirically identified from
our simulations.

IV. CONTROL VOLUME ANALYSIS

Here we provide a simple approximation of the drift
speed resulting from the head on in pact of two unequal-
width, dissipative jets as a qualitative exercise in showing
how dissipation and an unequal jet-size-ratio can natu-
rally produce a drift speed. This approximation is largely
independent from measurements or observations from our
simulations, providing a from-scratch look at the effects
of dissipation and the jet-width-ratio.

We conduct our analysis in the drifting frame. The
control volume analysis consists of two rough approxi-
mations: one regarding the ejecta speed, and the other
approximating the energy dissipation rate. These two
parts are related but distinct, since the ejecta speed de-
pends not only on the dissipation rate, but also the drift
speed.

A. Approximating dissipation rate and ejecta
speed

In the following analysis, we presume that most of the
dissipation occurs in the vicinity of the smaller jet near

the impact saddle. This corresponds to a length scale
L ∼ CkR, a velocity scale U ∼ ŪS, and, in two dimen-
sions, a volume scale of V ∼ L2. Here, the constant C
is assumed to be independent of the jet width ratio and
the dissipation rate.

The control volume analysis begins with a very rough
approximation of the energy dissipated during impact.
The total energy dissipation rate, shown in Eq. (18), re-
lates the energy dissipation to the change in the incident
and outgoing energy fluxes. More plainly,

Ēdiss = −
∮
ρū2

2
ū · dS (26)

where the contour is along a control volume surrounding
the jet and extending far from the impact center in order
to enclose the entire flowing region with nonzero velocity
gradients. This control volume is fixed in space since
the flow in the comoving frame is in steady-state. This
becomes, noting fluid incompressibility,∮

ρū2

2
ū · dS =∫
∇ ·

(
ρū2

2
ū

)
dV =

ρ

2

∫
ū ·∇(ū2) dV (27)

Using dimensional analysis we can approximate Ēdiss

from Eq. (27) as

ρU
∆(ū)2

L
V ∼ ρCkR(Ū2

out − Ū2
S)ŪS (28)

Above we considered an additional approximation where
∆(ū2) = Ū2

out − Ū2
S , as this is the change in the velocity

squared from our final velocity state relative to our dom-
inant velocity scale. This, together with Eq. (18), yields

Ū3
B +kŪ3

S − (ŪB +kŪS)Ū2
out = Ck(Ū2

S − Ū2
out)ŪS (29)

For equal-width jets when k = 1, symmetry requires
Ud = 0, and hence ŪS = ŪB Ud = 0. In this case, Eq. (29)
reduces to

2Ū3
S − 2ŪSU

2
out = CŪS(Ū2

S − Ū2
out) (30)

which requires

C = 2 (31)

The final part of the approximation concerns the ejecta
speed. Our analysis simply approximates the ejecta
speed in the comoving frame as

Ūout = BU0 (32)

In the above approximation, we allow B to vary when
fluid properties vary, such as changing the Reynolds num-
ber in a Newtonian impact, or the friction coefficient in a
discrete-particle granular impact. But, we presume that
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B does not change as k is varied. This approximation
is motivated by Fig. 4(b), where we see that Ūout is ap-
proximately constant for the range of k tested. In that
example with discrete particle jets whose coefficients of
restitution and friction are respectively 0.9 and 0.2, we
obtain B = 0.73.

Hence, with C determined by symmetry, the analysis
becomes dependent on the parameter B above which ac-
counts for dissipation effects. Combining Eqs. (29) and
(32), our analysis simply yields

Ū3
B +kŪ3

S−(ŪB +kŪS)B2U2
0 = 2k(Ū2

S−B2U2
0 )ŪS (33)

The result of the control volume analysis, shown in
Eq. (33) is a cubic equation for the drift speed. Below we
explicitly show the cubic equation for Ud from expanding
Eq. (33) and recalling Eqs. (10) and (11):(

Ud

U0

)3

− 3

(
Ud

U0

)2
1− k
1 + k

+
Ud

U0
(3−B2)− (1−B2)

1− k
1 + k

= 0 (34)

Because Eq. (34) has a negative discriminant for virtually
all k and B, it in all practicality admits a unique real
solution for Ud, and the drift speed can be determined
relative to U0 if provided k and B.

B. Analogy to equal dissipation in both incident
jets

Beginning with the small jet in the comoving frame, we
know that the incident mass flux for particles originating
in the small jet equals the outgoing mass flux for those
same particles. Because the ejecta is at a speed Ūout

ρkRŪS = ρRS,outŪout (35)

where RS,out is the width of the ejecta stream including
fluid originating from only the small incident jet. As
before, we calculate the energy dissipated in the small
jet, denoted ĒS,diss, via

ĒS,diss = ρkRŪ3
S − ρRS,outŪ

3
out

= ρkRŪS(Ū2
S − Ū2

out) (36)

Thus, if we set the energy dissipated in fluid from the
large jet equal to that from the smaller jet ĒB,diss =
ĒS,diss, we find that this approximation yields

Ēdiss = ĒS,diss + ĒB,diss = 2ĒS,diss (37)

Thus Eqs. (36) and (37) recover Eq. (29). Therefore ap-
proximating the power dissipated in both jets as being
equal is equivalent to the rough dimensional approxima-
tion done earlier. That is, our energy dissipation approx-
imation in Eq. 29 analogous to approximating the energy
drop across fluid originating in the large incident stream
as equal to that in the smaller incident stream.

C. Evaluation of the control volume analysis

We now discuss how drift emerges amid dissipation in
our control volume analysis, as well as compare the anal-
ysis to our discrete particle and continuum jet impact
simulations. In the comparisons against previous results,
we first compare the control volume analysis to our dis-
crete particle simulations with fixed particle properties
(or fixed B) and varied k. We then test how the analysis
captures the effect of dissipation by fixing k and varying
the dissipation by changing B.

We first identify qualitative outcomes pertaining from
the head-on collisions of two streams in the context of
the control volume analysis from Eq. (33). Namely, we
naturally find the presence of dissipation produces a drift
speed. In the absence of dissipation, the jets behave as
ideal fluids, and thus B = 1 because the ejecta speed
must equal the incident speed. In that case, Eq. (33)
reduces to

ŪB(ŪB − U2
0 ) = kŪS(ŪS − U2

0 ) (38)

whose only real solution is obtained when ŪB = ŪS =
U0, and no drift is present. Decreasing B from unity
corresponds to increasing dissipation, where ŪB < ŪS,
and a positive drift speed emerges.

Second, we check how the control volume analysis per-
forms when fixing B and varying k. In particular, we
check how the analysis performs in our granular jet sim-
ulations with coefficients of restitution and friction of 0.9
and 0.2 at various k. In Fig. 4(a) we show the drift speed
versus k for the granular jets as well as for the control vol-
ume analysis with B = 0.73, as obtained from the granu-
lar jet noting that in the comoving frame, Ūout = 0.73U0

(Fig. 4(b)). We see that the analysis captures the trend
in Ud when B is fixed and k is varied.

The final check for our control volume analysis is when
the jet-width-ratio is fixed at k = 0.465 and the dissipa-
tion is varied by changing B from 0 to 1. The compar-
ison of the analysis to our various simulations is found
in Fig. 6(a). The analysis captures the broadest qualita-
tive nature found in the simulations, namely that there is
no drift speed in the absence of dissipation and that in-
creasing the dissipation rate monotonically increases the
drift speed. However, the analysis fails to capture the
clear concavity found in the multiple collapsing simula-
tion data sets. As such, the analysis fails to capture the
1.5 exponent in the scaling identified in Fig. 6(b).

To its credit, the analysis does not have much tunabil-
ity, and it nevertheless is in order the simulation results.
However, we find that the analysis fails quantitatively. Its
largest shortcoming is when comparing the drift speed
versus the dissipation rate, where the analysis predicts
the wrong concavity for Ud versus Ēdiss. and therefore
does not capture the robust scaling that we identified in
our simulations.
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V. CONCLUSION

The impact of ideal fluid jets in two dimensions is a
classic pedagogical problem in fluid dynamics, both be-
cause it is a conceptually simple generalization of the
classical mechanics particle collision problem to fluid dy-
namics and because it is analytically tractable using clas-
sical conformal mapping techniques [28–30]. While it
has long been appreciated that flow reversibility in ideal,
dissipation-free jet impact dictates that the central im-
pact region remains fixed in the laboratory frame, there
has been no study focused on how dissipation affects this
outcome.

In this study, we investigated the effects of dissipa-
tion in two dimensional head-on jet impacts, focusing on
the head-on impact of granular jets. We identified that
the collision produces a steadily drifting flow configura-
tion which absorbs a significant fraction of the incident
momentum into the collectively drifting impact center.
We further showed that energy dissipation is the main
ingredient necessary to produce the emergent drift. To
this point, we saw that the amount of dissipation dic-
tates what fraction of the maximum drift speed is reached
across a very wide variety of fluid dissipation mechanisms
and jet-width-ratios, and identified that the drift speed
robustly scales relative to the energy dissipation rate with
a 1.5 exponent. We lastly motivated a simple control vol-
ume analysis of the collision which captured the general
effect of dissipation on the drift speed, though this anal-
ysis was short of explaining the scaling identified in our
simulations.

Furthermore, when investigating the impact between
two free streams or objects, it is natural to simplify the
dynamics by fixing the first object and then collide the
second against the first. Examples where this has has
been done when studying the off-center collision of gran-
ular streams [27] or the formation of protoplanets [31–
33]. However, because of the presence of central drift
in dense, dissipative impacts, the outcome of collisions
when fixing one object is fundamentally different than
the free-collision counterpart. This consideration can im-
pact the interpretation, and perhaps even the validity,
of some fixed-target impact experiments mimicking the
high-speed free collision of two dense objects. For exam-
ple, since the decimation of a dust aggregate is an impor-
tant consideration in protoplanetary formation, the total
force felt during impact is a crucial experimental output.
But, in this case, fixing one object produces larger im-
pact forces than free impacts because a free impact would
reduce the collision force via the central drift.

We would also like to highlight that the scaling behav-
ior of the drift speed relative to the energy dissipation
rate remains a mystery. Our simple approaches were not
able to capture the exponent, and the similarity equation
or control volume analysis presented cannot capture the
scaling short of significant insight. In the control volume
analysis, we assumed that the dissipation occurred over
a length scale dependent only on k and not the energy

dissipated. But, evidently the dissipation length scale is
more sophisticated, and our evidence suggests that the
relevant impact length scale varies with the dissipation
rate. This, taken together with the fact that the de-
tails of the jet constitutive material are irrelevant, lay
the groundwork for a more involved analysis with a more
careful accounting of the impact length scale. In particu-
lar, this would manifest as a the coefficient C in Eq. (29)
as no longer being constant, but varying based on the
dissipation.

Lastly, we remark that though we believe drift should
occur in three-dimensional axisymmetric impacts, we are
unsure if it too is insensitive to material type or results in
a simple scaling behavior relative to the dissipation rate.
The control volume analysis was clearly able to capture
the qualitative nature of the central drift speed, and this
analysis can easily be extended to show the same result in
axisymmetric impacts. Whether or not the finding here
that the total dissipation is significantly more important
than the material composition is unclear, as the analysis
was unable to entirely capture this effect, and a three-
dimensional study with numerical diligence is required
to determine if all of the two-dimensional findings in this
paper persist.
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Appendix A: Dissipation versus viscosity and
friction coefficient

Here we provide a brief investigation of how the dis-
sipation rate varies with the friction coefficient µ in the
frictional fluid and the viscosity coefficient η in Newto-
nian fluids. The main purpose is to show that the energy
dissipation variation aligns with intuition. In these cases,
the effect of each dissipation coefficient is similar, I will
discuss their features while referring to both µ and η as
“coefficients”.

When the coefficients are small, their effect on the flow
should be negligible, as we have not observed singular
perturbations akin to turbulence and boundary layer sep-
aration, for example. In accordance with the fact that
small coefficients do not affect the flow configuration sig-
nificantly, we would expect that the dissipation rate in-
creases linearly with the coefficients in the case where
they are small.
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In Fig. 7 we show the normalized dissipation rate ver-
sus µ and η at k = 0.465. When the coefficients are small,
in accordance with our expectation above, the dissipation
increases linearly with the friction µ and viscosity η. As
we increase the coefficients and the energy dissipation
crosses Ēdiss & 0.5Ēin, dissipation begins playing a role
comparable to inertia in determining the flow configu-
ration, and the effect of the coefficients becomes more
complicated.

Hence, we see a linear variation in the energy dissipa-
tion rate as the coefficients, which are linearly related to
the energy dissipation rate, produces a linear change in
the dissipation rate when the coefficients are small. At
higher viscosity and friction in the continuum fluids, the
dissipation rate begins to saturate. These together give
us additional confidence that the continuum impacts are
being solved approximately correctly in gerris.

 0.01

 0.1

 1

 0.01  0.1  1

E−
d

is
s
 /
 E−

in

1/Re (η/ρ R U0)

(b)

 0.01

 0.1

 1

 0.01  0.1  1

E−
d

is
s
 /
 E−

in

µ

(a)

FIG. 7. (Color online) Dissipation rate versus (a) friction
coefficient µ and (b) inverse Reynolds number for frictional
fluid and Newtonian impacts, respectively. These continuum
simulations are at k = 0.465. The green dashed lines are linear
fits to the low dissipation data points. These lines highlight
that at low dissipation, the dissipation increases linearly with
the dissipation coefficients (µ and η), corroborating the intu-
ition that when the coefficients are small, the overall flow field
remains relatively undisturbed. At higher coefficients, the en-
ergy dissipation rate begins to saturate to its maximum.
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